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Summary

De novo genome assembly is one of the most computationally de-

manding problems in genomics. In this thesis, I describe a collection

of novel algorithms for performing de novo assembly using compressed

data structures. First, I describe an algorithm to directly construct

the assembly string graph - a model of overlap-based sequence as-

sembly - using the compressed FM-index data structure. Previous

algorithms for constructing the string graph required the intermedi-

ate step of building a full overlap graph, then removing transitive

edges from the graph. My novel FM-index based algorithm does not

require this time-consuming intermediate step. This algorithm allows

fast and memory efficient overlap-based assembly. In Chapter 3, I

extend my FM-index algorithms to build a space-efficient assembler

for real sequencing data by designing error correction, read merging

and scaffolding algorithms. Using these efficient algorithms I am able

to reduce the memory requirement for assembling a human genome

to 54GB.

In Chapter 4, I address the problem of detecting DNA sequence dif-

ferences between two related genomes - the variant calling problem.

Traditional approaches to variant calling align short sequence reads to

a reference genome. While this approach is effective for simple differ-

ences, like isolated SNPs, it is more difficult to find complex changes

like the insertion or deletion of sequence. My approach is based on

analyzing the structure of an assembly graph built from the sequence

data from multiple individuals. In Chapter 5, I apply this approach

to real sequencing problems, including finding de novo mutations in

the child of two parents, somatically acquired mutations in cancer and

polymorphic variants present in a large human population.
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