
Chapter 1

Introduction

A hallmark of modern science is the collection of large volumes of data by measur-

ing physical processes. Experiments which collect terabytes of data are common

in particle physics and astronomy. In biology, we can now sequence the DNA

of previously uncharacterized organisms, entire human populations or thousands

of human cancers. These applications need extremely computationally efficient

algorithms to process the data. In this work, I will present efficient algorithms

for processing raw DNA sequence data. The algorithms I will develop are based

on the idea of querying a compressed data structure. These data structures be-

come more efficient in memory use as the redundancy in the data increases, while

retaining the ability to perform efficient queries. Throughout this text I will

develop algorithms for building and querying these structures in the context of

DNA sequence data. Using the algorithms I develop, I will address two major

problems in sequence analysis. The first problem is the efficient reconstruction

of a genome - the full complement of DNA within a cell - using only the output

from a DNA sequencing instrument. Given the scale of the problem, often re-

quiring hundreds of gigabytes of data, computation time and memory efficiency

is a primary concern. The second problem that I will address is the detection

of differences in the sequence of DNA between related genomes. The approach I

will develop does not require the alignment of raw sequence reads to a reference

genome - it works directly from the sequence reads themselves.

In the remainder of this chapter, I will introduce DNA sequencing and the

key problem of reconstructing a genome from a set of sequence reads. I will

1



also discuss previous approaches to the reconstruction problem and give a brief

overview of compressed data structures. At the end of this chapter, I provide an

overview of the remainder of this text.

1.1 DNA Sequencing

The field of molecular biology developed rapidly in the second half of the 20th

century. Watson and Crick’s discovery of the double-helix structure of DNA told

us how genetic information is copied within a cell and transmitted from generation

to generation. The determination of the genetic code - how the sequence of

nucleotides in genes encode the information necessary for constructing proteins -

led to the formation of the central dogma of molecular biology, which describes

how DNA encodes RNA which encodes proteins. It was thus readily apparent

that the sequence of nucleotides making up an individual’s genome underlies

the protein complement of the cell and hence much phenotypic variation that

we see between individuals. The development of methods for determining the

sequence of nucleotides in DNA molecules would have great importance to the

study of human health and the evolution of life. Using techniques developed

by Sanger and colleagues to determine the nucleotide sequence of short RNA

fragments [Sanger et al., 1965], Walter Fiers and colleagues sequenced the first

gene, the coat protein of bacteriophage MS2 [Jou et al., 1972]. Later in 1976 the

complete sequence of bacteriophage MS2 would be determined [Fiers et al., 1976].

Maxam and Gilbert developed a method for directly determining the sequence

of nucleotides in DNA based on breaking radioactively-labelled DNA at specific

positions, then size-sorting the DNA fragments using gel electrophoresis [Maxam

and Gilbert, 1977]. Also in 1977 Sanger, Nicklen and Coulson developed a method

that would dominate DNA sequencing for almost three decades. This method,

called chain-termination sequencing and widely known as Sanger sequencing, is

based on introducing specially modified nucleotides which do not allow extension

of a DNA chain. When these terminating nucleotides are incorporated into a

growing DNA chain, they stop the reaction from proceeding any further. The

result is a mixture of partial copies of the original template DNA. This mixture

can be sorted by fragment length using gel electrophoresis, and the sequence of

2



the DNA template can be read from the gel by the pattern of bands indicating

which modified base (A, C, G or T) stopped the chain at a given position [Sanger

et al., 1977]. Sanger and Gilbert’s contributions to DNA sequencing would earn

them the 1980 Nobel Prize in Chemistry (shared with Paul Berg).

Over the next three decades the efficiency and throughput of chain-termination

sequencing was greatly improved, particularly as a result of automation of the se-

quencing process. Gel electrophoresis and radioactively labelled nucleotides were

replaced by capillary tubes and fluorescent nucleotides, allowing the automated

imaging and analysis of the sequencing reaction using a computer [Smith et al.,

1986]. Multiple sequencing reactions were run in parallel. The read length - the

number of contiguous bases sequenced in a single reaction - improved to 500-1000

bases. These improvements to the throughput of DNA sequencing led to the start

of the genomics era, where entire genomes could be sequenced. The first com-

plete genome sequenced of a free-living organism was the 1.8 megabase genome

of Haemophilus influenzae published in 1995 [Fleischmann et al., 1995]. As the

cost of sequencing continued to fall, larger genomes were sequenced like that of

Escherichia coli [Blattner et al., 1997], Saccharomyces cerevisiae [Goffeau et al.,

1996], Caenorhabditis elegans [C. elegans Sequencing Consortium, 1998] and the

model plant Arabidopsis thaliana [Arabidopsis Genome Initiative, 2000].

An international consortium to sequence the human genome was formed in

the early 1990s. A competing privately funded project was later started by the

Celera corporation. These competing projects progressed in contrasting styles.

As the human genome was already known to be highly repetitive [Schmid and

Deininger, 1975], the publicly funded Human Genome Project (HGP) took a con-

servative approach to sequencing. They developed libraries of Bacterial Artificial

Chromosomes (BACs), 150 kilobase fragments of human DNA copied in a bac-

terial cell. Restriction digestions of the BACs were created and ordered into a

‘map’ based on the overlapping patterns of restriction fragments formed by gel

electrophoresis. Using the map, individual BACs were selected for direct sequenc-

ing to tile across each chromosome. The BAC map gave a scaffold on which to

place the individually sequenced clones. The privately funded project opted for

a more aggressive, faster approach. This method, termed whole genome shot-

gun sequencing, did not construct a map but rather sampled random sequence

3



reads from the entire genome. These raw shotgun reads would be augmented by

‘mate-pair’ reads where both ends of a long DNA fragment would be sequenced,

with unknown sequence in between. This strategy relied on the development of

sophisticated computational algorithms to determine the order of the sequence

reads and assemble them into the genome. In 2001, the two projects published

their drafts of the human genome [International Human Genome Sequencing Con-

sortium, 2001; Venter et al., 2001]. A vigorous debate on the effectiveness and

independence of Celera’s approach to sequencing the human genome ensued in

the literature for a number of years [Adams et al., 2003; Green, 2002; Myers

et al., 2002; Waterston et al., 2002, 2003]. Subsequent to the sequencing of the

human genome, the genome of a laboratory strain of mouse was sequenced using

a combination of BAC-based and whole genome shotgun data [Mouse Genome

Sequencing Consortium, 2002].

More recently many genomes have been sequenced including the Chimpanzee

[Chimpanzee Sequencing and Analysis Consortium, 2005], the Giant Panda [Li

et al., 2010a], the Gorilla [Scally et al., 2012] and the Bonobo [Prufer et al.,

2012]. The default is now whole genome shotgun assembly, which can provide

the complete genome sequence for small prokaryotic genomes but for larger and

more complex genomes assemblies are typically incomplete.

1.1.1 High Throughput Sequencing

While the efficiency of Sanger sequencing was improved by orders of magnitude

since its conception, the cost of sequencing remained too high for the routine

sequencing of entire human genomes. A second generation of sequencing tech-

nology arose in the mid-2000s, based on performing and measuring millions of

sequencing reactions in parallel. These technologies are collectively referred to as

High Throughput Sequencing (HTS) or Next Generation Sequencing (NGS).

The first HTS technology developed is termed “pyrosequencing” and was com-

mercialized by 454 Life Sciences1. In this method of sequencing, single-stranded

DNA is captured by beads, amplified and loaded into picoliter reaction wells.

Fluorescently labelled nucleotides are added to the reaction in a predefined or-

1Later acquired by Roche

4



der. When a labelled base is bound to the template DNA, a short pulse of light

is released which can be detected with a CCD camera. After each reaction, the

reagents are cleared before the next addition of bases. The captured images

are analyzed in real time to determine the sequence of each template molecule

[Wheeler et al., 2008]. This method of sequencing produces far more data per

run than Sanger sequencing, generating up to 700 megabases of sequence per 23

hour run, with up to 1000bp read lengths1.

A second massively parallel sequencing technology was developed from work

begun by Balasubramanian and Klenerman at the University of Cambridge and

subsequently commercialized by Solexa2. In this method, template DNA is ligated

to sequences fixed on a slide. The template DNA is amplified in place to generate

a cluster of molecules. The sequencing process occurs over a number of cycles.

In each cycle reversibly-terminated nucleotides, each labelled with a fluorescent

dye, is added to the reaction. An image is taken, then the dye and terminator

are chemically removed to allow the reaction to proceed to the next base in the

chain. The captured images are analyzed after the run, and the identity of which

base was incorporated during each cycle is determined by the color of each cluster

[Bentley et al., 2008]. This method now produces up to 600 gigabases per run,

when 100bp reads are taken from both ends of a DNA fragment3.

Other approaches include sequencing-by-ligation (SOLiD by Life Technolo-

gies, first used in Valouev et al. 2008, and Complete Genomics Drmanac et al.

2010). Recently single molecule methods requiring no DNA amplification have

become available (PacBio, Eid et al. 2009). In principle these can give very

long reads, beyond the effective limit of 1000bp for preceding technologies, but

currently they are not cost and accuracy competitive.

The enormous volume of data generated by HTS instruments has allowed pop-

ulation surveys of human genome variation [1000 Genomes Project Consortium,

2010] and plans to sequence thousands of human cancers [The International Can-

cer Genome Consortium, 2010] and 10,000 vertebrate genomes de novo [Genome

10K Community of Scientists, 2009]. High throughput sequencing has also gen-

1This information was taken from http://454.com/ on July 16th, 2012
2Later acquired by Illumina, Inc
3This information was taken from http://www.illumina.com on July 16th, 2012

5



erated new analysis challenges. As whole genome sequencing is now a routine

experimental measure, we need algorithms and software that can scale to match

the data generated. This is particularly important for the computationally de-

manding de novo assembly problem.

1.2 Sequence Assembly

Even at the earliest stages of DNA sequencing, when the genomes sequenced were

only a few kilobases in length, it was apparent that computers would be needed to

help analyze the data. In [Staden, 1979] Roger Staden observes that “It became

clear during the sequencing of bacteriophage φX174 DNA that it was necessary

to use computers to handle and analyze the data”. As sequencing technology has

progressed over the last 30 years, computational techniques to analyze the data

have developed in parallel. One of the fundamental computational problems in

DNA sequence analysis is the reconstruction of a genome from a set of sequence

reads. This problem is known as de novo assembly. For large genomes, billions

of reads may be used in the assembly and the time and space efficiency of the

algorithm is crucial. In this section we give an overview of assembly algorithms.

These will be discussed in more technical detail in the following chapter.

Early assemblers were not fully automated but helped a user identify and

merge overlapping sequence reads. The Staden package referenced above is an

example of this approach. As the size of sequence data sets grew, fully automated

assemblers needed to be developed. Early assemblers often used a greedy algo-

rithm. Pairs of reads would be compared to find overlaps and each overlap would

be scored based on the number of matching and mismatching bases. The reads

sharing the highest scoring overlap would be merged together and the process

would iterate. As this process made a greedy choice, care needed to be taken to

avoid merging reads that originate from similar repeats. The Phrap program1,

designed for assemblies of BACs and used by the Human Genome Project, used

base quality scores2 to help distinguish between true overlaps and those caused

by identical or nearly identical repeats.

1Unpublished, algorithm described here http://www.phrap.org/phredphrap/phrap.html
2An estimation of the probability that a given nucleotide in the read is incorrect

6

http://www.phrap.org/phredphrap/phrap.html


In a move away from greedy algorithms, Kececioglu and Myers modelled the

assembly problem as a variant of the Shortest Common Superstring problem,

which was known to be NP-Hard [Kececioglu and Myers, 1993]. Their formula-

tion of the problem used the concept of an overlap graph. In an overlap graph,

each sequence read is a vertex and two vertices are connected by an edge if their

corresponding reads have a significant overlap. The assembly problem is thus to

find walks through the graph that are consistent with the overlap relationships. A

final consensus sequence can be computed from a multiple alignment constructed

from the set of overlapping reads implied by the walk. The three stages of as-

sembly - overlap computation, layout, consensus gave rise to the “OLC” acronym

used to describe assemblers following this paradigm. The overlap computation

stage is typically the computational bottleneck in the assembly. In the worst case

this requires O(N2) time where N is the total number of bases in the sequence

reads. In the Celera assembly of the human genome, they compared all reads

against each other, which required 10,000 CPU hours on a cluster of 40 machines

[Venter et al., 2001]. In [Myers, 2005], Gene Myers reformulated overlap graph

assembly in terms of string graphs. Myers’ string graph construction algorithm

removes transitive edges from an overlap graph. As this requires the full overlap

graph to be constructed it shares the same computational bottleneck as OLC

assembly. Various strategies to accelerate overlap detection have been developed,

including limiting overlap computation to pairs of reads that have an exact, short

match [Rasmussen et al., 2006]. Despite such improvements, overlap computa-

tion remained a significant bottleneck. This became particularly important when

High Throughput Sequencing instruments became widely available, as traditional

overlap-based strategies could not cope with the volume of data.

In the late 1980s, a new approach to DNA sequencing was proposed in which

DNA is hybridized to an array containing short oligonucleotide probes with known

sequences. A signal is read from each probe, indicating whether or not the par-

ticular sequence is present in the genome. Thus, the assembly problem is to

reconstruct the genome from the spectrum of short sequences that it contains.

This approach to DNA sequencing, called Sequencing by Hybridization, did not

have a significant impact on the de novo sequencing of genomes but in studying

this problem a new class of assembly algorithms was developed, pioneered by

7



Pavel Pevzner [Pevzner, 1989; Pevzner et al., 2001] along with Idury and Water-

man [Idury and Waterman, 1995]. The defining characteristic of these algorithms

is that they break sequence reads into chains of consecutive k-mers1, overlapping

by (k− 1) bases, and construct a graph of the relationship between k-mers. Such

assembly graphs are called de Bruijn graphs after the graphs used by Nicolaas de

Bruijn to study combinatorial problems [de Bruijn, 1946]. As the construction of

a de Bruijn graph only requires performing exact matches between k-mers, the

construction can be performed in linear time using a hash table. The straight-

forward construction of the graph, along with the efficiency in which repetitive

sequences are handled by the graph, led to the de Bruijn graph becoming the

dominant method of assembly for high throughput, short read sequence data.

This approach to assembly was initially applied to HTS data by Chaisson and

Pevzner [Chaisson and Pevzner, 2008] and Zerbino and Birney [Zerbino and Bir-

ney, 2008].

While the de Bruijn graph approach to assembly solved the computation time

problem, the amount of memory required to store the graph became a major

concern. In the de Bruijn graph, there is a vertex for every unique k-mer in the

genome. In addition, sequencing errors cause new, erroneous k-mers to be added.

The de Bruijn graph of large genomes can have billions of vertices, requiring

hundreds of gigabytes of memory. Reducing the memory requirements of de

Bruijn graph assembly is a very active area of research. Simpson et al. [2009]

designed a representation of the de Bruijn graph which could be distributed across

a network of computers, spreading the memory load across multiple machines. Li

et al. [2010c] performed error correction before assembly to reduce the number of

vertices in the graph. Conway and Bromage proposed encoding the structure of

the graph using sparse bit vectors [Conway and Bromage, 2011]. Recently Pell

et al. have developed a probabilistic representation of a de Bruijn graph using a

bloom filter [Pell et al., 2012]. Chikhi and Rizk have also recently used a bloom

filter to represent a de Bruijn graph [Chikhi and Rizk, 2012].

1subsequences of a uniform length, k

8



1.2.1 A Practical Overview of Assembly

The input into a genome assembly is a set of sequence reads from the genome of

interest. Often paired-end reads will be obtained. In paired-end sequencing, both

ends of the DNA fragment will be read without reading the sequence between the

ends. For example the first and last 100 bases of a 500 base fragment of DNA

may be read - the 300bp sequence separating the ends is unknown. Mate-pair

reads may also be obtained. In mate-pair sequencing a multi-kilobase fragment

of DNA is circularized then cut twice, and the ends from the two cut points are

read. This allows a wider separation between the sequenced pair, up to 3 to 10

kilobases. When discussing sequencing data, I will refer to the coverage of the

genome. This is a measure of how redundantly the genome is sampled by the

reads. For example sequence coverage of 40X indicates that on average each base

of the genome is represented in 40 reads. This is often also called the sequencing

depth.

The assembler will read in all available data and output a set of contigs and

scaffolds. The contigs are the primary output of the assembly. These are stretches

of the genome that have been completely assembled from the raw reads. They

contain no gaps. When the assembler finds a repeat that it cannot resolve, or a

contig cannot be extended due to a lack of reads covering the genome, the contig

assembly stops. If paired-end or mate-pair reads are available the assembler can

build scaffolds from the contigs. The paired reads provide long-range information

that can jump over the coverage gap or unresolvable repeat. The scaffolds will

contain multiple contigs separated by gaps. The gaps will be encoded using

ambiguity symbols (typically runs of “N” symbols) which estimates the length

of the unresolved sequence. The lengths of the scaffolds will typically be much

greater than the lengths of the input contigs.

To measure the quality of assembly the N50 length of the contigs or scaffolds

can be calculated. The N50 of a set of contigs or scaffolds is the length x such

that contigs of length x or greater contain half of the total length of the assembly.

Misassembled contigs may inflate the N50 length of an assembly. If a reference

genome is available we may calculate NG50 instead - this calculates the N50 length

of segments of the genome that have been correctly assembled, which accounts

9



for the possibility of misassembled contigs or scaffolds [Earl et al., 2011].

1.2.2 The Topology of Assembly Graphs

The structure of the assembly graph can give important information about the

underlying genome. Here I will describe common topological features of assembly

graphs. The features below are common to both de Bruijn graphs and string

graphs. Any distinctions will be noted.

1.2.2.1 Graph Tips

On the Illumina sequencing platform, errors are more likely to occur at the end

of a read. When constructing a de Bruijn graph from the k-mers of a read

containing sequencing errors, the k-mers covering the position of the error are

typically unique. These k-mers will form a chain of vertices in the de Bruijn

graph that terminates with the last k-mer in the read. As these branches of the

graph are only connected on one end, they are typically termed tips of the graph.

A simple tip is depicted in figure 1.1. In the string graph, these structures can also

form. In this case, reads with sequencing errors will not have a suffix (or prefix)

overlap. This will break the chain of overlapping reads, leading to a disconnected

branch in the graph. The tips in a string graph will typically be shorter than

those of a de Bruijn graph, as in the de Bruijn graph a single sequencing error

may generate multiple erroneous vertices.

Figure 1.1: A simple tip in an assembly graph. The red vertices contain sequencing

errors - due to these errors the sequence of this branch diverges from the rest of the

graph (grey vertices). The arrows on the terminal grey vertices are to indicate the graph

continues off-page.

10



A standard graph cleaning operation found in most graph-based assemblers

is to identify these tips then trim them back to the point of divergence. In the

example given in 1.1 this would remove the four red vertices, which would remove

the ambiguity in the edge set of the second grey vertex.

1.2.2.2 Graph Bubbles

When the genome contains nearly-identical sequences structures known as bubbles

form in the graph. When sequencing a diploid genome bubbles will form around

heterozygous variants. The k-mers (or reads) covering the variants will cause a

branch in the graph, with two possible paths to follow. The distinguishing feature

of the bubble is that these two paths will collapse back together a short distance

later. An example of a bubble is shown in figure 1.2.

Bubbles can also form around recurrent sequencing errors or inexact copies of

repeats dispersed throughout a genome. As with tip removal, removing bubbles

is a common operation performed on assembly graphs. Typically one of the two

halves of the bubble will be deleted from the graph. A bubble removal algorithm

is described in section 3.2.5. Detecting these structures in the graph will form

the basis of the algorithms presented in Chapter 4.

Figure 1.2: A bubble in the graph showing the distinctive divergence/collapsing signa-

ture.

1.2.2.3 Repeats

Genomes contain identical or nearly-identical repeat sequences. These sequences

cause ambiguity in the assembly graph. Figure 1.3 depicts the simplest possible

situtation where there are two exact copies of a repeat in a genome. The red nodes

in this example graph indicate the repetitive sequence. The repeat segment of

11



the graph has two entry and exit points. This indicates there are four possible

paths through this segment of the graph - XRW, XRZ, YRW, YRZ - only two of

which are correct. In the absence of all other information we cannot resolve this

repeat. When working with a de Bruijn graph, we may try to thread the original

sequence reads through the graph in an attempt to resolve the repeat. If we can

find reads that contain both X and W or X and Z it will help us determine

the correct pair of paths traversing this segment of the graph. If the repeat is

very long or has many copies in the genome, it is unlikely that it can be easily

resolved. Paired end or mate pair data can be used to help resolve these cases.

Y

W

Z

X X1 2

Y1 2

W

Z1 2

1 2

Figure 1.3: A simple repeat in the assembly graph. The red nodes represent sequences

present multiple times in the genome.

1.2.2.4 Unipaths

Vertices in the graph that are connected to only one neighbor are unambiguous.

Such vertices can be merged together into a single vertex without the loss of

information or the possibility of making a misassembly. Chains of unambiguous

vertices are referred to as unipaths. Finding unipaths is the primary method of

contig assembly in most graph based assemblers. Figure 1.4 shows the unipath

graph of the simple repeat from figure 1.3.

12



Figure 1.4: A unipath graph constructed from the graph depicted in figure 1.3. The

unambiguously connected vertices have been merged together.

1.2.2.5 Assembly Software

The development of short read assemblers has been one of the most active areas

of bioinformatics since the introduction of high-throughput sequencing. SSAKE

was one of the first assemblers designed specifically for short reads [Warren

et al., 2007]. The Velvet assembler [Zerbino and Birney, 2008] was introduced

shortly afterwards and became very popular for assembling small-to-medium sized

genomes. Velvet uses an explicit representation of the de Bruijn graph based on

memory pointers in the C programming language. This representation of the

graph requires large amounts of memory when the de Bruijn graph has many

vertices, like in the case of assembling a human genome. The ABySS assembler

was designed specifically for large genomes [Simpson et al., 2009]. ABySS does

not use an explicit pointer-based de Bruijn graph, rather it stores a collection of

k-mers in a sparse hash table from which the structure of the graph can be in-

ferred. This representation of the graph allows the memory load to be distributed

over a cluster of computers. ABySS was used in the Gorilla [Scally et al., 2012]

and Tomato genome projects [Tomato Genome Consortium, 2012]. The SOAPde-

novo assembler [Li et al., 2010c] was also designed for large genomes and reduces

memory consumption by first performing k-mer based error correction to avoid

adding erroneous k-mers to the de Bruijn graph. SOAPdenovo was one of the

first short read assemblers to focus on the use of multiple large-insert mate-pair

libraries for scaffold construction. This technique was used in the Giant Panda

genome project [Li et al., 2010a]. The ALLPATHS series of assemblers is de-

signed by the Broad Institute [Butler et al., 2008; Gnerre et al., 2011; Maccallum

13



et al., 2009]. ALLPATHS is unique in that it requires specific types of sequencing

reads1. The algorithms are optimized for this input, allowing high-quality assem-

blies to be generated when the requirements are met [Gnerre et al., 2011]. In the

Assemblathon competition [Earl et al., 2011], ALLPATHS-LG and SOAPdenovo

were the top two entries out of seventeen groups who submitted assemblies. The

assembler described in Chapter 3 of this thesis, SGA, was ranked third. ABySS

was seventh.

The computational requirements for these popular assemblers varies widely.

Velvet is very fast but cannot run on large data sets. For a human genome,

ABySS requires 150-400GB of aggregate memory across the assembly cluster.

SOAPdenovo requires a similar amount of memory after the error correction step.

The authors of ALLPATHS-LG suggest the use of a multi-core 512GB server and

estimate the run time to be 3.5 weeks for a human genome [Gnerre et al., 2011].

New assemblers have been developed recently with a focus on memory effi-

ciency. Cortex [Iqbal et al., 2012] uses an approach similar to ABySS and encodes

a de Bruijn graph using an efficient hash table of k-mers. Gossamer [Conway

et al., 2012; Conway and Bromage, 2011] uses sparse bit arrays to represent the de

Bruijn graph. Fermi [Li, 2012] uses modified versions of the algorithms described

in this thesis to construct a string graph using the FM-index data structure.

1.3 Resequencing and Variant Calling

Often when we sequence an individual a reference genome for that species is

already available. In the case of humans the individual is expected to match the

reference at 99.9% of the bases. The resequencing problem is to discover the 1 in

1000 bases that differ between the individual and the reference. These differences

can be substitutions, where the identity of a symbol is swapped with another

symbol, or indels, where some bases have been inserted or deleted with respect to

the reference. There are also larger structural variants. These are large deletions,

copy number changes, inverted segments or chromosomal rearrangements. The

process of finding the ways in which a sequenced genome differs from the reference

is referred to as variant calling.

1Overlapping paired-end reads and at least one long-insert mate pair library

14



Standard approaches to variant calling will map the sequence reads to the

reference genome. This is the process of finding the location on the reference

genome that a sequence read (or read pair) was sampled from. The result of

mapping is an alignment of a read against the reference, which is a one-to-one

mapping from individual bases of the read to individual bases of the reference.

The mapping and alignment process must take into consideration errors that

occur during sequencing, for instance incorrectly identifying a base, and possible

variants between the individual and the reference genome. Once all reads have

been mapped to the reference, variants are called by finding consistent differences

between the aligned bases and the reference genome. For example if the reference

base is a T at a given position and all read bases aligned to that position are C,

we may say there is a T to C substitution. The strength of the evidence for each

variant will be typically assessed in a probabilistic model to distinguish between

sequencing or alignment errors and true variants. A comprehensive description

of the mathematics involved in the variant calling process can be found in [Li,

2011].

Variant calling by mapping reads to a reference genome is effective for isolated

substitutions and small indels and has formed the basis of many resequencing

projects, like the 1000 Genomes Project [1000 Genomes Project Consortium,

2010]. However, the mapping and alignment process can fail when there are

significant differences between the individual and the reference genome, like multi-

base substitutions or larger indels. In the worst case the sequence reads will be

misaligned to the reference and false variant calls will be made. The primary

source of misalignments (and therefore false positive variants) is polymorphic

indels [Li and Homer, 2010]. For this reason, assembly-based methods of variant

calling have recently been proposed [Iqbal et al., 2012; Li, 2012]. In Chapter 4, I

will also address the variant calling problem with assembly-based algorithms.

1.4 Compressed Data Structures

A text index is a data structure which allows string queries to be performed

without requiring scanning the full text. For example, given a text collection T

and a pattern P , we may wish to check whether P is a substring of T , count

15



the number of occurrences of P in T or locate the positions of P in T . Text

indices are used frequently in bioinformatics to accelerate searches over large

sequence collections. Sequence alignment is a classic application of text indices.

The BLAT [Kent, 2002] and SSAHA [Ning et al., 2001] algorithms use an index

of short subsequences of a reference genome to find candidate mapping locations

of a query sequence which are refined by dynamic programming.

Some of the most time efficient indices use suffix data structures. The suffix

tree and suffix array data structures store an ordering of the suffixes of a text.

The suffix tree can be searched for a pattern by matching the symbols of a pattern

to labels on the edges of the tree. A suffix array uses considerably less space than

a suffix tree and allows pattern matching via a binary search [Manber and Myers,

1990]. These data structures are extensively studied in Gusfield’s classic sequence

analysis text [Gusfield, 1997]. The suffix array is used widely in bioinformatics, for

example in sequence clustering [Malde et al., 2003], repeat detection [Abouelhoda

et al., 2002], microarray design [Li and Stormo, 2001] and k-mer counting [Kurtz

et al., 2008].

Despite the widespread use of the suffix array, its memory requirements (8

bytes per input base for large sequence collections) has limited its use to rela-

tively small analysis problems. In the past decade, compressed text indices related

to the suffix array have been developed. These indices store a compressed ver-

sion of the text, and define auxiliary data structures that allow the compressed

text to be searched without the need for complete decompression. In 2000, Fer-

ragina and Manzini described the FM-index (full-text, minute-space) [Ferragina

and Manzini, 2000]. The FM-index is based on the Burrows-Wheeler transform

[Burrows and Wheeler, 1994] and allows similar queries as the suffix array. Early

applications of the FM-index in bioinformatics were for counting substrings in

genomes [Healy et al., 2003] and finding local alignments between a query se-

quence and a reference genome [Lam et al., 2008]. The FM-index would later

become the dominant data structure for mapping high throughput short reads

to a reference genome [Langmead et al., 2009; Li and Durbin, 2009; Li et al.,

2009]. The algorithms I develop in this thesis are based on the FM-index, and

a full description of the data structures and how it is used is given in chapter

2. Compressed versions of the suffix array and suffix tree have been developed,

16



significantly shrinking their memory requirement [Grossi and Vitter, 2000]. As

of yet, these structures have not been widely used within bioinformatics.

1.5 Overview of this work

In Chapter 2, I introduce my technical notation and definitions then describe an

algorithm to efficiently construct the assembly string graph from a set of sequence

reads, without the need to build the full overlap graph first. This will solve the

time bottleneck for performing overlap-based assembly. The algorithm that I

develop is based on the FM-index. As this is a compressed data structure, its

memory footprint is much smaller than other full-text indices, like the suffix array.

This will allow the reduction of the memory bottleneck of assembly. While the

primary focus of this work is overlap-based assembly, in section 2.6 I will describe

how the FM-index can be used as a memory efficient representation of a de Bruijn

graph for all k.

In Chapter 3, I describe the implementation of these assembly algorithms

into a fully functional sequence assembler called SGA. This assembler has algo-

rithms for building the FM-index from very large sequence collections and cor-

recting sequencing errors. I demonstrate the use of SGA on real sequence data

from Schizosaccharomyces pombe, Caenorhabditis elegans and the human genome.

Also, I compare the output of SGA to leading de Bruijn graph assemblers.

In chapter 4, I study the problem of finding differences between a pair of

related genomes. I will address this problem by using assembly graphs to model

the variation structure within the genomes. I will describe the use of both de

Bruijn graphs and string graphs for this problem. Again, this work is based on

the FM-index. This allows efficient access to the complete read sequences, which

I will use when developing a probabilistic model to distinguish between sequence

errors and true variation1. In Chapter 5, I study the sensitivity and accuracy

of this approach with simulations. I also apply this approach to the problems

of detecting newly acquired mutations in the offspring of two parents (de novo

mutations), detecting somatically acquired mutations in cancer and detecting

variation within a population of individuals.

1This work is performed in collaboration, details are provided at the start of Chapter 4

17



In Chapter 6, I offer concluding remarks including the prospects of expanding

upon this work for upcoming sequencing technology.

18


