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Host and pathogen genetics associated with pneumococcal meningitis

4.1 Introduction

This chapter deals with the contribution of variation in the pathogen genome to bacterial

meningitis. Using a GWAS framework, I first wished to test whether any variation in

the pneumococcal genome is associated with susceptibility to meningitis or with a poor

outcome of the infection. To study this, I used isolates collected as part of the MeninGene

study (section 1.1.4). This part of the study consists of 3 089 pathogen isolates from the

culture-proven cases of bacterial meningitis from the Netherlands. DNA was extracted

from CSF and blood cultures and sequenced with 100bp paired end reads on the Illumina

HiSeq platform. Of these sequences, 1 984 were S. pneumoniae. 751 carriage genomes

from Dutch adults and children were also sequenced to use as controls for susceptibility

analysis.

I first catalogued all forms of variation to use as the loci to test in a GWAS (section 4.3).

While k-mers cover most of this variation, I also included tests of SNPs and genes due to

their more straightforward interpretation. Some forms of variation such as inverting repeats,

CNVs, recombinogenic antigens cannot be captured by these methods, so I developed new

techniques to call variants at these loci. While this covered all forms of common variation

detectable by short reads in the pneumococcal genome, rare variants may also play a role

in disease pathogenesis. I annotated the predicted effect of rare coding variants to choose

which to use in burden tests.

Using the SNP variation to tag other forms of variation in the genome, I was able to

estimate the heritability of each of these traits (the proportion of variance in the phenotype

is explained by variation within the genome). Finding evidence for pneumococcal genetic

variants contributing to invasiveness other than serotype, I then used the methods presented

in chapters 2 and 3 to test whether any of the specific variants that I called were associated

with susceptibility to or severity of meningitis.

Section 4.5 concerns pathogen variation that occurs over the course of a single infection.

Croucher, Mitchell et al. (2013) have previously shown that in a single patient bacteria

appeared to adapt to the distinct conditions of blood and CSF. These are very different

niches from that of nasopharyngeal carriage where this variation is well documented

(Cremers et al., 2014), not least because the bacteria are exposed to different immune

pressures (Habets et al., 2012) and have less time over which to accumulate mutations.

It is possible that bacteria inhabiting the nasopharynx are already well adapted for CSF

invasion. However, genetic variants that enable invasion of the CSF are not expected to

be under positive selection, since invasion is an evolutionary dead end for the bacterium.

Studies of carriage alone will therefore be unable to detect selection during invasion.

Current knowledge on within-host variation during invasive disease is mostly focused at

the serotype and MLST level, and lacks the resolution and sample size to be able to address

this question (Brueggemann et al., 2003; del Amo et al., 2015; D. A. Robinson et al., 2001).

108



Chapter 4. Bacterial genetics contributing to invasive pneumococcal disease

Though the only whole genome based study suggests there is no difference between blood

and CSF populations (at the gene level) in S. pneumoniae (Kulohoma et al., 2015), larger

sample sizes are needed to better answer this question.

I therefore wished to expand the analysis of Croucher, Mitchell et al. (2013) by

including more cases of disease, and used 938 pairs of genomes from the blood and the

CSF of the same patient, and 54 pairs from the nasopharynx and CSF of the same patient

sequenced as part of the MeninGene study described above. This sample set included both

N. meningitidis isolates and S. pneumoniae isolates, each of which was analysed separately.

As isolate pairs are matched they are closely related; the issue of population structure

affecting bacterial GWAS is no longer a problem. Variants between pairs can be grouped

by functional effect and tested for association with a niche straightforwardly.

4.2 Quality control and processing

In this section I discuss initial QC of isolates in the collection, and evaluations of both

assembly and variant calling software to be used throughout the chapter.

Using a single S. pneumoniae isolate, I compared the quality of three assembly methods

that have previously been shown to perform well on bacterial genomes (Magoc et al., 2013):

Velvet (Zerbino & Birney, 2008), SPAdes (Bankevich et al., 2012) and SOAPdenovo2 &

MaSuRCA (Zimin et al., 2013). Statistics from this comparison are shown in table 4.1.

I decided that the SPAdes pipeline provided good quality assemblies while being easy

to run, so assembled all isolates in the collection with v3.5 of the software using default

settings. Additionally I ran velvet on all samples, which when k-mer length is optimised

and scaffolds are improved, gave similar results to SPAdes. I corrected the resulting velvet

assemblies with SSpace and GapFiller (Page et al., 2016). The assembly result used for

each purpose will be stated throughout the rest of the thesis.

Velvet SPAdes SOAPdenovo2 & MaSuRCA

# contigs 48 7 7
Total length 2 096 048 2 205 585 2 139 022

N50 77 648 429 779 481 453
# genes 2 073 2 208 2 166

CPU time 6 h 7.2 h 5.5 h

Maximum memory 3.7 GB 7.0 GB 4.3 GB

Disk space 0.1 GB 0.6 GB 4.2 GB

Table 4.1: Assembly and annotation of S. pneumoniae isolate 11822 8 30. N50 is the median contig length.

For each performance metric the best scoring method is in bold.
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I then analysed the quality of the SPAdes assemblies using quast (Gurevich et al.,

2013) and kraken (Wood & Salzberg, 2014). I performed this analysis at the sample level,

rather than at the contig level. As the primary aim is a GWAS I desired complete and

comparable assemblies, so the number of included samples at each variant is the same. I

found two assemblies which were predominantly another species, and discarded them. I

also discarded five sequence runs with low yield, 17 with total lengths over 2.5Mb, two

with total lengths under 1.8Mb and one with a GC content of 31.4%. This left 1 144 CSF

isolates and 674 pairs of blood and CSF isolates for downstream analysis. For the carriage

samples I removed 29 isolates contaminated with another species (determined by kraken,

and the position on a preliminary core gene alignment phylogeny), and 8 isolates which

showed evidence of being mixed samples (number of heterozygous SNPs in preliminary

mapping was greater than two standard deviations above the mean). This left 693 carriage

isolates for downstream analysis.

To compare variant calling methods I produced a set of true variant calls for 30 samples.

I did this by simulating evolution of S. pneumoniae genomes along the branch of the tree

between S. pneumoniae R6 (Hoskins et al., 2001) and the common ancestor with S. mitis

B6 (Denapaite et al., 2010). The rates in the GTR matrix and insertion/deletion frequency

distributions were estimated as in section 2.3.1. I created an average of 10 000 mutations

with these rates, and Illumina paired end read data at 200x coverage simulated using pIRS

(Hu et al., 2012).

Method True positives False negatives False positives

bcftools 24922 900 244

freebayes 22253 3569 1465

GATK 25024 798 191

Table 4.2: Performance of variant calling algorithms on simulated data. True positives are SNPs or INDELs

correctly called; false negatives are variant sites which were missed by the caller; false positives are sites

without variation but called as a variant.

I mapped the reads with bwa-mem (H. Li, 2013), followed by samtools fixmate, sort

and markdup. I then called variants using bcftools, freebayes (Garrison & Marth, 2012)

and GATK (Van der Auwera et al., 2002). The results are shown in table 4.2. freebayes

performed poorly due to its use on multiple nucleotide polymorphism (MNP)s, which were

difficult to compare to the simulations. GATK performed the best on all measures, and

in particular achieved much better power at calling indels. I used it for calling SNPs and

indels throughout, unless otherwise stated.
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4.3 Catalogue of all pneumococcal variation

In this section I detail how I catalogued population level variation in the pneumococcal

genome. These variants are then used throughout the rest of this chapter as the predictor

variable in GWAS with various phenotypes of interest, analysis of within-host variation and

in chapter 5 as the phenotype in a genome to genome analysis. As discussed in section 2.2,

variation in bacterial genomes is not well represented by short changes compared to a

linear reference due to extensive variation of the accessory genome (Donati et al., 2010;

McInerney et al., 2017), mosaic alleles created by recombination (Hanage et al., 2009),

structural variation (Croucher, Coupland et al., 2014; Manso et al., 2014) and copy number

variation (Howden et al., 2015). I used different techniques to determine the variation

present in each sample from each of these sources to ensure maximum discovery power of

the GWAS performed.

While short variants (i.e. SNPs and small indels) with respect to a single linear

reference only partially covers the variation present in the pneumococcal population, it

is still a useful dataset to produce. A genome alignment produced this way can be used

to generate the phylogenetic relationship between all samples from the population and

create discrete related clusters. Both of these are useful for QC, heritability analysis

and evaluating population structure. Additionally, the effect of these variants on protein

function can be straightforwardly predicted, making conclusions drawn from them more

easily interpreted and also of use in indirect tests of association section 4.4.2.

I produced a whole genome alignment in two ways. Firstly I mapped reads to the

ATCC 700669 reference using bwa mem with default settings

bwa mem r e f e r e n c e . f a f o r w a r d r e a d s . f a s t q r e v e r s e r e a d s .

f a s t q | s a m t o o l s f i x m a t e −O bam − > o u t p u t . bam

and finally marked duplicate reads in these binary sequence alignment/map (BAM) files

using Picard. I then called variants from each of these BAM files separately using samtools

mpileup and bcftools call, and as a population using GATK HaplotypeCaller. I then applied

hard quality filters to each of these call sets to create initial calls. To select variants based

on a correctly scaled sensitivity and specificity I used GATK VariantRecalibrator to scale

the variant quality scores. This tool requires known true positive calls as a prior – I used the

intersection of hard filtered variants from GATK and bcftools with 90% confidence (Q10),

and filtered variants from the Maela and Massachusetts studies with 68% confidence (Q5)

as recommended. After recalibration, I applied 99.9% power as the cut-off for variants to

maximise sensitivity at this stage. Finally, I annotated the predicted consequence of all

passing variants with variant effect predictor (VEP) (McLaren et al., 2010).

I also produced a core-genome alignment using roary (Page et al., 2015) with a 95%

blast ID cut-off. Roary efficiently performs all by all alignment using every annotated
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protein in the dataset. Those matches with over 95% ID are assumed to be orthologs

and are clustered and undergo multiple sequence alignment. Using a single cut-off will

mean that some genes with orthologous function but without sequence homology (for

example different alleles of a gene) will not be clustered together, and that some genes

without orthologous function but with sequence homology will be incorrectly clustered.

We chose the cut-off of 95% based on having the best balanced accuracy of these two error

classes when using reciprocal best BLAST hits to define true orthologs (Ward & Moreno-

Hagelsieb, 2014). As well as core genes (present in at least 99% of samples) roary also

clusters accessory genes into COGs, which I later used as a variant in association. In this

case the annotated function helped determine whether the cluster is showing presence or

absence of gene or groups of different alleles of a gene that is being tested for association.

I counted k-mers using fsm-lite (section 2.2), which required 75Gb RAM and 14hrs

CPU time to count all informative k-mers with a minor allele count (MAC) of ten or more.

In this sample set there were 11.7M informative k-mers with 2.6M unique patterns. I

called CNVs from the BAM files produced above using cn.mops (Klambauer et al., 2012)

which fitted the coverage of mapped reads in 1kb windows with a mixture of Poisson

distributions, and determined the most likely integer coverage value for each sample in

each window. I extracted the inferred copy number from those windows which had support

for a CNV from more than one sample.

4.3.1 Allelic variation of three pneumococcal antigens

I wished to determine whether sequence variation of pneumococcal antigens is associated

with virulence and disease outcome. As well as being plausible GWAS hits, these antigens

vary rapidly (Croucher, Vernikos et al., 2011), meaning sequence variation is not popula-

tion stratified, which increases discovery power. Conversely, while the k-mer approach

(section 2.2) either directly assays or indirectly tags most variation in the population,

variation of these antigens may not be captured by this method. For example, pspC can

be difficult to assemble due to repeats and copy number variation (Iannelli et al., 2002),

and therefore k-mers from the gene sequence will not appear in the assembly, and not be

counted or tested. In pspA and zmpA, mapping of k-mers may not be specific to the allele

sequence due to sequence homology with orthologous and paralogous genes (Hollingshead

et al., 2000; Bek-Thomsen et al., 2012).

Here I consider pspC/cbpA, pspA and zmpA, which have all been shown to have

interactions with the host immune system (Croucher et al., 2017), but have variability

that may not be assessed by the methods discussed above. I needed to develop a way

first to classify possible alleles, then determine the allele of each sample from short read

sequence data. For the latter issue, de novo assembly (followed by a BLAST with a set

of reference alleles) is unreliable for completely reconstructing the gene sequences, but
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usually contained some information about the allele present. Alternatively mapping the

sequence reads to a set of reference alleles is less affected by repeat sequences and may be

more accurately used to find the allele of genes (Inouye et al., 2014), but determining the

closest match is non-trivial. I decided to use a method which combines summary statistics

from both of these techniques to determine the allele type. This has previously shown to

be advantageous for antibiotic resistance typing from genomic data; Hunt et al. (2017)

designed a method using combination of assembly and mapping which had improved type

I and type II error rate over either technique alone.

I defer discussion of the variability and construction of a reference panel specific to

each of these alleles until the sections below, and first discuss the typing method I applied

to determine the allele of all three antigens given such a reference panel. I first generated

statistics from the assemblies of all samples by running blastp between the annotated genes

in both the velvet and SPAdes assemblies and the reference panel. From this, I extracted

the % ID, number of mismatches, number of gaps, E-value and bitscore between the two

assemblies of sample and every possible reference. For mapping I used srst2 (Inouye et al.,

2014) in a mode which maps reads to all reference sequences, and reports information

about coverage over every possible allele. I used the coverage, number of SNP mismatches,

number of indel mismatches and number of truncated bases.

This led to a data frame with 16 predictors for every reference sequence, per sample

(for example pspC had 48 references, so there were 768 predictors). When a match was

not reported by blastp or srst2 I filled in value with the minimum reported value of the

predictor (or maximum for the number of mismatch fields), and removed predictors without

variation.

To produce labelled training data I performed the same process on the reference panel

itself, for each sequence using blastp against all the reference sequences and srst2 with

simulated reads (these were error-free 100bp reads with 200x coverage and 350bp insert

size with 80bp standard deviation (s.d.)). In all cases, on the test data simple variance

analysis showed these statistics could be used to predict classification of alleles successfully

(fig. A.13). I fitted a classifier to this training data (see section 4.3.1 for details), then finally

used the trained model to predict the allele for all samples. The results are shown in fig. 4.1.

As expected, all the antigens show some, but not total, concordance with background

genotype. I used the above process for typing all antigens; I now discuss the specifics of

constructing the reference panel for each antigen.

pspC/cbpA allele

The pspC gene, also known as cbpA, hic, spsA or pbcA, is paralogous to pspA and is known

to have a number of immunogenic functions. These include binding host proteins C3, CFH

and IgA, all of which are involved in the immune response to pneumococcal colonisation
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Figure 4.1: The inferred allele of pneumococcal antigens zmpA, pspA and pspC. Left: phylogenetic tree of

CSF isolates. Right: tips coloured by the inferred allele for three antigens, and key. The first two columns

are alleles 1–6 and 7–11 of pspC, which may have two copies present (Iannelli et al., 2002).
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Choline anchor

Proline rich region LPXTG anchor HelixRandom coil HelixSignal peptide  Helix
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Figure 4.2: Pictographic alignment of the two forms of PspC, as in Iannelli et al. (2002). The top shows

cbpA-5; all alleles cbpA 1-6 have a choline anchor, and otherwise vary in their α helix content. The bottom

shows pspC-7; all alleles pspC 7-11 have an LPXTG anchor instead of a choline anchor.

(Brooks-Walter et al., 1999). The locus encoding PspC varies extensively, and two main

forms exist (fig. 4.2) which are distinguished by having a choline anchor (alleles 1-6) or

a LPXTG anchor (alleles 7-11) (Iannelli et al., 2002). Each genome may encode neither,

one or both of these forms and they are normally found in tandem.

I used the existing classification of 11 alleles described by Iannelli et al. (2002), and the

48 sequences reported by these authors (fig. A.10). To allow for the fact that each of the two

forms may be present or absent I trained two classifiers. The first, referred to as the cbpA

allele, used alleles 1–6 and treated 7–11 as missing. The second, referred to as the pspC

allele, used alleles 7–11 and treated 1–6 as missing. Though there was correlation between

the two allele types (for example 4 and 10 were more likely to co-occur) I trained the

two classifiers independently. I first checked whether the reference data could distinguish

between the labels using PCA, and then predicted two different alleles for each sample.

I tried four different ‘out of the box’ classifiers: support vector machine (SVM) with a

linear kernel, weighted k-nearest neighbours, random forests and DAPC (Jombart et al.,

2010). I inspected the statistics and annotations to manually assign the allele pair for 25

genomes from across the tree, then using these truth values and compared the classification

accuracy of each method. Table 4.3 shows that the SVM performed best; I used it for all

four classifiers. Inspection of the feature importance showed the blastp bitscore, E-value,

and number of mismatches as well as the srst2 number of truncated bases and number of

mismatches were the most informative predictors.

Method Balanced accuracy

SVM 0.86

kknn 0.73

Random forest 0.50

DAPC 0.14

Table 4.3: Comparison of classifiers of antigen alleles. The balanced accuracy is given by the average of
1
2 (sensitivity+ specificity) for all alleles.
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pspA and zmpA alleles

PspA is a well studied pneumococcal antigen (Crain et al., 1990) which binds C3 (Tu et al.,

1999) and lactoferrin (Shaper et al., 2004). Its locus is involved in both ancestral and recent

recombination events which has created variation at the locus (Hollingshead et al., 2000;

Croucher, Harris, Fraser et al., 2011). ZmpA, also known as Iga, is a zinc metalloprotease

which cleaves IgA molecules (Wani et al., 1996). Similarly to pspA, the sequence is

variable within the population and is under diversifying selection (Bek-Thomsen et al.,

2012).

Croucher et al. (2017) have manually created clusters of sequences for both of these

antigens using 616 carriage genomes (Croucher, Finkelstein et al., 2013). Sequences were

combined into the same allele if their translated sequence was identical, giving 39 possible

sequences for pspA and 18 possible sequences for zmpA. I used these sequences as the

reference panel for each allele.

Unlike pspC where sequences had been further clustered based on functional domains

by Iannelli et al. (2002), this reference panel contained very similar sequences with different

allele labels. Using this directly for GWAS would lead to low power as the number of

sequences with each allele would be very small, and the classification would also likely

be poor due to the relative paucity of reference data for each allele. To avoid this I used

the phylogentic relationship between sequences to clustered similar sequences into allele

groups before training each classifier.

For both antigens I aligned the reference panel of amino acid sequences using MUSCLE

(Edgar, 2004), and built a phylogeny with RAxML with a CAT+GAMMA model. To test

the robustness of these phylogenies I ran 100 maximum-likelihood bootstrap replicates,

and 106 mrbayes Markov-chain Monte Carlo (MCMC) iterations (discarding the first 25%

as burn-in, sampling every 103 steps) to generate a sample of 750 trees from the posterior

distribution. I compared the topology of these trees using treescape (Kendall & Colijn,

2015), and found the placement of ancestral branches of the topology were poorly resolved,

though placement of sequences in main clades was well supported. I therefore took a cut

through the deep branches of the two phylogenies, defining four alleles for pspA (fig. A.11)

and three alleles for zmpA (fig. A.12). This phylogeny and classification is similar to three

families previously defined for pspA, and three families previously seen for zmpA. Using

these alleles I then fitted classifiers to the reference panels as in section 4.3.1, and predicted

the allele for all samples in the study.

4.3.2 Phase variable type I R-M system allele (ivr)

Croucher, Coupland et al. (2014), J. Li et al. (2016), Manso et al. (2014) have highlighted

a potential role in virulence for the ivr locus, a type I restriction-modification system with

a phase-variable specificity gene allele of hsdS in the host specificity domain (fig. 4.3).
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Figure 4.3: The structure of the ivr type I restriction-modification locus. The restriction (hsdR) and

methylation (hsdM) subunits, and the 5’ end of the specificity subunit (hsdS) are generally conserved.

Inverted repeats IR1 (85bp) and IR2 (333bp) facilitate switching of downstream incomplete hsdS elements

into the transcribed region. Top: The green read pair has the expected insert size, and suggests allele A

(1.1, 2.1) is present. The red read pair is in the wrong orientation and has an anomalously large insert size.

Bottom: The red read pair is consistent with the displayed inversion, suggesting allele D (1.2, 2.1) is present.

There are six possible different alleles A-F for hsdS, each corresponding to a different level

of capsule expression. Some of these alleles are more successful in a murine model of

invasion, whereas others are more successful in carriage.

Due to the high variation rate and structural rearrangement mediating the change the

allele cannot reliably be determined using assembly and/or standard mapping of short read

data. Instead, I extracted mates of reads mapping to the reverse strand of the conserved

5’ region for each sample, and mapped with BLAT (Kent, 2002) to the possible alleles in

position 1. This forms a vector ri of length two for each sample i, with the number of reads

mapped to 1.1 and 1.2. Similarly, to determine the 3’ allele (position 2), I extracted pairs

of reads mapping to each of the reverse strand of allele 1.1 and the forward strand of allele

1.2 and mapped to the three possible alleles in position 2. This forms a vector qi of length

six for each sample i, with the number of reads mapped to each allele A-F.

I performed this on all samples in the collection and found 677 of 693 carriage samples

and 1 052 of 1 144 invasive CSF samples had at least one read mapping to an allele of the

ivr locus hsdS gene. In the invasive samples, this corresponded to 621 CSF blood sample

pairs. Those without any reads mapping had either a deletion of one component of the

locus, or a large insertion mediated by the ivr recombinase.

4.4 GWAS of bacterial variants associated with meningitis

While it is well known that pneumococcal serotype contributes to invasive propensity

(Hausdorff et al., 2000; Brueggemann et al., 2003), it is of great interest in the field of

pneumococcal biology whether variation in other regions of the genome can independently

affect invasiveness. Many virulence factors are known to be involved in and essential

for pneumococcal colonisation and disease (Kadioglu et al., 2008), but whether natural

variation in these regions affects clinical cases of disease has yet to be assessed. Indeed,

the overall role of pneumococcal variation in invasive disease is as yet unknown, and

therefore the proportion of variation in invasiveness which can be ascribed to the capsule

and the proportion due to other factors cannot be determined. Additionally, the lack of
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large cohorts combining detailed clinical metadata with bacterial data means that little is

known about about the effect of pneumococcal variation on disease outcome. Previous

studies with small sample sizes have suggested a role for platelet binding (Tunjungputri

et al., 2017) and arginine synthesis (Piet et al., 2014), with additional evidence from in

vitro observations.

I first performed a heritability analysis to quantify the amount of variation due to the

pneumococcal genome for each phenotype. As well as using the methods described in

section 3.3 I also applied a phylogenetic mixed model assuming an Ornstein-Uhlenbeck

(OU) process of trait evolution as implemented in the patherit package (Mitov & Stadler,

2016), which has previously been shown to be less biased than other techniques for

estimating the heritability of pathogen traits (Blanquart et al., 2017). I performed 200 000

MCMC iterations, discarding the first half as burn-in and thinning the chain to every

hundredth value. LDAK performs heritability estimation of this binary trait on the liability

scale (Lynch & Walsh, 1998). I peformed this analysis within genomes collected from

meningitis, stratified using GOS to define clinical outcome, and between genomes from

carriage and genomes from meningitis (referred to as ‘invasiveness’).

Trait Method

LDAK OU closest phylogenetic-pairs (CPP)

Invasiveness 0.983±0.003 0.9936 (0.9928-0.9943) 0.995 (0.991-0.998)

Unfavourable outcome 0.006* did not converge 0.05 (-0.04-0.16)

Death 0.0001* 0.02 (-0.07-0.11) 0.07 (-0.03-0.17)

Table 4.4: Estimated heritability of pneumococcal invasiveness and outcome due to variation of the pathogen

genome. Values shown in brackets are the 95% CIs, where provided by the method, for LDAK the standard

error is shown, unless the LRT p-value was > 0.05 so there is no support for a non-zero heritability (shown

by an asterisk).

Table 4.4 shows the predicted heritability from each method. There is evidence that

invasive propensity is highly heritable, but that disease outcome is not determined by

natural variation of pathogen genetics. The latter is not surprising as invasive disease as

an evolutionary dead end for the pathogen, adaptations affecting virulence over the short

course of infection are unlikely to be selected for. The dependence on invasiveness is well

known to depend on pneumococcal genetics, but not the degree. The high heritability

estimated here, supported by three different techniques, suggests that in this population

some bacteria are able to invade while others are not, with almost certainty depending on

the genetic background. This is consistent with some serotypes not being found in invasive

disease (Hausdorff et al., 2000), and their wide genetic separation from invasive serotypes.

The complete heritability is likely an overestimate due to the binary nature of the trait,

but does show that pathogen genetics are important in invasiveness and not likely to be

important in severity.
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I then wished to quantify the amount of this heritability which was due to serotype,

which is the current focus of pneumococcal vaccination and the most well known invas-

iveness determinant, versus other factors. As in section 3.4.1 I used leave-one-out cross

validation with lasso logistic regression to select the 36 serotypes (of 63 observed) which

were informative of invasiveness. I then assessed the variance in invasiveness explained

by these serotypes using Nagelkerke’s pseudo R2 from logistic regression (International

Schizophrenia Consortium et al., 2009; Hosmer et al., 2013), which was 0.45. Caution

should be used in directly interpreting this R2 as variance explained, but it does show the

model fit from serotype alone is not as good as using the pneumococcal kinships, suggest-

ing there are factors other than serotype which affect invasiveness. I also checked whether

invasiveness is well predicted by capsule charge, as has been previously suggested by Y. Li,

Weinberger et al. (2013). Using the previously measured zeta potentials, and using the

serogroup average when a serotype charge was not available, I performed the same logistic

regression using charge as the predictor rather than serotype. Charge significantly affected

invasiveness but was not as informative as the specific serotype (p < 10−10; Nagelkerke’s

R2 = 0.08), suggesting a role for finer structure of the capsule structure (Bentley et al.,

2006).

In the rest of this section, using the variation defined for all samples as in section 4.3

and the GWAS methods developed in chapters 2 and 3, I tried to find the pneumococcal

variants other than serotype which affect invasivness. Even though there is no evidence

from the above heritability analysis that variation in the pneumococcal genome contributes

to disease outcome I ran the same analysis on these phenotypes anyway – it may be that

the common/core variation used to produce these estimates fails to tag variation in the

accessory genome or phase variable regions which may contribute to outcome. In this

case a lack of association will also provide further support for zero heritability due to the

bacterial genome.

In the first section I consider association of common variants in the pan-genome (all of

those described in section 4.3) with the phenotypes predominantly using the techniques

already described. I then go on to asses the role of rare variation firstly using tests

of selection, and more directly using an association combining variants with the same

predicted effects. Finally I developed a model to test whether any particular ivr allele, or

the amount of variation of the allele is associated with any of the phenotypes.

4.4.1 Role of common variation

Using the variants catalogued above, with previously described filtering thresholds, I

performed a GWAS between the isolates from invasive disease and asymptomatic carriage,

as well as unfavourable outcomes and/or death within the invasive isolates. I used SEER

with the first ten MDS components to correct for population structure, as well as FaST-
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LMM (Lippert et al., 2011) using the kinship matrix estimated from SNPs and INDELs as

random effects.

Figure 4.4 shows the Q-Q plots of the resulting p-values from these methods on SNPs

and k-mers with invasive versus carriage isolates. In both cases the test statistic from SEER

is clearly highly overinflated for this population and phenotype, meaning a high significance

threshold would be needed to remove population structure confounded associations. I

have shown that invasiveness is highly heritable, so population structure being highly

confounding is unsurprising. Increasing the number of fixed effect population structure

covariates may help alleviate this issue, but as the LMM test statistic is better controlled,

and as it was a successful method in chapter 3, I have used it for all associations of common

variants with the three phenotypes. For significance thresholds I used the unique number

of patterns as the number of tests in a Bonferroni correction, giving p < 8.2×10−7 for

SNPs and p < 1.9×10−8 for k-mers. However, inspection of the Q-Q plots shows that for

k-mers the LMM is still overinflated, so I have instead taken p < 1×10−16 to describe the

top hits.

From all three of SNPs, COGs and k-mers by far the most highly associated variants are

transposons. These mobile elements of DNA can insert into different places in the bacterial

host genome through inverted repeat sequences, and coevolve with the bacterial population

(Kleckner, 1981; Levin & Moran, 2011). In some cases transposons can carry cargo genes,

such as antibiotic resistance conferring mechanisms, which increase host fitness (Croucher,

Harris, Fraser et al., 2011). However, the transposons here appear to be simple elements

lacking such cargo, and are therefore unlikely to explain a difference between carriage

and invasive isolates directly. Most likely these transposons are present in some genetic

backgrounds and not others, and are therefore a population structure confounded result.

Their variability in position in the genome and specific sequence may mean they are less

well controlled for against genetic background. Due to the lack of plausible functional link

with the phenotype I do not consider them further here.

Other hits are shown in table 4.5, ordered by the variant type discovered. In some

cases COGs were incorrectly clustered and actually represent two alleles of the a gene

orthologs. For three of these alleles I found a positive association with invasive isolates

from one allele, and a negative association from the alternative allele. To annotate the

genes here I used the best blastp match to the core and accessory genome defined by

Croucher, Finkelstein et al. (2013), and if not annotated already I used blastp with the

nt/nr database to find annotated orthologs, and hmmscan and cd-hit to find functional

domains to inform the annotation.
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Figure 4.4: Quantile-Quantile plots for invasive S. pneumoniae GWAS methods. Red line is for observations

following the null-hypothesis of no association, plotted points are observed p-values from each method. Top

row: p-values from SNPs and INDELs from mapping; bottom row: p-values from k-mers. Left column:

SEER run with the first ten population structure components. Right column: FaST-LMM run on the same

input.
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Gene ID Annotation Core Method p-value

FM211187.6011 tlyC; Membrane protein

(upstream)

Yes Mapped variants 7.7×10−31

FM211187.977 pbpX; penicillin binding

protein

Yes Mapped variants 3.6×10−18

FM211187.313 hypothetical protein (up-

stream)

Yes Mapped variants 2×10−16

FM211187.1802 yhfE; Aminopeptidase

(upstream)

Yes Mapped variants 1.0×10−9

FM211187.1019 wzh; capsule synthesis No Mapped variants 3.6×10−9

FM211187.150 comA; bacteriocin/com-

petence (upstream)

Yes Mapped variants 9.9×10−9

FM211187.3083 pbl3e/pldT; bacteroicin No COG absent 4.0×10−10

N/A transcriptional regulator

(pseudogene)

No COG absent 1.4×10−8

FM211187.3090 bacteriocin precursor No COG absent 1.7×10−8

FM211187.6181 FtsX-family trans-

port protein (ABC

transporter permease)

No COG alleles 4.7×10−9

FM211187.6189 C4-dicarboxylate (cit-

rate) ABC transporter

Yes COG alleles 1.4×10−7

FM211187.5843 23S rRNA (uracil-5-

)-methyltransferase

RumA2

Yes COG alleles 5.5×10−7

FM211187.939 galactose-6-phosphate

isomerase

No K-mers 3.0×10−60

N/A phage-related chromo-

somal island protein

No K-mers 3.0×10−60

FM211187.4259 Peptidase U32 Yes K-mers 1.7×10−59

FM211187.4090 aroK; Shikimate kinase Yes K-mers 1.7×10−59

FM211187.1923 yehU; Sensor kinase Yes K-mers 3.1×10−59

FM211187.6369 patA; efflux pump (up-

stream)

Yes K-mers 2.0×10−54
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FM211187.6823 tauA; Nitrate/sulf-

onate/taurine ABC

transporter solute-

binding protein

Yes K-mers 1.9×10−43

FM211187.213 Galactose uptake PTS

transporter, IIB subunit

Yes K-mers 2.5×10−42

FM211187.3677 pyrB; Aspartate car-

bamoyltransferase

PyrB

Yes K-mers 4.6×10−38

FM211187.6594 ulaA; Pentose PTS

transporter IIA

Yes K-mers 3.7×10−25

Table 4.5: Common variation associated with invasiveness using FaST-LMM. I have annotated the gene the

significant locus overlaps, and intergenic variants are annotated with the nearest downstream genes as noted.

Gene ID is the name in the ATCC 700669 reference if present; ‘core’ refers to whether this gene was in the

core genome defined by Croucher, Finkelstein et al. (2013); method describes the type of variant that was

found to be associated.

The wzh gene is involved in capsule synthesis and is part of the gene cassette which

determines serotype (Bentley et al., 2006). As shown above and in previous studies,

serotype has a large effect on invasiveness and hence this association serves as a positive

control. The association of variants in pbpX is likely due to mosaic alleles which confer

resistance to β -lactams being common in invasive serotypes, similar to what I found in

section 3.5.2. The bacteriocins mediate intraspecies competition and determine strain

fitness (Dawid et al., 2007), but a specific association with invasiveness independent of

strain background has not previously been reported. comA, a core gene essential for

competence, affects the expression of these bacteriocins so may represent an effect through

the same pathway (Kjos et al., 2016).

The adhesin yhfE has previously been associated with virulence of S. pneumoniae

(M. W. Robinson et al., 2013). This adhesin functions as a peptidase, hence the other

peptidase may found to be associated also have similar role. Other genes found here

previously associated with virulence in animal models include: ulaA which utilises ascorbic

acid has been found to be upregulated in invasion (Afzal et al., 2015; Mahdi et al., 2015);

pyrB is involved in cell wall biosynthesis and can affect virulence (Mohedano et al., 2005);

aroK is involved in biofilm formation (Domenech et al., 2012); both comA and tauA were

found to be essential for growth during meningitis using a genome-wide screen (Molzen,

Burghout, Bootsma, Brandt, van der Gaast-de Jongh et al., 2011). For the other identified

regions I couldn’t find reference to a previous report relating them to a role in invasiveness

or virulence of S. pneumoniae.
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For unfavourable outcome and death, none of the above classes of variant reached

genome-wide significance. This is consistent with the low heritability estimated for these

phenotypes. No alleles of pspC, pspA or zmpA or any CNVs reached genome-wide

significance for any of the phenotypes.

4.4.2 Role of rare variation

The availability of whole genome sequence data for these samples allows the identification

of rare variants, here defined as those present in the population with MAF < 1%, which

are also plausible as having an effect on the phenotypes of interest. The amount of rare

variation compared to common variation present in a population is informative of recent

selection and population size changes (Ziheng Yang, 2006). An overall difference may

therefore be informative of different selection on regions of the genome depending on

the niche. In fig. 4.5a I have plotted the SFS by niche and predicted consequence to

look for an overall difference. Across the range of common MAFs in both niches the

proportion of synonymous/nonsynonymous/intergenic/LoF mutations is roughly constant

and as expected (Ziheng Yang, 2006; Thorpe et al., 2017), though at low frequencies, there

is an excess of potentially damaging variants.

Interestingly, there is a clear excess of rare variants in invasive samples compared to

carriage samples. To quantify this difference and identify which regions of the genome are

responsible for the excess of rare alleles I calculated Tajima’s D for each coding sequence in

the genome, and looked for differing signs of selection between cases and controls. Tajima

(1989) developed the summary statistic D to look for differences between an observed

population and an idealised population of a stable size evolving under neutral selection,

where mutation frequency is dominated by drift rather than selection. By comparing

the number of segregating sites with the average number of differences between pairs of

sequences, a statistic D can be calculated. Deviations with D < 0 are indicative of selective

sweeps and/or recent population expansion, whereas D > 0 is indicative of balancing

selection and/or recent population contraction. In terms of differences between SFS, a

negative D manifests as an excess of rare variants whereas a positive D manifests as a

uniform distribution (Bamshad & Wooding, 2003).

For speed, I implemented code in C++ (https://github.com/johnlees/tajima-D) which

uses the same optimised strain-wise distance calculation as SEER (section 2.3.2) to

calculate the average number of pairwise strain differences k̂. Unknown or gap sites

are ignored in the calculation, and the codes produces the same value of D on standard test

data. The code uses a variant call format (VCF) file as input, so is readily generalisable to

other applications. Using this code, I calculated D for all coding sequences in the ATCC

700669 reference separately for carriage and invasive isolates, and the difference in D

between niches.
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Figure 4.5: Differing burden and frequency of rare variation between invasive and carriage isolates, based

on short variation called from mapping against the ATCC 700669 reference genome. LoF are frameshift

or nonsense mutations. a) The SFS stratified by niche and by predicted consequence. Frequency has

been normalised with respect to the number of samples in each population. b) Histogram of Tajima’s D

for all coding sequences in the genome, stratified by niche. c) Boxplot of number of rare variants per

sample, stratified by niche and predicted consequence. Damaging mutations are LoF mutations and missense

mutations predicted damaging by SIFT.

Comparison between D values to test for different selection between niches will only

work within the same population, otherwise changing population size may cause an overall

difference in D. The assumption that invasive and carriage populations are the same

is potentially reasonable, as all invasive isolates must first have been carriage isolates,

however the biased selection of case isolates used for GWAS and potential adaptation

and population growth after invasion (described futher in section 4.5) may violate this

assumption. In GWAS terms, although the calculation of Tajima’s D uses rare variation,

which is less prone to population structure confounding, common variation is also used

which is affected by population structure.

To test for an overall difference I compared the distributions of D by gene in each
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phenotype shown in fig. 4.5b. Genes in invasive isolates had a lower average D (difference

in medians -0.34; W = 1 996 100, p< 10−10) and a more positively skewed D (difference in

skewness 0.30; 95% bootstrapped CI 0.17-0.44). This difference in D may be representative

of a difference in population dynamics or population structure between niches, or may

show genuine differences in selection. To find individual genes which show a difference

in selection between niches I then ran 44 000 permutations per gene with randomised

phenotype labels to calculate a p-value on the difference in D between niches, to which I

applied a Bonferroni correction to adjust for testing of all genes (Winantea et al., 2006).

156 genes had a significantly different D between niches; in table 4.6 I report 18 of these

coding sequences which were outside of the 95% central mass of the D distribution for

one niche but not the other. Due to potential population structure effects results should

therefore be seen as suggestive, and potential for follow-up work.

Gene ID Annotation Invasive D Carriage D Direction

FM211187.1040 wzx; capsule synthesis -2.53094 -1.79867 Negative in

invasive

FM211187.5843 23S rRNA (uracil-5-

)-methyltransferase

RumA2

-2.4028 -1.63478 Negative in

invasive

FM211187.2360 ezrA; septation ring

formation regulator

-1.1051 -2.17726 Negative in

carriage

FM211187.4024 replication initiator pro-

tein (on ICE)

-1.55767 -2.16733 Negative in

carriage

FM211187.4026 hypothetical, contains

FtsK gamma domain

(on ICE)

-1.61993 -2.21525 Negative in

carriage

FM211187.357 bacteriocin 4.19212 1.30796 Positive in

invasive

FM211187.420 tsaB; tRNA threonylcar-

bamoyladenosine bio-

synthesis protein

3.49345 1.39805 Positive in

invasive

FM211187.769 aceytltransferase 2.9055 1.80787 Positive in

invasive

FM211187.1019 wzh; capsule synthesis 2.76882 1.63677 Positive in

invasive

FM211187.1802 yhfE; Aminopeptidase 2.28654 1.19784 Positive in

invasive
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FM211187.1804 bacteroiocin 1.94491 -0.56384 Positive in

invasive

FM211187.1806 dacC; D-alanyl-D-

alanine carboxypepti-

dase

2.23028 0.722447 Positive in

invasive

FM211187.5184 dnaI; primosomal pro-

tein

2.32212 0.197632 Positive in

invasive

FM211187.3651 tarI; -0.146237 2.34171 Positive in

carriage

Ribitol-5-phosphate

cytidylyltransferase

FM211187.3804 nanB; neuraminidase 1.6805 3.19937 Positive in

carriage

FM211187.5053 membrane protein 0.311619 2.46774 Positive in

carriage

FM211187.5358 secY; accessory secre-

tion system translocase

0.471641 2.36541 Positive in

carriage

Table 4.6: Coding sequences with extreme values of Tajima’s D, with a difference between carriage and

invasive isolates as determined by permutation testing.

A positive D statistic implies common variants are being maintained in the population

more than expected, suggesting that multiple alleles of the gene are common. The positive

estimates of D in bacteriocins are consistent with their function, where having a different

allele to competing strains is advantageous and increases fitness (Bogaardt et al., 2015;

Miller et al., 2017). nanB is similarly involved in competition and in virulence (Shakh-

novich et al., 2002; Brittan et al., 2012); the difference in D I found suggests that this

selection may be more important in carriage where more common alleles appear to be

maintained. A negative D suggests purifying selection acting on a gene. For example,

ezrA is essential for growth in carriage (van Opijnen et al., 2009; Cleverley et al., 2014),

so a negative D suggests that changes to the protein are not tolerated in this niche. As

wzx, wzh, yhfE, RumA2 and bacteriocins were found to be associated with invasiveness

above, this suggests that the difference in D I observed is less likely to be due to population

stratification and more likely a real sign of selection. Genes found through these approach

which may affect cell growth such as ezrA, secY, dnaI and tarI may make the population

more or less immune stimulating, depending on their direction of effect.
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Burden testing of coding sequences

I then wished to consider whether rare variants were associated with any of the three

phenotypes. These variants will have occurred on terminal (or close to terminal) branches

and therefore population structure is less of an issue than for common variants. Power to

detect associations is proportional to MAF and OR, so and at low MAF, there is only power

to detect those variants with a large effect size (Liu & Anderson, 2014). However, for rare

alleles the statistical tests described so far lack the power to test for an association even

for an infinite OR. In human genetics combining sets of variants with the same predicted

effect on a more complex biological function (yet simpler than the whole phenotype), for

example grouping rare LoF variants in the same gene, then testing the group for association

with the phenotype of interest has been the most common approach (B. Li & Leal, 2008;

Morris & Zeggini, 2010). This is known as a burden test – in bacterial genomes this

technique has successfully found LoF variants associated with antibiotic resistance in

M. tuberculosis (Desjardins et al., 2016).

In each test I used only variants with MAF < 1% from the variant calls derived from

mapping. Using the annotations from VEP, I defined frameshift and stop gained mutations

as LoF – 6 825 variants in total. I also analysed the effect of all predicted missense variants

using Provean (Ng & Henikoff, 2003; Choi et al., 2012), and used the default threshold

of -2.5 to select variants with a predicted effect on protein function – 26 206 of 50 383

missense variants passed this threshold. I combined these variants with LoF variants to

define a damaging class. Figure 4.5c shows the overall burden of damaging rare variants

between carriage and invasive samples; in both classes there was higher burden in carriage

isolates (median LoF: invasive 7, carriage 11, W = 297 440, p < 10−10; median damaging:

invasive 22, carriage 26, W = 345 370, p = 8× 10−4), so results showing a burden in

carriage should be interpreted with caution.

I then used plink/seq to perform a burden test on all coding regions in the ATCC

700669 reference genome, which looked for an excess of rare damaging alleles in genes,

and Bonferroni corrected all resulting p-values. I tested all six possible phenotypes:

invasiveness, carriage, favourable outcome, unfavourable outcome, survival, death. For the

latter four phenotypes based on clinical outcome no genes showed a significant burden of

LoF or damaging variants. Table 4.7 shows the results for carriage and invasive isolates.
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Gene ID Annotation p-value Class Direction

FM211187.1036 wchV; capsule synthesis 0.0022 LoF Carriage

FM211187.1143 membrane protein 0.0022 LoF Carriage

FM211187.1634 bglG; transcription anti-

terminator

0.0022 LoF Carriage

FM211187.3315 zmpD; zinc metallopro-

tease

0.0022 LoF Carriage

FM211187.4588 pclA; collagen-like

surface-anchored

protein

0.0022 LoF Carriage

FM211187.4679 platelet binding phage

protein

0.0022 LoF Carriage

FM211187.4714 prophage protein 0.0022 LoF Carriage

FM211187.4939 membrane protein 0.0022 LoF Carriage

FM211187.5113 nanA; neuraminidase 0.0022 LoF Carriage

FM211187.5328 uncharacterised repeat

protein

0.0022 LoF Carriage

FM211187.5369 PsrP glycosyltrans-

ferase

0.0045 LoF Carriage

FM211187.6773 dusB; tRNA-

dihydrouridine synthase

0.0045 LoF Carriage

FM211187.1025 wze; capsule synthesis 0.0067 LoF Carriage

FM211187.4017 hypothetical protein (on

ICE)

0.0067 LoF Carriage

FM211187.1040 wzx; capsule synthesis 0.0089 LoF Carriage

FM211187.92 cell wall-binding ami-

dase/autolysin (pseudo-

gene)

0.0089 LoF Carriage

FM211187.6861 comFC; competence 0.011 LoF Carriage

FM211187.6608 pcpA; choline binding

protein

0.016 LoF Carriage

FM211187.4717 prophage protein 0.018 LoF Carriage

FM211187.2642 chlorohydrolase 0.029 LoF Carriage

FM211187.5374 PsrP glycosyltrans-

ferase

0.038 LoF Carriage

FM211187.1804 bacteriocin 0.039 LoF Carriage

129



Host and pathogen genetics associated with pneumococcal meningitis

FM211187.3950 conjugal transfer pro-

tein (on ICE)

0.042 LoF Carriage

FM211187.3204 ybaB; DNA-binding

protein

0.0089 Damaging Carriage

FM211187.4311 multidrug transporter 0.050 Damaging Carriage

FM211187.4424 sortase-sorted sur-

face anchored protein

(pseudogene)

0.0067 LoF Invasive

FM211187.2661 bceA; ABC exporter AT-

Pase

0.0045 Damaging Invasive

FM211187.3585 smc; Chromosome par-

tition protein

0.0045 Damaging Invasive

FM211187.5524 trpD; anthranilate phos-

phoribosyltransferase

0.0045 Damaging Invasive

FM211187.2550 fruA; Fructose PTS

ABC transporter

0.027 Damaging Invasive

FM211187.3460 ispA; Farnesyl diphos-

phate synthase

0.038 Damaging Invasive

FM211187.2615 pfkA; ATP-dependent 6-

phosphofructokinase

0.042 Damaging Invasive

Table 4.7: Burden testing of rare LoF and damaging variants in coding sequences associated with invasive

or carriage isolates. P-values are Bonferroni corrected using the total number of genes.

Those regions found with a larger number of LoF variants in carriage than disease

represent genes which are advantageous in invasion, and hence include a number of well-

known virulence factors. Specifically, capsule related genes, zmpD and nanA have all been

previously described as increasing virulence in animal models (Brueggemann et al., 2003;

Bek-Thomsen et al., 2012; Brittan et al., 2012) and have some overlap with associations

found through common variant association. The large effect size caused by these LoF

mutations is similar to the gene knock-outs used in these experiments.

As well as these well-described virulence factors, I found four more genes which were

more likely to be functional in invasive isolates which had been previously described as

virulence related in a single or small number of studies. PsrP is an adhesin which has been

shown to increase virulence in mice (Obert et al., 2006; Shivshankar et al., 2009), and

found here were two genes which affect the protein’s function. pcpA (Glover et al., 2008;

Sánchez-Beato et al., 1998) and pclA (Paterson et al., 2008) are choline binding and surface
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anchored proteins respectively, both previously associated with virulence. Tunjungputri

et al. (2017) have reported association with presence of the phage-derived platelet binding

protein PblB with 30-day mortality of meningitis in humans – the platelet binding protein

found here may have a similar role in invasiveness (though I did not find it to be associated

with severity or mortality).

I could not find previous reports of association with virulence or invasive potential of

the other hits in this category. Also, few of the genes found to be essential in a mouse

model of meningitis (Molzen, Burghout, Bootsma, Brandt, van der Gaast-de Jongh et al.,

2011) were found here, suggesting either that the induced variants do not occur in natural

populations, that the mouse does not perfectly model human meningitis or that the sample

size here was too low to discover these effects.

Only one gene was found to lose function more frequently in invasive disease, though

as it is a pseudogene in the reference this is unlikely to be a real functional effect. For

missense variants affecting protein function the direction of effect is less clear, as the

variants may be fitness increasing or decreasing. This inconsistent direction may also make

the burden test less powerful, and a test which does not rely on this assumption such as

the SKAT test may be preferred (Wu et al., 2011; S. Lee et al., 2012). In carriage isolates,

including missense variants also found ybaB and a multidrug transporter to be significantly

altered in carriage but not in invasion. In invasive isolates a few more possible hits were

found. smc is involved in cell division and growth, but also has epistatic links to much of the

rest of the chromosome (Skwark et al., 2017). LoF in trpD has previously been associated

with attenuated virulence (Hava & Camilli, 2002), and fruA as being associated with

the switch in virulence between nasopharyngeal colonisation and bloodstream invasion

(Trappetti et al., 2017).

4.4.3 Hierarchical Bayesian model for ivr allele prevalence

Manso et al. (2014), J. Li et al. (2016) have reported an association with ivr allele and

invasive propensity in a murine model; this dataset offers the opportunity to test whether

such as an association exists in clinical samples. As the ivr varies rapidly and independently

from population structure (Croucher, Coupland et al., 2014) a simple association test can

be performed for each allele. I first used the mapping approached described in section 4.3.2

to determine the ivr allele for each sample. However, as even a single colony contains

heterogeneity at this locus, simply taking the allele with the most reads mapping to it in

each sample gives a poor estimate of the overall presence of each allele in the invasive

and carriage niches. To take into account the mix of alleles present in each sample, and to

calculate confidence intervals, I developed a hierarchical Bayesian model for the allele in

each niche (fig. 4.6). This simultaneously estimates the proportion of each colony pick

with alleles A-F for both individual isolates (π), and summed over all the samples in each
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niche (μ). The model is applied this over i samples and c niches (in this case c can be

blood, CSF or carriage).

I first modelled the state of the 5’ allele (TRD1.j) only. For the two possible alleles 1.1

and 1.2, the number of reads mapping to each allele (a 2-vector ri) was used as the number

of successes in multinomial distribution zc (c – index for niche). From these I inferred the

proportion of each allele in each individual sample πi, and in each niche overall μc. This

was done by defining Dirichlet priors expressing the expected proportion of an allele in a

given sample πi to be drawn from a Dirichlet hyperprior representing the proportion of the

allele that is found in each niche as a whole μc. The κ parameter sets the variance of all

the individual sample allele distributions πic about the tissue average μc, with a higher κ
corresponding to a smaller variance.

The hyperparameter Aμ , which encodes the total proportion of each allele we expected

to see over all samples, was set to the average amount of the allele observed from the long

range polymerase chain reaction (PCR) in a subset of 53 paired samples, as described in

section 4.5.4.

The observed number of reads mapping to each allele, prior distributions defined above,

and structure of the model in fig. 4.6 defines a likelihood which can be used to infer the

most likely values of the parameters of interest π and μ . I used Rjags to perform MCMC

sampling to simulate the posterior distribution of these parameters. I used 3 different

starting points (i.e. three chains), and took and discarded 30 000 burn in steps, followed by

45 000 sampling steps. Noticeable auto-correlation was seen between consecutive samples,

so only every third step in the chain was kept when sampling from the posterior. I manually

inspected plots of each hyperparameter value and mean at each point in the chain, as

well as the Gelman and Rubin convergence diagnostic, which showed that the chains had

converged over the sampling interval.

To model both the 5’ end (TRD 1.1 and 1.2) and the 3’ end (TRD 2.1, 2.2 and 2.3)

together, so each isolate i is represented by an allele A-F, for each isolate the total number

of reads mapping ni was drawn from the distribution in equation eq. (4.1)

ni ∼∑
j

πi j · ri j (4.1)

where j is the index of the TRD region, ri j is the number of reads in sample i that had a

mate pair downstream from TRD1. j mapping to any TRD2 region, and πi is the posterior

for allele frequency in the sample.
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Figure 4.6: Hierarchical model for ivr allele. Solid double arrows denote a deterministic relationship; wavy

arrows represent a value drawn from a distribution. z is a vector of the number of reads mapping to each

allele from a total of N reads mapping to the variable region; i is the sample number; c is an index for tissue

type. μc, κ are hyperparameters for mean allele prevalence and how closely a sample is representative of a

tissue type respectively. Aμ , Bμ are priors for allele prevalence in invasive disease. Sκ , Rκ are the shape and

rate parameters for a gamma distribution, which were used to set a broad prior on κ .
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The distribution for the number of reads mapping to each allele j, zi j was then defined

as in equation eq. (4.2)

zi, j ∼

⎧⎪⎨
⎪⎩

ni · qi, j

‖�qi‖ ·πi,1.1, if j ∈ A, B, E

ni · qi, j

‖�qi‖ ·πi,1.2, if j ∈ C, D, F
(4.2)

where qi is a vector of length six which contains the number of reads mapped to each allele

A-F as described above, and π , i and n are as previously. A single sample for z was taken

for each isolate i. This 6-vector zi j is then used as the observed data in the same model as

above to infer πi, and μc for the whole locus allele (A-F) rather than just the 5’ end.

For the 5’ allele (TRD1. j) a model using a single κ parameter rather than a κ indexed

by tissue c was preferred (change in deviance information criterion ΔDIC = −0.523

(Spiegelhalter et al., 2002)). For the 3’ allele (TRD2. j), a model with a single κ parameter

did not converge. A model with κ indexed by allele was used instead.

This simultaneously estimated the proportion of each colony pick with alleles A-F for

both each individual isolate (π), and summed over all the samples in each niche (μ). I

applied this over i samples and c niches (in this case c can be carriage/nasopharynx or

CSF). The difference in mean of μ (corresponding to the mean allele frequency over all

sample pairs for each allele) shows whether alleles are selected for in carriage or invasive

disease, however as the confidence intervals overlapped for alleles, no particular allele

was associated with invasive disease or carriage isolates. I also checked the diversity of

alleles present in each sample by calculating the Shannon diversity index for each sample

using the π vector. The median diversities were not significantly different (carriage 0.94;

invasive 1.00).

The finding that ivr allele does not associate with invasive disease is at odds with the

interpretation of Manso et al. (2014) that the capsule expression changes caused by each

allele (through genome-wide methylation profile changes) are central to colonisation and

disease. I found that, in clinical cases of meningitis, the allele of the ivr locus continues to

be phase variable regardless of the niche the bacteria are in. Its purpose is likely to defend

against phage (Croucher, Coupland et al., 2014), with little effect on disease course in

natural human infection.
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4.5 Genetic adaptation over the course of single infections

This section concerns whether the invasive pneumococcal population accumulates muta-

tions as it moves from carriage, through blood to the CSF, and if it does whether this

mutation represents adaptation to either of these niches. By sampling the same population

longitudinally the issue of population structure is not an issue as for the convenience

samples of cases and controls collected for GWAS, which will not be from the same

population of bacteria. I called variation between pairs of samples (table 4.8), and looked

for convergent evolution between different cases and/or signals of adaptation to a specific

niche.

Organism Number of pairs sequenced Mean coverage

blood/CSF nasopharynx/CSF

S. pneumoniae 674 6 91.7x

N. meningitidis 195 48 96.6x

Table 4.8: The number of paired samples analysed from the MeninGene study, and the average sequencing

coverage.

I made assumptions about the evolution of bacteria within the host, under which I

discuss the power of pairwise comparisons between single colonies taken from each niche

to capture repeated evolution occurring post-invasion:

1. There is a bottleneck of a single bacterium upon invasion into the first sterile niche

(usually blood), which then founds the post-invasion population (Gerlini et al., 2014;

Moxon & Murphy, 1978).

2. A large invasive population is quickly established, as the population size approaches

the carrying capacity of the blood/CSF. The population size is large enough for

selection to operate efficiently.

3. As infection occurs in a mass transport system, populations are well mixed without

any substructure. Therefore, the effective population size equals the census popula-

tion size.

4. The bacterial growth rate within blood and CSF is similar.

Initially the population size is small, so selection is inefficient and the population-wide

mutation rate is low. However, the eventual carrying capacity (the maximum number of

cells) of the blood and CSF are large enough (> 1.5×105 colony forming units (CFUs))

(Brown et al., 2004; La Scolea & Dryja, 1984) for beneficial mutations to fix rapidly.

Due to the short generation time of around an hour (Allegrucci et al., 2006), this carrying

capacity is reached early in the course of the disease (after 1-2 days) (Gang et al., 2015).
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Crucially, population sizes where selection acts efficiently (Patwa & Wahl, 2008) are

reached even earlier than this – a few hours after invasion. Therefore, mutations with a

selective advantage occurring after the first stages of infection will eventually become

fixed in the niche’s population. So, sequence comparison between colony picks from each

niche is likely to find adaptation that has occurred post invasion.

Similarity of the bacterial growth rate within blood and CSF is an important assumption

because in 45% of the pneumococcal cases there was evidence that CSF invasion happened

before blood invasion (patients had a documented prior CSF leak, otitis media or sinusitis

(Brouwer, Heckenberg et al., 2010; Heckenberg et al., 2012)). This allowed me to search

for post-adaptation invasion that happens in either direction in this species. I investigated

the validity of this assumption using analysis of data on the ivr locus (section 4.5.4).

In carriage samples, although the population size is small (Y. Li, Thompson et al.,

2013) carriage episodes can persist over many months (chapter 3), therefore allowing the

potential for mutations conferring an advantage in an invasive niche to arise. Additionally,

during carriage there is known to be population wide diversity (Cremers et al., 2014) and in

some cases competition between strains (Cobey & Lipsitch, 2012). I only had access to the

sequence of a single strain sampled from this diverse pool, which means I had less power

to detect mutations either side of the bottleneck. Combined with the small sample size,

this means only adaptive mutations with large selective advantages could be discovered in

this part of the study.

Finally, I considered whether the culturing process will bias the results. In S. pneu-

moniae I found that two additional passages of the previous sample pair resulted in one

additional insertion. In N. meningitidis a low rate of variation and no selection on phase-

variable regions and no variation of other regions have been observed during the culture

steps (Fransen et al., 2009; van der Ende et al., 1995; van der Ende et al., 2000). I therefore

concluded that there will be minimal bias introduced during culturing, and that which is in-

troduced will increase the frequency of mutations between pairs without bias towards either

blood or CSF. Due to the higher power to detect variation between the blood and CSF, I

present those results first in section 4.5.2, and the carriage/CSF results in section 4.5.5.

4.5.1 Reference free variant calling

As the amount of variation beween blood and CSF isolate pairs is very low, I needed to

ensure I had sufficient power to call variants and did not suffer from an elevated false

negative rate. I used the same simulation setup as in section 4.2, except generated an

average of only 200 mutations between 100 simulated sample pairs.

To avoid reference bias, and missing variants in regions not present in an arbitrarily

chosen reference genome, I then performed reference free variant calling between all

sequence pairs of isolates using two methods: the ‘hybrid’ method (Uricaru et al., 2014)
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and Cortex (Iqbal et al., 2012). The former uses de novo assembly of the CSF sequence

reads, mapping of reads from both the blood and CSF samples back to this sequence, then

calling variants based on this mapping. Cortex uses an assembly method that keeps track

of variation between samples as it traverses the de Bruijn graph.

In the hybrid method I used the SPAdes assembly of the CSF sample as the reference,

then mapped reads from both members of the sample pair to this sequence using SNAP

(Zaharia et al., 2011) followed by variant calling with bcftools v1.1 (H. Li, 2011) using the

command:

s a m t o o l s mpi leup −C 50 −m 2 −F 0 .0005 −d 1000 − t DP , SP −g −
p −L 1000 −f a s sembly . f a mapping . bam | b c f t o o l s c a l l −vm

−P 1e−3 samples . t x t

I filtered variants with QUAL < 50, MQ < 30, SP > 30, MSQB < 0.001, RPB < 0.001 or

DP < 4 out.

For Cortex I first error corrected sample reads using quake (Kelley et al., 2010) to

prevent false positive calls supported by very low coverage of reads. I then used the joint

workflow of cortex with each set of corrected reads in its own path in the de Bruijn graph,

and bubble calling was used to produce a second set of variants between samples. SNPs in

the error corrected reads were also called using the graph-diff mode of SGA (Simpson &

Durbin, 2012).

I then called variants between these sequences and a draft R6 assembly from simulated

read data using both of the above methods; comparison with the mutations known to be

introduced allowed power and false positive rate to be calculated – separately for SNPs

and INDELs.

In addition to in silico simulation, I cultured blood/CSF paired strains 4038 and 4039

(Croucher, Mitchell et al., 2013) and resequenced them using the same 100bp Illumina

paired end sequencing as the rest of the isolates in the study. The genomes of strains

4038 and 4039 have been exhaustively analysed using multiple sequencing technologies

(Illumina, 454 and capillary sequencing), so represent high quality positive control data to

assess the calling methods. I tested both methods on these data.

The highest power was achieved using hybrid mapping for SNPs and Cortex for

INDELs: median power for calling SNPs was 90% using hybrid mapping, and 74% for

INDELs using cortex (fig. 4.7a). SGA recovered few true variants. I therefore used this

combination of methods, mapping for SNPs and cortex for INDELs, across all samples.

When applied to the paired strains 4038/4039 the same mutations as originally reported

are recovered, plus a 37bp insertion in cysB which was found to be introduced during

culturing.

I used simulations to compare against a simple method of mapping against an arbitrary

reference, in this case TIGR4 (Tettelin et al., 2001). I found my reference free method has
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Figure 4.7: Performance of variant calling methods. SNPs (gold) and INDELs (blue) are shown separately.

a) Boxplot of power (recall) for each method of variant calling for 100 simulated samples. b) shows the

false discovery rate. c) Boxplot of power and false positive rate for reference based calling. Run on the same

100 simulated samples as a), calculated by number of false positives/number of true positives. d) Count of

annotated genes present in blood but not CSF (red) or vice-versa (turquoise) between the 673 S. pneumoniae
samples. The level of variation is inflated due to frequent misannotation of coding sequences (CDS)s.

greater power, especially for INDELs (fig. 4.7c), and a markedly reduced false positive

rate. I also tested an assembly method alone to compare gene presence and absence, but

this too suffered from a vastly elevated false positive rate (fig. 4.7d).

Variant direction and effect annotation

To be able to compare between samples using a consistent annotation, I mapped the called

variants to the ATCC 700669 reference (Croucher et al., 2009) for S. pneumoniae, and

MC58 reference (Tettelin et al., 2000) for N. meningitidis. This was done by taking a 300

base window around each variant and using blastn on these with the reference sequence.

‘Directionality’ was then relative to the reference used, and a binomial test with λ = 0.5

was used to test significance. I used VEP (McLaren et al., 2010) to annotate consequences

of each SNP as synonymous, non-synonymous, or stop-gained and INDELs as frameshift

or inframe.
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4.5.2 No repeated post-invasion adaptation in coding regions across
species

For each species I then counted the number of variants of any type between each blood/CSF

isolate pair taken from a patient (fig. 4.8). In S. pneumoniae 452 of 674 paired samples

(67%) were identical. The distribution of number of variants between isolate pairs is

roughly Poisson (mean = 0.547), excluding outliers. Variation between N. meningitidis

pairs also followed a roughly Poisson distribution (mean = 2.34), which when compared

to S. pneumoniae showed a higher number of variants between blood and CSF isolates

(Wilcoxon rank-sum test, W = 25 790, p < 10−10) such that most pairs have at least one

variant between the blood and CSF samples.

Neisseria meningitidis Streptococcus pneumoniae
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Figure 4.8: Histograms binned by number of variants between a blood/CSF sample pair, for both pathogens.

Total pairs analysed in table 4.8. SNPs are from mapping, INDELs are from cortex. Three S. pneumoniae
and one N. meningitidis sample with over 10 variants are not shown.

To test whether certain genotypic backgrounds were associated with a higher number

of mutations that occurs post-invasion, I performed a linear fit of each MLST against

number of mutations between blood and CSF isolates. I Bonferroni corrected the p-values

of the slope for each MLST; at a significance level of 0.05 no MLST was associated with

an increased number of mutations.

In both species, the mutations that do exist, if they cause the same functional change,

could represent a signal of adaptation. To determine whether this is the case, the number of

mutations in each CDS annotation was counted. I then performed a single-tailed Poisson

test using the genome wide mutation rate per base pair multiplied by the gene length as the

expected number of mutations. The resulting p-values were corrected for multiple testing

using a Bonferroni correction with the total number of genes tested as the m tests; I have

reported results with p < 0.05 in table 4.9.
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Gene name Gene length (bp) Blood/CSF mutations p-value

pde1 (SPD 2032) 1973 19 < 10−10

dltD (SPD 2002) 1269 13 < 10−10

dltB (SPD 2004) 1245 12 < 10−10

dltA (SPD 2005) 1551 11 < 10−10

clpX (SPD 1399) 1233 7 1.3×10−8

wcaJ (SPD 1620) 693 6 3.4×10−8

cysB (SPD 0513) 909 5 1.6×10−5

cbpJ 1122 5 4.7×10−5

amiC (SPD 1670) 1332 4 6.0×10−3

marR 435 3 9.6×10−3

fhuC 519 3 1.6×10−2

Table 4.9: Genes containing significantly repeated mutations between blood and CSF isolate pairs in

S. pneumoniae. Ordered by increasing p-value; locus tags refer to the D39 genome, if present.

The dlt operon, responsible for D-alanylation in teichoic acids in the cell wall (Deininger

et al., 2007; Habets et al., 2012; Kovács et al., 2006), was the most frequently mutated

locus: 36 mutations in 31 sample pairs (Poisson test p < 10−10). This occurred in only 5%

of samples, so adaptation to a niche due to variation in genes is not common. To investigate

whether this represented adaptation to either blood or CSF, I annotated the effect of these

variants, and determined whether they were specific to a niche. I mapped them to the R6

S. pneumoniae strain, which has a functional dlt operon and was therefore assumed to be

the ancestral state. There was no directionality to the mutations: 19 occurred in the blood,

and 11 in the CSF (p = 0.2). Only seven of the patients infected by these strains showed

signs of blood invasion before CSF invasion (sinusitis or otitis); this also did not show

directionality. I have plotted the position and nature of the mutations in fig. 4.9. Most of

these mutations would be expected to cause LoF in the operon. Though this suggests this

locus has a deleterious effect in invasive disease generally, the lack of directionality to

the mutations means it does not show evidence of adaptation to either the blood or CSF

specifically.

The next most significantly mutated gene was pde1. The pde1 gene was first found to

be essential for growth in an experimental meningitis model (Molzen, Burghout, Bootsma,

Brandt, Der Gaast-De Jongh et al., 2011); further study by Cron et al. (2011) showed

that S. pneumoniae mutants with pde1 (SP2205 in TIGR4; SPD2032 in D39) and its

paralogue pde2 (SP1298 in TIGR4; SPD1153 in D39) knocked out exhibited reduced host

cell adherence and attenuated virulence in a mouse model of meningitis. Following work

confirmed that Pde1 acts as a phosphodiesterase, cleaving c-di-AMP into pApA (Bai et al.,

2013; Kuipers et al., 2016). These signalling molecules are known to have broad effects
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Figure 4.9: Mutations observed between all paired samples in the dlt operon. The operon consists of four

genes in the three reading frames of the reverse strand. Mutations, displayed by type, in the blood strains are

shown above the operon, and in the CSF strains below the operon.

on the cell (Tamayo et al., 2007) and were again shown to affect growth and virulence in a

mouse model of pneumonia. In both studies, the authors suggested that these proteins are

promising vaccine targets.

I therefore checked whether pde1 appeared to be under selection in the sampled

population. The ratio of nonsynonymous to synonymous mutations was neutral (dN/dS

= 0.89) and contained variants with a SFS similar to that of other genes (fig. 4.10a and

b; Tajima’s D = −1.44; p = 0.67). However, as all the within-host mutations were

nonsynonymous, this implied that selection may act on pde1 during the course of invasive

disease. I then computationally predicted the effect of the 19 mutations observed to occur

in pde1 using SnpEff and PROVEAN (Cingolani et al., 2012; Choi et al., 2012), and have

plotted these along with the predicted functional domains in fig. 4.10c. Of these mutations,

14 are predicted to change protein function, without causing LoF. The mutations are not

evenly distributed across the gene and are mostly clustered in the DHH family domain

or just before it. While this does not allow a singular interpretation of the effect of these

variants on gene function, this is consistent with selection acting on pde1 during meningitis.

This supports the conclusion of Cron et al. (2011) that pde1 is essential for virulence,

and lends credence to the idea it may be an effect component of a pneumococcal protein

vaccine.
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Figure 4.10: Evidence of selection on pde1 during meningitis. Panels a and b show the SFS of mutations in

just pde1 and in all CDS, respectively. Variants are coloured according to the predicted effect. Panel c shows

the positions and predicted effects of mutations observed in pde1 during cases of meningitis and predicted

pfam domains.

In all the other genes in table 4.9 the variants are non-synonymous SNPs distributed

evenly between blood and CSF, therefore also showing no adaptation specific to either

niche.

The most frequently mutated genes between pairs in N. meningitidis are shown in

table 4.10. Top ranked are those relating to the pilus: pilE (19), pilC (6) and pilQ (4). Pilus

genes are associated with immune interaction (Wörmann et al., 2014), and are therefore

expected to be under diversifying selection; an excess of non-synonymous mutations

(dN/dS = 1.39; p = 0.024) was consistent with this. The other notable gene with more

mutations than expected in N. meningitidis was porA, encoding a variable protein which

is a major determinant of immune reaction (Russell et al., 2004), in which 12 samples

had frameshift mutations in one of two positions. Phase variation in the gene’s promoter

region, affecting its expression, is discussed in more detail below.
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Gene name Gene length (bp) Blood/CSF mutations p-value

pilE (NMB0018) 384 18 < 10−10

lgtC 189 16 < 10−10

hyaD 327 14 < 10−10

oatA 1869 19 < 10−10

hpuB (NMB1668) 2382 17 < 10−10

porA (NMB1429) 1178 12 < 10−10

lgtA (NMB1929) 1050 10 < 10−10

kfoC 360 7 < 10−10

cotSA 1134 7 9.2×10−9

ssa1 3252 6 3.9×10−4

Table 4.10: Genes containing significantly repeated mutations between blood and CSF isolate pairs in

N. meningitidis. Ordered by increasing p-value; locus tags refer to the MC58 genome, if present.

The mutations in table 4.10 showed no association with blood or CSF specifically, so

do not represent adaptation to either niche. Genetic variation in pilE, hpuA, wbpC, porA

and lgtB within host has been observed previously in a single patient with a hypermutating

N. meningitidis infection (Omer et al., 2011). These coding sequences overlap with those

in table 4.10, which also suggests an elevated background mutation rate in these sequences,

rather than strong selection between the blood and CSF niches.

Finally, I tested whether the increased mutation rate in the genes in tables 4.9 and 4.10

was associated with a particular genotype. I performed a logistic regression for each gene

with over ten mutations reaching significance in the Poisson test, coding samples as one

and zero based on whether they had a mutation in the gene being tested or not: no genes

being mutated post invasion were associated with an MLST.

Copy number variation

I called CNVs between samples by first mapping each species to a single reference genome

(ATCC 700669), then fitting the coverage of mapped reads with a mixture of Poisson

distributions (Klambauer et al., 2012) as in section 4.3. Using windows of 1kb, I ranked

regions by the number of sample pairs containing a discordant CNV call, as defined by the

integer copy number being different between blood and CSF samples. I then inspected the

top 5% of these regions.

In S. pneumoniae the most frequently varying region was due to poor quality mapping

of a prophage region. The only other region with p <0.05 was a change in copy number of

23S rRNA seen in a small number of sample pairs. In N. meningitidis mismapping in the

pilE/pilS region accounts for the only CNV change.
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4.5.3 No evidence for repeated adaptation in intergenic regions in S.
pneumoniae and N. meningitidis

The previous result suggesting adaptation from blood to CSF was an intergenic change

affecting the transcription of the patAB genes, encoding an efflux pump (Croucher, Mitchell

et al., 2013). In general it is known that in pathogenic bacteria a common form of adaptation

is mutation in intergenic regions, which may affect global transcription levels, causing

a virulent phenotype (Gripenland et al., 2010; Johansson et al., 2002), antimicrobial

resistance (Sreevatsan et al., 1997) and changing interaction with the host immune system

(Magnusson et al., 2007). Changes in these regions have previously been shown to display

signs of adaptation during single cases of bacterial disease (Marvig et al., 2014).

I therefore separately investigated the mutations in non-coding regions. Analysing the

positions of these mutations required a consistent co-ordinate system across all sample

pairs. To achieve this, I remapped the co-ordinates of each variant discovered in an

intergenic region to the co-ordinates of the ATCC 700669 reference genome. I used the

population matched carriage isolates as the ancestral state to determine whether these

mutations occur in the blood or CSF isolate.

Figure 4.11 shows all mutations plotted genome-wide in S. pneumoniae. The peaks

correspond to mutations in genes described in table 4.9. In the remaining 121 mutations

in non-coding regions I observed no clustering by position. Over all pairs of samples,

intergenic mutations were spread between blood and CSF isolates when compared to a

carriage reference. This suggests none of the intergenic mutations are providing a selective

advantage in either invasive niche.

The mutations in N. meningitidis are plotted in fig. 4.12, 110 of which were in non-

coding regions. I observed enrichment (> 1 mutation), but no niche specificity, in the

upstream region of six genes. These mutations are listed in table 4.11. Some of the

mutations upstream of porA and opc are in phase variable homopolymeric tracts, which

are discussed more fully in section 4.5.4. The other mutations are upstream of the ad-

hesins hsf /NMB0992 and NMB1994, which are involved in colonisation (Hung & Chris-

todoulides, 2013) and immune interaction during invasion (Griffiths et al., 2011), and

frpB/NMB1988 which is a surface antigen involved in iron uptake (Delany et al., 2006).

Differential expression of these genes may be an important factor affecting invasion, but

the mutations I observed that may affect this do not appear to be specific to blood or CSF.
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Figure 4.11: Mutations observed between all S. pneumoniae pairs, overlaid onto the Spn23F reference.

Each blue point on the lower row corresponds to a SNP or INDEL variant observed between at least one

sample pair. The blocks in the upper row represent CDSs, lying above or below the central line depending on

whether they are on the forward or reverse strand respectively. The panels show a) whole genome (stacked,

grouped by 1 000 bp windows); b) dlt operon (four genes in the centre, from 2 152 238 to 2 156 543 base

pairs); c) pde1 (gene in the centre from 2 185 398 to 2 187 371 base pairs).

Coordinates Downstream gene Blood/CSF mutations

1468329–1468331 porA (NMB1429) 7

1072215–1072328 opc (NMB1429) 7

1008872–1008985 hsf (NMB0992) 6

1315621–1315672 NMB1299 6

2092257–2092552 frpB (NMB1988) 5

2100124–2100258 NMB1994 4

Table 4.11: Intergenic regions containing significantly repeated mutations between CSF and blood isolate

pairs in N. meningitidis. Ordered by increasing number of mutations; coordinates refer to the MC58 genome.
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Figure 4.12: As fig. 4.11. a) whole genome. b) pilus encoding genes. Mapping to the MC58 reference places

these incorrectly in the unexpressed pilS cassette; compared to the reference the isolates have recombined

between pilS and the expressed pilE. c) oatA.

4.5.4 No evidence for repeated adaptation in phase variable regions
in S. pneumoniae and N. meningitidis

Phase variable regions, which may also be intergenic, can mutate rapidly and are known

to be a significant source of variation in pathogenic bacteria (Bucci et al., 1999). This

mutation is an important mechanism of adaptation (Moxon et al., 1994), and meningococcal

genomes in particular contain many of these elements (Snyder et al., 2001).

In N. meningitidis I observed six samples with single base changes in length of the

phase-variable homopolymeric tract in the porA gene’s promoter sequence, and five

samples with the single base length changes in the analogous promoter sequence of opc.

While changes in the length of these tracts will affect expression of the corresponding

genes, both of which are major determinants of immune response (Sarkari et al., 1994;

van der Ende et al., 2000), the tract length does not correlate with blood or CSF specifically.

Consistent with this, porA expression has previously been found to be independent of

whether isolates were taken from CSF, blood or throat (van der Ende et al., 2000).

In S. pneumoniae I was interested in whether the allele of the phase variable ivr locus

discussed in section 4.3.2 was associated with either the blood or CSF niche specifically,

as this could be a sign of adaptation. As the locus inversion is rapid and occurs within host,
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we first ensured that cultured samples are representative of the original clinical samples

using PCR quantification of each allele. We therefore extracted DNA from a subset of 53

of 674 paired clinical CSF samples and the respective bacterial isolates.

Allele prevalence was quantified using a combined nested PCR protocol based on

PCR amplification of the ivr locus (Manso et al., 2014). Allele prevalence was identical

between the original clinical sample and cultured bacteria in 50 out of the 53 samples. The

predictive power of the in vitro detected ivr allele prevalence in a pneumococcal culture

for the original allele prevalence within the clinical sample was therefore sufficient to draw

conclusions about adaptation from.

I then used the mapping method described in section 4.3.2 to determine the allele for all

the paired samples from the read data. 621 sample pairs had reads mapping to hsdS from

which an allele can be called. However, as even a single colony contains heterogeneity

at this locus, simply taking the allele with the most reads mapping to it in each sample

gave a poor estimate of the overall presence of each allele in the blood and CSF niches. To

take into account the mix of alleles present in each sample, and to calculate confidence

intervals, I used the same hierarchical Bayesian model for the ivr allele used for GWAS

in section 4.4.3. This simultaneously estimated the proportion of each colony pick with

alleles A-F for both each individual isolate (π), and summed over all the samples in each

niche (μ). I applied this over i samples and c niches (in this case c can be blood or CSF).

For each pair of blood and CSF samples the difference in allele prevalence πCSF−πblood

was calculated. All S. pneumoniae samples had a difference in mean of at least one allele

(as the highest posterior density (HPD) overlaps zero), highlighting the speed at which this

locus inverts. While this means that between a single CSF and blood pair the allele at this

locus usually changes, it is the mean of μc (corresponding to the mean allele frequency in

each niche over all sample pairs) which tells us whether selection of an allele occurs in

either the blood or CSF more generally. This is plotted in fig. 4.13. As the HPD overlap,

no particular allele is associated with either blood or CSF S. pneumoniae isolates.

Manso et al. (2014) showed in a murine invasion model that an increase in proportion

of alleles A and B occurs over the course of infection. I did not observe the same effect in

these clinical samples, though the large confidence intervals from the mathematical model

suggest that genomic data with a small insert size relative to the size of repeats in the locus

is limited in resolving changes in this allele. A small selective effect of ivr allele between

these niches would therefore not be detected, but strong selection for a particular allele

(odds ratio > 2) can be ruled out.
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Figure 4.13: Mean and 95% HPD for μc. This shows the proportion of each allele present in each of blood

(red) and CSF (turquoise) tissues pooling across all samples.

Diversity of ivr allele within samples

As the speed of inversion is rapid, I used the subsequent polymorphism of this locus to

evaluate the assumptions about diversity of the bacterial population within each niche. I

calculated the Shannon index of each sample’s vectors μCSF and μblood to measure diversity

of the sample in each niche. The mean Shannon index across CSF samples was 1.01 (95%

HPD 0.39-1.51) and 0.98 (95% HPD 0.35-1.55) in the blood (fig. A.14). Looking at each

sample pair individually, the difference between diversity in each niche appeared normally

distributed with a mean of zero. Together, these observations suggested a similar rate

of diversity generation in each niche. This is in line with the assumption that the two

populations have similar mutation rates, and a similar number of generations between

being founded and being sampled.
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4.5.5 Carriage and invasive disease sample pairs show some evidence
of repeated adaptation

Using the same methods, I also analysed pairs of genomes from 54 patients that were

collected from the nasopharynx and CSF. Six of these were S. pneumoniae. In these

samples, I detected only one sample with any variation (fig. 4.14), which was a two

base insertion upstream of the gph gene. This is similar to the amount of mutation

observed between the blood and CSF isolates, which is expected given the similar sampling

timeframes. While I found that a functional dlt operon appears to have a deleterious effect

in invasive disease, I did not observe mutation between the carriage and disease samples.

However, this was expected given the small number of carriage samples relative to the

effect size detected for this operon.

Between the remaining 48 N. meningitidis carriage and CSF isolate pairs small numbers

of mutations were common. I went on to search for regions enriched for mutation, however

in 8 samples I observed large numbers of mutations clustered close together (fig. 4.14).

These represented single recombination events, so when analysing genes enriched for

mutation I counted each recombination as a single event (Croucher, Page et al., 2015;

Maiden et al., 1998).

Table 4.12 shows the results of this analysis. Similar genes are mutated as in the

blood/CSF pairs, again with no specificity to either niche. In phase variable intergenic

regions, I observed four sample pairs with an insertion or deletion in the porA promoter

tract with no niche specificity. Otherwise, none of the regions above showed enrichment

for mutation in either niche. These observations support the theory that these genes mutate

at a higher rate but do not confer a selective advantage in any of the three niches studied.

Gene name Gene length (bp) Carriage/CSF mutations p-value

lgtA (NMB1929) 1050 6 5.0×10−7

oatA 1869 6 1.5×10−5

hyaD 327 4 2.6×10−5

pilE (NMB0018) 384 4 3.8×10−3

pilT (NMB0052) 1131 4 3.5×10−3

dca (NMB0415) 444 3 1.1×10−2

Table 4.12: Genes containing significantly repeated mutations between nasopharyngeal and CSF isolate

pairs in N. meningitidis. Ordered by increasing p-value; locus tags refer to the MC58 genome, if present.

A notable exception to this is the dca gene, a phase variable gene involved in compet-

ence in Neisseria gonorrhoea but of unknown function in N. meningitidis (Snyder et al.,

2001; Snyder et al., 2003), in which all mutations are protein truncating variants in the

invasive isolate. Similarly, though not reaching significance (due to the long length of the

genes) were the ggt (NMB1057) and czcD (NMB1732) genes in which three recombina-
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Figure 4.14: Histograms binned by number of variants between a carriage/CSF sample pair, for each

bacterial species. a) As fig. 4.8. In N. meningitidis eleven samples with over ten variants between them due

to recombination events are grouped. b) The number of recombination and SNP/INDEL events in samples in

the group with over ten detected variants.

tions occurred, all of which were in the invasive isolate of the pair.

The mutations in these three genes therefore may confer a selective advantage in

the invasive niche; the sequence at these loci in the invasive strains are the same as the

MC58 reference, an invasive isolate itself. ggt has previously shown to be essential for

N. meningitidis growth in CSF in rats (Takahashi et al., 2004), and metal exporters such as

czcD have been shown to increase virulence in a mouse sepsis model (Veyrier et al., 2011).

More such paired carriage and invasion samples would be needed to confirm if this is the

case in human invasive disease.
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4.6 Conclusions

In this chapter I have used a population of S. pneumoniae genomes to determine the

contribution of naturally occurring bacterial variation to the progression of meningitis from

asymptomatic carriage through blood invasion to CSF invasion. I first used a variety of

bioinformatic methods to catalogue as wide a variety of variants as possible, particularly

those which have previously been associated with virulence.

Using these variants and a matched collection of carriage and invasive isolates I found

that the bacterial genome is crucial in determining invasive potential, with serotype likely

to be the main factor. However, I did not find any evidence that the bacterial genome

contributes to severity or outcome of disease. Using GWAS of both common and rare

variants I found many regions and genes to be associated with invasive disease, independent

of genetic background. Some of these have been previously described, whereas this is

the first time others have been associated with invasive human disease. Genes involved

in capsule synthesis, yhfE, RumA2, bacteriocins, nanA and nanB were associated with

invasiveness using both common and rare variants, as well as analysis of selection.

The rare variant burden test found some well known virulence factors, showing that

large effect size LoF mutations generated in lab mutants exist in the natural population,

and further can affect disease in human infection. Common variants with smaller effect

sizes may be the most interesting result of this approach in future, as the smaller effect

sizes are harder to discover with bottom-up approaches, and their higher frequency in the

population may make them more appealing vaccine targets.

I did not find evidence for association with invasiveness for some previously described

variants. I did not find that the ivr allele was associated with invasive disease, suggesting

that its function is to defend against highly variable prophage and that the variable capsule

expression it can produce are not selected for in natural disease. The three antigen alleles

were not associated with invasiveness, suggesting the allelic variants are a general form

of diversifying selection without specific forms having a differing fitness in carriage or

invasion.

These hits, as they rely on a single study population, are susceptible to batch effects

specific to the Dutch setting or due to sampling bias of the collection. The association of

positive controls such as capsule is reassuring, but replication in an independent population

is necessary before further interpretation. The hits I have reported here will be useful for

meta-analysis when further sampling and GWAS is performed.

As well as large scale population differences, previous studies have shown that substan-

tial levels of genomic DNA sequence variation occur in bacteria colonising or infecting

human hosts (Eyre et al., 2013; Kennemann et al., 2011; Morelli et al., 2010) and suggest

that some of this variation may be due to selective adaptation (Croucher, Mitchell et al.,

2013; Jorth et al., 2015; Marvig et al., 2014; L. Yang et al., 2011; Young et al., 2012). Such
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adaptations during invasive bacterial disease could lead to new insights into the processes

of pathogenesis with the potential to inform therapies (Sudip Das et al., 2016; Didelot et al.,

2016), which would be difficult to assess with GWAS due to the rapid disease progression.

I have searched for variation in S. pneumoniae and N. meningitidis, by comparing the

pan-genomes from bacteria isolated from both blood and CSF from the same individuals

in 869 bacterial meningitis cases. The genetic background within-host is the same, so this

comparison could be performed without population structure correction.

I found overall that blood and CSF isolates have very similar genetic sequences. The

mutations observed are not randomly distributed throughout the genome, but are instead

randomly distributed between blood and CSF isolates. These mutations are therefore

an observation of a higher mutation rate in these regions during invasion (for example

the pilus in N. meningitidis, which is known to be under diversifying selection) but not

repeated adaptation to either niche. This study indicates that the previous observation

of variation between blood and CSF isolates from a single case of meningitis (Croucher,

Mitchell et al., 2013) was a rare event most likely driven by antibiotic selection pressure

during treatment. The large sample size means that this eliminates the need to search for

bacterial diversity between invaded host niches (blood and CSF) when trying to explain

pathogenesis of meningitis, which is a tempting analysis for reference labs with both sets

of samples available. However, my comparison between the genomes of carriage and

invasive isolates did show some weak signals of adaptation. I found that dlt appeared to be

deleterious in invasion, and that selection appeared to be acting on pde1 during invasion.

These genes were not associated with invasiveness in the GWAS, which may be due to

insufficient power or population stratification.

I went on to analyse 54 samples comparing carriage and invasive isolates from the

same patient. Though the sample size was lower, and fully sampled diversity within

the nasopharynx was not available, I was able to get an insight into potential genetic

differences between bacteria in these niches. I saw some of the same genes that mutate

rapidly between blood and CSF isolates also do this between carriage and invasion. This

supports the conclusion that these genes have a higher mutation rate, rather than giving

a selective advantage to a niche. However the power in these comparisons was limited

by sample size and single colony sequencing, so comparison with GWAS results is not

possible.

In the next chapter I will perform a similar analysis on the effect of host genetics on

bacterial meningitis, starting with the proportion of variability attributable to common host

genetic variation for invasiveness and disease severity. Together, this will give an overall

picture of host and pathogen genetics affecting pneumococcal meningitis.
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