
Chapter 6

Conclusions

6.1 Summary of findings

S. pneumoniae is a human commensal, which in rare cases can invade a usually sterile

niche. If the blood or CSF is invaded this usually leads to serious disease, called bacteremia

and meningitis respectively. While virulence factors of the pathogen necessary for invasive

disease have been identified from bottom-up lab based approaches (often relying on

a mouse model of infection), the role of naturally occurring sequence variation in the

pathogen genome in invasive disease is generally unknown.

I have used a large cohort of S. pneumoniae genomes isolated from invasive disease

and asymptomatic carriage to determine the importance of sequence variation in disease

susceptibility and severity, and to find the specific regions of the genome which contribute

to these variations in phenotype. My main approach was to use GWAS, which is a

hypothesis-free way of testing all genomic variants for association with a given phenotype.

This approach does not require prior assumptions about which genes may affect the

phenotype and does not rely on large-effect size gene knock-outs or animal models of

disease.

In the context of bacterial populations, GWAS faces difficulties caused by strong

population structure and highly plastic genomes. I developed a piece of software to help

overcome these issues by finding an appropriate adjustment for population stratification,

and using sequence elements (k-mers) to test for variation of the pan-genome. After

testing this method using antibiotic resistance as a positive control, I then applied it to the

phenotype of pneumococcal carriage duration, where I also developed a model to estimate

carriage duration from longitudinal swab data. By adapting methods derived from human

genetics, I was able to calculate the heritability caused by the pathogen genome, and

identify which variants explained variation in this important epidemiological parameter.

Using a range of bioinformatic approaches I catalogued variation of the population

of pneumococcal genomes sampled from the Netherlands, from both carriage and dis-
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ease. I then performed associations between all of these variants and three phenotypes:

invasive disease potential, severity and mortality. This analysis showed the importance of

pneumococcal variation beyond serotype for invasive potential, but not in disease outcome,

and identified many putative genes and regions associated with increased or decreased

invasiveness. I also performed an analysis of within-host variation between blood and CSF

isolates, and while I didn’t find adaptation specific to either niche I did find evidence of

selection on genes post-invasion.

Finally I performed a GWAS of host variation with susceptibility and severity of

meningitis. I found these traits to be heritable, but despite attempts at meta-analysis with

other studies the relatively low sample size and possible prototypic heterogeneity hasn’t

yet led to a confirmed association in either case. I also attempted a genome-to-genome

analysis using both host and pathogen variation. I calculated the limit of detection given

the small sample size, and using dimensionality reduction and biological hypotheses found

possible interaction effects.

In summary, I have made the following advances. I have developed one of the first

methods to overcome the challenges of bacterial GWAS, and showed that it works better

than existing approaches. Using this technique, and others, I have quantified the effect of

pneumococcal variation on variation in carriage duration beyond the resolution of serotype,

and found some of the specific variants which affect it. I also used this top-down approach

of assessing the genetics of pneumococcal meningitis, both in host and pathogen. This

was not based around known required virulence factors, and used variation occurring

in the natural population. Analysis of within-host diversity during meningitis found

selection acting on additional genes. I calculated the heritability of host susceptibility to

pneumococcal meningitis, and performed an association study using human genetic data. I

also attempted the first genome-to-genome analysis with bacterial genomes and human

genotypes.

6.1.1 Bacterial genome-wide association studies

Bacterial GWAS approaches have faced three main difficulties: lack of large sample

collections, strong population structure confounding results and extensive pan-genomic

variation. With the first restriction starting to be lifted, there is a need for scalable GWAS

methods directly applicable to large populations of bacterial genomes. Such methods must

account for population structure, and ideally assay variation in both the core and accessory

genome without relying on a reference alignment.

The use of k-mers to assess pan-genomic variation had previously proven successful,

so I wished to implement an approach which could efficiently perform associations using

these as sequence variants. As the application of phylogeny based approaches are restricted

due to their heavy computational burden and the need for an accurate recombination-

186



Chapter 6. Conclusions

free tree, I opted to adapt regression-based methods used in human genetics to apply to

bacterial GWAS. I wrote code to maximise the likelihoods of these regressions in C++,

using efficient optimisation techniques as a first try, and more robust methods as a second

pass.

To work out how to deal with population structure I compared various approaches in

terms of accuracy and computational burden for phylogeny reconstruction. Knowing that I

would be using k-mers in the association, I found that a method using the Jaccard distance

between subsets of overall k-mers was sufficient to control for population structure in my

simulations, and for antibiotic resistance in S. pneumoniae. Since writing this code the

minHash distance has been adapted for distances between genetic sequences (Ondov et al.,

2016), and can now be used as a more efficient replacement for Jaccard distance. I used

the eigenvectors with the three largest eigenvalues calculated from this pairwise distance

matrices in a fixed effect logistic or linear regression, in analogy with the standard method

used in human genetics. To deal with possible very large effect sizes in these regressions I

used the LRT for significance, and Firth regression for when data was nearly separable (as

in trimethoprim resistance).

This approach proved to be broadly successful for antibiotic resistance in S. pneumo-

niae, worked with simulated data, and found a potential virulence factor in S. pyogenes.

However, in all of these cases the predicted effect size was very strong, and population

structure was generally not strongly associated with the phenotypes tested. I did not test

whether the population structure correction I applied here was more broadly applicable,

and would be sufficient in other species or phenotypes where these conditions no longer

hold. The use of more eigenvectors should improve the trade-off between false positive

rate and power, but it may be the case that including them as random-effects under a linear

mixed model may offer the best option. When used for carriage duration, I found that

a LMM had slightly higher power for detecting homoplasic low frequency effects when

compared to using fixed effects while controlling for false positive rate. However, it was

not as useful as the fixed effects model for including possible lineage associated variants

for follow-up elsewhere. For invasiveness of S. pneumoniae, the fixed effect model using

ten population structure components appeared to have a high false positive rate, where the

LMM offered better population structure control and was still powered to find associations.

I have therefore already observed situations in which different methods would be the

best to use. A comparison of these possible methods based on a range of population

structures, phenotype distribution, recombination rate/homoplasy, effect sizes, lineage and

locus associations would be useful, and is not something I attempted here. It is difficult to

simulate realistic bacterial phylogenies, and synthetic associations introduced as part of this

kind of simulation may be easier to find than associations in real populations. To perform

this comparison I would take observed sequence alignments from real populations, and

introduce synthetic associations using eq. (2.11) over the range of parameters of interest.
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A comparison of power and false positive rate of fixed and random effect regressions as

well as phylogeny based methods would be useful for future applications.

The population structure correction I used in SEER is a reasonable start, and works

well for strong effects such as antibiotic resistance. A comparison with other possibilities

with positive and negative controls (either simulated or known associations) will help

inform future development. I mostly tested methods on locus effects, and have ignored

or controlled for lineage effects in the output. In the future, a ranking of lineage effects

in the output would be useful in case lab-based follow-up of these sites is possible. Clear

assignment of sites as either lineage or locus effects would be helpful too, and ancestral

state reconstruction combined with a comparison between adjusted and unadjusted test

statistics may help classify variants into one of these two classes.

A difficulty in both cases is picking a significance threshold. In my first attempts I

reasoned that every possible site in the genome multiplied by all three possible mutations

should be used as the number of tests, and backed this up with permutation testing.

However, as samples are not independent and identically distributed due to their genetic

relatedness then permuting phenotype labels may not be appropriate, as it assumes any

switch of label has the same effect ignoring any covariance between samples. Permuting

labels within population clusters may be better, but likely too conservative. Monte Carlo

permutation using the a covariance structure calculated from the phylogeny is also possible,

though with the usual caveats of computational burden and reliance on a high-quality tree.

Inspection of Q-Q plots is useful and can visually allow for the identification of a breakpoint

between population structure effects and a significant signal, and how much the former is

affecting the association model overall. While this is not a consistent way of choosing a

threshold, it can help with ranking the top hits. For the LMM, where population structure

is well controlled at the lower end of the p-value spectrum, a conservative Bonferroni

correction based on number of patterns seems appropriate based on the Q-Q plots tested

here. For fixed effects models picking this threshold remains a challenge, though Q-Q

plots can help.

The use of k-mers worked well in the applications tested, and managed to find asso-

ciations SNPs would not. They enjoyed the expected advantages from not requiring an

alignment or clustering of orthologous genes. In cases where nearby SNPs independently

affect the phenotype, which occurs in some antibiotic resistance genes, k-mers may be split

up into lower frequency sequence units, lowering their power. In later chapters I therefore

assessed variation through k-mers, SNPs and COGs where possible. The interpretation

of k-mers has proved more challenging, due to the difficulty of mapping to the correct

place (particularly with smaller k-mers) in a well annotated genome. Ideally k-mers would

further be annotated by labelling SNPs and their predicted functional change in the k-mers,

using the ancestral state as reference. However, to map an associated region, especially

mediated by gene presence/absence and not fine-map the function, k-mers have been
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successful.

6.1.2 Epidemiological variation of S. pneumoniae

Duration of carriage of S. pneumoniae is an important measure of strain fitness in epidemi-

ological models, and its variation has been proposed as a mechanism by which antibiotic

sensitive and resistant strains can coexist. Previous analysis of the source of this variation

have been limited to serotype resolution, so using genome sequences from a longitudinal

study cohort offered the opportunity to refine the analysis of variance.

I first developed HMMs for longitudinal swabbing data per serotype, to allow carriage

acquisition and clearance rates and false negative swabbing rates to be estimated from the

whole data rather than from a set of assumptions. The only model that converged for the

most common serotypes was the simplest: two states for carrying and not-carrying. These

parameters could then be applied to individual carriage episodes to infer the most likely

durations based on the observed data. Using these durations as a continuous phenotype,

I used a LMM to investigate and quantify the variance components caused by serotype

and resistance, and GWAS to identify possible specific genetic variation which further

contributed to variation in carriage duration.

I found that bacterial genomic variation had a significant effect on carriage duration,

and that serotype was the largest lineage effect. However, only serotype 19F appeared

to have a contribution independent of the genetic background. I also identified prophage

k-mers which were associated with a lowered carriage duration, and evidence that this may

work through interruption of the competence mechanism (by inserting into the comYC

gene). These findings support the existence of duration and fitness modifying alleles in

the natural population, which can be used to explain coexistence of antibiotic resistant

and sensitive strains despite strong fitness differences depending on whether treatment is

currently being applied (Lehtinen et al., 2017). The increased precision of the carriage

estimates, per carriage episode rather than per serotype, along with provision of useful

covariates such as comYC status, host age and previous carriage will also be useful data

for models of coexistence and transmission.

However, one of the main limitations of this analysis was the monthly swabbing

resolution. While clearly a large and well-sampled collection, the design of swabs spaced

linearly in time to probe carriage durations which appear to be exponentially distributed

is suboptimal. A design that would be better for this purpose is exponentially distributed

sampling of cases that remain positive (Abdullahi et al., 2012a). Given the swabbing

design available here, the estimates of effect sizes of the explanatory variables on carriage

duration were therefore positively skewed.

As with all GWAS studies from a single population, results may be affected by batch

effects in this population. Therefore meta-analysis of the results from this section with
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another similar study would be useful before being generalised to the entire pneumococcal

species. However, as this amount of sequencing has previously been unfeasible and as

children need to be followed for two years, these studies are difficult to set up and long-

running from start to finish. There are no other studies currently combining carriage

duration estimates with genomic data, so this meta-analysis is not presently possible.

We are aware of a similar study starting collection in Cape Town, South Africa, so I

have released our results to facilitate comparison when this study’s sequencing has been

completed.

The function of altered carriage duration through comYC is an association only, and

does not prove causation through this mechanism. While it is possible to make evolutionary

arguments to support this interpretation, isogenic strains (controlling perfectly for genetic

background) in an in vivo model would be needed to bolster this claim.

6.1.3 Host and pathogen genetics of pneumococcal meningitis

In chapters 4 and 5 I have used genomic variation of infecting bacteria and human host

respectively to determine the impact of genetics on susceptibility to and severity of pneumo-

coccal meningitis. Heritability analysis showed that for susceptibility, host genetics played

a role and the genome sequence of the infecting strain is very important in whether invasive

disease can occur. For severity of disease a different picture emerged: pathogen variation

is unimportant, and host genetics is likely to play a small role. Though the estimation of

specific heritabilities with binary phenotypes can be problematic, the data and multiple

models support this overall conclusion.

I was unable to find and validate specific host associations through meta-analysis with

other studies given the current sample collection. This rules out the existence of common

variants with large effect sizes, the fitness defect of which would be unlikely to exist

evolutionarily. Whether the variation which contributes to this phenotype consists of low

effect size common variants, or rarer large effect size variants is a question that will need

to be answered by future studies with larger sample sizes and more sequencing covering

the entire variant frequency spectrum.

I did not include the sex chromosomes in the present analysis due to difficulties

with imputation, though I did perform an earlier analysis of the X chromosome when

using impute2 in the Dutch population that did not show any association with any of the

phenotypes. Tools are being developed to deal with the sex chromosomes in the same way

as the autosomes (Wise et al., 2013), and the imputation server and reference panel now

allows the X chromosome to be included. Future analyses should therefore not ignore this

variation.

Another issue was phenotype heterogeneity, as the cohorts differed in terms of par-

ticipant age and the exact disease presentation. While these differences have not been
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found to matter for many phenotypes, it is possible that differing effect sizes in the subtly

different phenotypes here are making associations impossible to find given the model used.

The sample size here may benefit from a specific model allowing for this heterogeneity

and expected correlations between effect sizes (as evidenced by the lack of signal from

subtest), though a simple first step would be to perform meta-analysis of only a subset of

the available studies to test for this possibility.

For the bacterial genetic contribution to meningitis, using GWAS I found many regions

of the genome to be associated with invasiveness. Reassuringly, positive controls such as

capsule (which I separately estimated to account for half of the variation in invasiveness)

and LoF mutations in virulence factors such as zmpD were found in this analysis. Some

other genes had previously been reported to affect virulence in invasive disease models, and

these results increase support for their importance in human disease too. The remaining

regions were associated with virulence for the first time here, and may suggest new

functions for these genes, or an impact on virulence through unknown interacting gene

networks.

I used a simple burden test when testing the effect of rare variants, which would not be

suitable if the variants included in the set had different directions of effect. While this is

probably correct for LoF variants, a different test may increase power for rare missense

variants affecting protein function. If there is still strong population structure at the tips of

the tree the method I have used has not explicitly accounted for it. It would be possible

to instead group variants manually, and perform the association using a LMM. A similar

caveat exists with the Tajima’s D analysis of differential selection, where permutation

testing may be insufficient to correct for population structure. In this case, the confounding

effect of different population histories or different effects of vaccine introduction may be

impossible to disentangle from signatures of selection.

These GWAS results are particularly susceptible to batch effects, due to the difficulty

of getting a perfectly matched sample of the population from carriage and invasive disease.

When analysing binary traits, if a covariate (such as serotype) is perfectly correlated with

the trait, then all the results will be confounded too. Therefore a crucial next step, before

further interpretation, is replication and meta-analysis with another population where both

carriage and disease have been sampled. Hits from both populations will then be much

better supported as the confounders may cancel out if in random directions, and power will

be raised for rarer and lower effect size variants. A project is underway in South Africa

which has taken such a sample, so we intend to perform this meta-analysis using those

sequences.

As mentioned in chapter 1 part of the power of GWAS over linkage studies comes from

the simple study design, where as many samples as possible are used without necessarily

worrying about matching for covariates or genetic background. These confounders can

then be adjusted for in the downstream analysis instead, which maximises discovery power.
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This is broadly true for bacterial genomes too, however the effect of population structure

is a much stronger confounder, and for some phenotypes which are tightly correlated

with genetic background (high heritability) this can make discovery of anything other

than homoplasic variants impossible. An alternative study design is to instead compare

variation from within the same bacterial population when it has divergent phenotypes. For

example, sampling the diversity of the bacterial population within-host in the carriage niche

and an invaded niche is not confounded by population structure (and also host covariates

such as age and immune response) as the genetic background is the same. Performing

a meta-analysis of the variation found to be associated with either niche across multiple

samples will then find those variants which occur during infection which have allowed

adaptation to the invaded niche.

I performed this analysis between blood and CSF isolates, as previous work on a single

case of pneumococcal meningitis had found convincing evidence for evolution occurring

during invasive disease. When I expanded to hundreds of cases, I found no evidence of

any variation causing adaptation to either the blood or CSF niche during disease. The

sample size was large enough to conclusively state that variation occurring after invasion is

rarely important for the progression of meningitis. However, when comparing the variation

present in populations from invasion to carriage reference sequences I did find signs that dlt

loses function in carriage more frequently than would be expected, and that pde1 is under

selection in invasion. To refine this analysis of variation occurring within-host between

carriage and disease I would need to use more samples than analysed here, and also deeper

sequencing of samples to assay the background of variation that exists within the founding

population that is then selected.
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6.2 Future directions

6.2.1 Bacterial GWAS methods

Since its release, I have received feedback about SEER which, if implemented, would

make it into a more broadly usable and applicable piece of software for microbiologists. In

terms of software development and installation, inclusion of SEER in a common ‘container’

would make installation automatic for those without C/C++ development experience, deal

with differences between platforms and ensure all users are working with the same version

of the code base.

I designed SEER with k-mers in mind, and therefore concentrated on making a scalable

piece of software with a single input source. As mentioned, k-mers may not be the ideal

variant when close SNPs are associated with a phenotype as the resulting k-mers will

be split up into words of smaller frequency, and therefore power. For some purposes it

may be useful to allow other forms of input such as VCF for short variants (SNPs and

INDELs) with respect to a reference, and a general presence/absence matrix for COGs and

aligned intergenic regions. The interpretation of k-mers can be challenging, both in finding

a suitable reference (even from the entire nr/nt) to map to and annotate them with, and

to determine whether they represent presence/absence of a region or variation within the

region. It has been recently argued that population variation is best represented by a pan-

genome graph, with shared haplotypes of any length being the natural variant (Marschall

et al., 2016; Paten et al., 2017). Though the counting of informative k-mers goes some

way toward testing longer variants, testing haplotypes may improve association power and

make interpretation easier. A method has been proposed using unitigs (high confidence

contigs not requiring repeat resolution), though this is not likely to scale beyond hundreds

of samples (Jaillard et al., 2017). Integrating a scalable approach such as vg (variant graph –

https://github.com/vgteam/vg) would be a promising way to include haplotype association.

Section 4.4.2 considered rare variation in GWAS assuming population structure was

not an issue, due to low frequency variants occurring at the tips of the phylogeny. Including

a way to input pathways of variants in SEER would relax this assumption, and also allow

both gene-based burden tests (in either direction) to be extended to operons and functional

pathways. Adding a model such as SKAT (Wu et al., 2011) would also improve power when

rare variants in a functional pathway do not all act in the same direction on the phenotype

of interest.

I picked a single method to adjust for population structure in SEER, but many others

could be used. For example, as shown in chapters 3 and 4, the fixed effect model of SEER is

in some cases a poor control for population structure. In the current implementation, BAPS

clusters could be used as a categorical covariate in the regression giving a similar test to the

CMH. A LMM has generally shown good control of population structure, likely thanks to
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using all SNPs in the population structure correction rather than a proportion through pick-

ing the top principal components. The LMM normally has complexity O(MN3), which is

infeasible for the GWAS problems considered here and as sample sizes grow in future. The

model of FaST-LMM rotates the design (XXX) and relatedness (GGG) matrices so the regression

becomes linear along the eigenvectors of GGG (first using a singular value decomposition of

GGG), which with correct selection of GGG has complexity O(MN) (Lippert et al., 2011; Kadie

& Heckerman, 2017). In this case, GGG is a SNP-wise distance between samples. This is

similar to the O(MN2) phylogenetic regression method of Pagel (1997) which transforms

correlated error terms (due to relatedness between samples) into uncorrelated errors by

diagonalising the variance-covariance matrix GGG. In this case, GGG is the distance between

the root and MRCA of each pair of samples. These methods could be included as new

association models in SEER to allow for population structure correction when the current

fixed effect model is not appropriate.

The effect on GWAS power and false positive rate of these different population structure

corrections is unknown, and will likely be different depending on variant penetrance, level

of homoplasy and frequency. A simulation-based comparison between these methods

over a range of situations would therefore be useful. Based on the simulations used in

section 2.6.1, the best way to do this would be by adding in synthetic associations of

different penetrance at various points of the phylogeny of a real population using eq. (2.11),

which would allow varying homoplasy and frequency.

I used heritability and genomic partitioning to support the conclusions in chapters 3

and 4. While this is well-supported for continuous trait used in the former, the use of the

liability scale for bacterial traits in the latter has not been properly explored. Extension to

binary traits would be useful, and support of the applicability and robustness of the methods

used from simulated data will be important for having faith in quantitative estimates. If

this could be shown to work, the estimates of serotype importance may be better estimated

in a framework where genetic background is separately accounted for.

The use of SEER has been exclusively to single traits, but with the increasing availabil-

ity of high dimensional phenotypes as seen in genome-to-genome analysis (section 5.3),

pheWAS (Bush et al., 2016) and eQTL studies (L. Franke & Jansen, 2009; Wang et al.,

2009) the addition of a multitrait model could be considered. Transcriptomic data is now

being produced for bacteria (Bruchmann et al., 2015), so improved association power of

SEER for this purpose will be useful. Rather than associating every phenotype or transcript

separately, necessitating a harsh multiple testing correction, the correlation structure of

multiple traits can be exploited to find latent variables (biologically representing functional

pathways) to test for association with genetic variation improving power (Marttinen &

Corander, 2010; Marttinen et al., 2013; Marttinen et al., 2014). Recent implementations of

non-negative matrix factorisation are fast, and a promising way to find latent variables in

high dimensional phenotypes (Zhirong Yang et al., 2016) – so could be added as a further
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module in SEER.

6.2.2 Genetics affecting pneumococcal meningitis

Further analysis using GWAS could further explain the biology of pneumococcal infection.

A simple additional analysis would be adult versus child colonisation using the Dutch

carriage population – I have already catalogued the variation, and host age is available for

all samples. Any results may be informative of the differences in immune system evasion

depending on host response, and could be important for vaccination which currently targets

children.

In the carriage stage, bacteria will only persist in the population if they can be transmit-

ted between hosts; ‘transmissibility’ of S. pneumoniae is therefore a measure of fitness.

Alleles which affect transmissibility may also be a promising vaccine candidate, as com-

pared to PCV they will reduce colonisation (and therefore disease) of all serotypes. Zafar

et al. (2017) have shown that ply is necessary for transmission, as the host cell damage

it causes increases shedding. A GWAS of S. pneumoniae transmissibility may be able to

detect more subtle effects of alleles which occur in the natural population.

Nebenzahl-Guimaraes et al. (2016) performed a GWAS on transmissibility of M. tuber-

culosis by selecting low transmission strains from at-risk hosts with rare genotypes and

high transmission strains from low-risk hosts with common genotypes. A similar way

to perform this analysis would be to use the carriage durations I estimated in chapter 3

and assume equilibrium transmission in an susceptible-infected-recovered (SIR) model

in the Maela population, which would then allow calculation of strain transmissibility

from carriage duration divided by strain prevalence. However, evidence from infant mouse

models suggests S. pneumoniae transmission may only occur shortly after colonisation,

when inflammation is highest promoting increased shedding (Kono et al., 2016; Zafar

et al., 2017). In this case a more complex transmission model using genetic similarity

and infection times may be more appropriate, and model comparison between different

functions of transmission intensity with respect to time would also be useful for inferring

the biology of real-life transmission. Numminen et al. (2013) proposed a more flexible

transmission model for the Maela population which was fitted with approximate Bayesian

computation. Due to many proposals of the transmission tree being inconsistent with

the observed infection times (and being assigned L = 0) the fitting was computationally

intensive; the use of the carriage durations estimated here rather than single time-points

may ameliorate this problem. Inference of alleles affecting transmissiblity could then

be jointly estimated in the process of inferring the transmission trees. Alternatively, if

the dimension of genetic variation is too high, they could be inferred separately by first

calculating strain-wise transmissibility from the transmission trees and then using these as

a phenotype in GWAS. An alternative approach would be to sample within-host diversity
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by deep sequencing of swabs, which allows finding the genotypes which make it through

the transmission bottleneck in each case through ancestral state reconstruction (where the

trait is the identity of the host). Averaged over many transmission chains, the variation

shared by these genotypes would represent transmissibility alleles.

In the analysis of host genetics affecting bacterial meningitis, a better model of the

shared architecture between the subtypes of meningitis analysed may help find associations

(Pickrell et al., 2016). Rather than using subtest with underpowered genotype data, it

may be better to use LD-score regression between summary statistics from all the studies

available, which would allow estimation of coheritabilities between the different sub-

phenotypes (Bulik-Sullivan et al., 2015). To aid in increasing power for detecting host

genetics we have applied to access the UK biobank (http://www.ukbiobank.ac.uk/), which

is about to release 500 000 genotypes of a richly phenotyped UK adult population. These

phenotypes include ICD-10 codes, which show hospital diagnoses for bacterial meningitis,

split up by causal species. Additionally, date of death is available, allowing inference of

clinical outcome. The large size and well-defined phenotype of these samples will allow

us to perform another GWAS, and meta-analyse the results with those of chapter 5 for both

susceptibility and severity increasing discovery power.

The genome-to-genome analysis was limited by the small sample size when testing

massive numbers of combinations of possible interactions. In future, the ~1 200 samples

from the Danish cohort will also have the causal S. pneumoniae sequenced, allowing this

analysis to be expanded. It may also be possible to model the effect of genome-to-genome

interactions on severity as well as bacterial and host factors, by analysing a combined

model of the form:

severity ∼ Xbacteria +Xhost +Xinteraction

where the interaction term is Xbacteria ×Xhost.

Finally, I would propose the following extensions to assessing with-host diversity

during bacterial meningitis. As I have shown that selection does not occur between blood

and CSF samples, but that it probably does occur between carriage and CSF, a greater

number of carriage and invasive samples from the same patient should be taken: greater

both in terms of the number of patients enrolled and in the depth of coverage of the

within-host diversity. This is a difficult study to set up: in the MeninGene cohort recent

attempts to swab bacteria from the nasopharynx of bacterial meningitis patients before

treatment started yielded no positive cultures, likely due to the small carriage population

(Wyllie et al., 2014; Wyllie et al., 2016). Alternative culture-free methods such as DNA

pull-down may be helpful, or alternative a study in an alternative population with high

rates of carriage may be able to achieve sufficient sample size.

The analysis of this data would benefit from an improved null model of mutation. In

section 4.5 I assumed a simple model of equal mutation rate per base and Poisson dispersion
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of number of mutations, which led to regions with higher mutation rates being found, and

may have suppressed the discovery of genes with lower mutation rates. Improving this

through a more refined model of mutation rates depending on sequence context and using

observed dispersion of the number of mutations would be a useful extension (Samocha

et al., 2014; Aggarwala & Voight, 2016). If more mutations were observed, using the

observed number of synonymous changes, which are assumed to be neutral, as a basis

for the null would also help (Ding et al., 2008). Finally, experimental evolution without

selection pressure may give the most accurate null model (Tenaillon et al., 2016), though

an experiment recreating the bottlenecks encountered in pneumococcal meningitis has not

yet been performed.

6.2.3 Future of statistical genetics in bacterial diseases

Statistical genetics, and specifically GWAS, of host and pathogen genetics contributing

bacterial diseases is still in its infancy. Looking at the boom in human genetics and given

the large sample sizes becoming available, it is reasonable to expect the field to continue to

expand. The near future is likely to consist of further methodological improvements and

analysis of new phenotypes, going on to functional validation and eventually integration

with host data. I hope that I have presented some reasonable early steps in this field in this

thesis, and that others find elements of what we’ve done useful for future research.

Thanks a lot for reading all the way to the end! (unless you skipped straight here)
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