
Chapter 2

The FM-Index and Genome

Assembly

2.1 Introduction

2.1.1 Publication Note

The work described in this chapter was previously published in [Simpson and

Durbin, 2010]. Section 2.6 describes unpublished results. The work described is

the sole work of the author, under the supervision of his PhD supervisor, Richard

Durbin.

2.2 Definitions and Notation

Let X be a string of symbols a1, ..., al from an alphabet Σ. The length of X

is denoted |X|. X[i] = ai is the i-th symbol of X and X[i, j] is the substring

ai, ..., aj. Let X ′ = al, al−i, ..., a1 denote the reverse of X. When discussing

lexicographically ordered alphabets, b+ 1 will refer to the next highest symbol in

the alphabet after b.

If Y is a substring of X and Y 6= X, then we say that Y is a proper substring

of X. A substring X[k, |X|] is a suffix of X and a substring X[1, k] is a prefix of

19

X. We will often refer to substrings of length n as a n-mers 1.

When discussing text indices, we will consider all strings to be terminated by

a sentinel symbol $ that is not in Σ and is lexicographically lower than all the

symbols in Σ. In this work the DNA alphabet will be used. The lexicographic

ordering of this alphabet and the sentinel is $ < A < C < G < T .

2.2.1 Genomes and Sequence Reads

We define a genome to be a long string from the alphabet {A,C,G, T} rep-

resenting the complete DNA sequence of an individual, for simplicity ignoring

potential subdivisions into chromosomes. A sequence read is a short substring

from a genome. DNA is a double stranded molecule and sequence reads can orig-

inate from either strand. We use the notation X for the reverse-complement of

a read X.

Reads may contain sequencing errors. These occur when the sequencing in-

strument incorrectly identifies a symbol (substitution error), or when a symbol

is incorrectly inserted into, or deleted from, the string (indel error). We will oc-

casionally assume that reads are error-free. It will be clearly stated when this is

the case.

We say that two reads X and Y overlap if a prefix of X is equal to a suffix

of Y or vice versa. If X and Y originate from opposite strands, they overlap if

the reverse complement of one of them overlaps the other. If X (or X) has the

same sequence as Y then we say that the two reads are identical, or duplicates.

If X (or X) is a proper substring of Y , then we say that X is contained within

Y . When two reads X and Y overlap, we can merge them into a new sequence

Z which contains both X and Y . In this case we say that we have assembled X

and Y . We will refer to the new sequences that result from assembly as contigs.

In a shotgun sequencing experiment a set of sequence reads is randomly sam-

pled from a genome, G, with an unknown sequence. We will denote the indexed

set of reads by R, with the i-th read in the set denoted by Ri. The de novo assem-

bly problem is to reconstruct the sequence of G given only R. If the sequence of

1Such substrings are also referred to as n-grams or n-tuples, particularly in Computer
Science. We will use n-mer for consistency with most literature in the sequence assembly field.

20

G was drawn randomly from {A,C,G, T} the assembly problem would be easy -

even very short reads with length on the order of log |G| would suffice to assemble

nearly all of G unambiguously. In reality, the problem is far more complicated.

Eukaryotic genomes are shaped by the duplication and divergence of large seg-

ments, along with the proliferation of transposon elements. The difficulty of the

assembly problem stems from these repetitive regions.

2.3 Assembly Graphs

To help reconstruct G from R, we can build a graph of the relationships between

sequence reads. We will discuss three different types of assembly graph - the

overlap graph, the de Bruijn graph and the string graph. The common thread

between these graphs is that the structure of the underlying genome is reflected

in the structure of the graph. Walks through these graphs describe assemblies of

the reads into segments of the genome. We begin with the overlap graph.

2.3.1 Overlap Graphs

In the overlap graph each sequence read in R is a vertex. Two vertices are joined

by an edge if their corresponding reads overlap. To help distinguish true overlaps

from spurious overlaps we set a threshold of τmin on the minimum acceptable

overlap length. When allowing for sequencing errors, a threshold on the maximum

error rate of εmax will also be set. For the remainder of this chapter, we will

consider only error-free reads. This constraint will be relaxed in Chapter 3. We

associate coordinates with each edge describing the matching segments of the

linked reads.

The overlap graph is computationally demanding to construct. A naive algo-

rithm (suitable only for very small sequencing projects) would compare all pairs

of reads to discover overlapping pairs. Such an algorithm has O(N2) time com-

plexity where N =

|R|∑
i=1

|Ri|. For larger sequencing projects, comparing all pairs

of reads is impractical. To accelerate overlap detection, an index of all l-mer

sequences appearing in the reads can first be constructed, and only reads sharing

21

an l-mer would be checked for an overlap, avoiding the need to compare all pairs.

In Myers [2005] the use of a q-gram filter (subsequently described in Rasmussen

et al. [2006]) is suggested for finding all (τmin, εmax) overlaps in O(N2/D) time

where D is a function of the amount of memory available. In Gusfield [1997] an

algorithm to solve the all-pairs maximal overlap problem in O(N + |R|2) time

using a suffix tree is described. The quadratic term is due to the requirement

that an overlap between all pairs must be found - if we instead require that only

τmin-overlaps are found, a faster version of this algorithm is possible. However,

the suffix tree requires a very large amount of memory to store [Abouelhoda et al.,

2004], so in practice this data structure is not commonly used for indexing large

sequence collections.

An optimal algorithm for overlap detection would require O(N + |E|) time,

where |E| is the number edges in the resulting graph. Even with such an algo-

rithm, overlap-based assemblers suffer from two computational problems. First,

as all reads covering the same position of the genome will mutually overlap, the

number of overlaps (and therefore edges in the graph) is quadratic in sequencing

depth. This is a significant problem when assembling high-throughput sequence

data as the genomes tend to be covered very deeply to ensure each base is cov-

ered multiple times (typically greater than 40 reads cover each base). Second, for

reads originating from repetitive regions, the number of overlaps will be quadratic

in the product of the sequencing depth and the number of copies of the repeat.

This leads to greatly increased computational cost and a much larger graph when

assembling highly repetitive genomes. For this reason, overlap assemblers occa-

sionally take the step of masking known repeats and low-complexity sequence as

a pre-processing step, as exemplified by Celera’s assembly of the human genome

[Venter et al., 2001].

As each read in R was sampled from a distinct location in G, the optimal

solution will assign a linear ordering {1, 2, ..., |R|} to the elements of R, reflecting

their position along G. Such a solution requires finding a path through the overlap

graph which visits each vertex exactly once. This is the Hamiltonian path problem

which is known to be NP-complete. For this reason a global solution to the

assembly problem is rarely sought. Instead, the assembly of reads into contigs

typically focuses on finding local groups of reads that can be unambiguously

22

assembled together.

2.3.2 de Bruijn Graphs

We follow Pevzner’s formulation of the de Bruijn graph [Pevzner et al., 2001]. Set

a fixed value ρ and let P be the set of all distinct ρ-mers in R. Let k = ρ− 1 and

V be the set of all distinct k-mers in R. V is the set of vertices of the graph. For

each P ∈ P we create a bidirected edge K1 ↔ K2 where K1 is the length-k prefix

of P and K2 is the length-k suffix of P . To handle the double-stranded nature of

DNA, we can also introduce the reverse-complements of the ρ-mers and k-mers

into the graph1.

Unlike the overlap graph, the de Bruijn graph is computationally easy to

construct. The construction of the vertex and edge set only requires iterating

over distinct k or p-mers, which can easily be implemented with hash tables,

sorted arrays of strings, red-black trees or any other data structure allowing

efficient queries for whether a string is present in a collection. A second important

property, perhaps the most important, is how repeats appear in the graph. Let

R be a long repeated substring of G (|R| > k). By definition each instance of

R contains the same sequence of k-mers. As the de Bruijn graph only contains

distinct k-mers, there is a single vertex for each of these k-mers. Therefore unlike

the overlap graph the repeat copies do not contribute extra edges to the graph - all

copies are represented by a single segment of the graph (see figure 1.3). Coupled

with the efficient construction algorithms, this property has made the de Bruijn

graph the dominant data structure for assembly of genomes from high-throughput

short read data.

The reconstruction of G from the de Bruijn graph requires a tour that vis-

its each edge at least once. This is the route-inspection problem (also known

as the Chinese Postman Problem). Pevzner proposed [2001] to introduce edge

multiplicities in the graph to transform the problem into one in which each edge

must be visited exactly once. This is a classic graph theory problem originally

studied by Euler [Euler, 1741] and hence known as a Eulerian path problem.

1Some assemblers, like ABySS, represent a k-mer and its reverse complement as a single
vertex

23

As the Eulerian path problem has a known polynomial-time algorithm [Fleury,

1883], this was a promising approach to reducing the computational complexity

of genome assembly. However, with long repeats in the genome the problem is

underconstrained - many possible solutions may exist with only one representing

the true sequence of G [Nagarajan and Pop, 2009]. For this reason, assembling

contigs from the de Bruijn graph mainly focuses on local segments of the graph

that can be unambiguously assembled, like in the case of the overlap graph.

2.3.3 The String Graph

As a refinement to the overlap graph, Myers formulated the String Graph [2005].

The String Graph has a number of important differences with the overlap graph.

First, we remove duplicated or contained reads from R to provide a new non-

redundant vertex set. Second, we label each edge with the unmatched substrings

of each read. Let X = X1X2 and Y = Y1Y2 be two overlapping reads. When X

and Y are from the same sequencing strand, either X2 = Y1 or X1 = Y2. When

X and Y are from opposite sequencing strands, either X1 = Y1 or X2 = Y2. We

will call the substrings that are found in both X and Y the matched substrings.

The other substrings are the unmatched substrings. We define the labels of an

edge to be the unmatched substrings of the reads. Specifically:

Lxy =


Y2 if X2 = Y1

Y1 if X1 = Y2

Y2 if X1 = Y1

Y1 if X2 = Y2

The reciprocal label Lyx is defined similarly. Note that in the case that X and

Y are from opposite sequencing strands, then the label is the reverse-complement

of the unmatched substring. The concatenation of X and Lxy is an assembly of

reads X and Y - the resulting string contains both the sequence of X and Y . As

there are no duplicated or contained reads in the graph, the labels are necessarily

non-empty strings.

We can also associate with each edge in the graph a type describing the rela-

tionship between the pair of reads it links.

24

typexy =

{
S if X2 = Y1 or X2 = Y2

P if X1 = Y2 or X1 = Y1

If a suffix of X overlaps a prefix of Y , we will call the edge an SP -edge.

Likewise when a prefix of X overlaps a suffix of Y , we will call the edge a PS-

edge. When a reverse-complemented prefix (suffix) of X overlaps a prefix (suffix)

of Y , we call the edge a PP -edge (SS-edge). We note that when typexy = typeyx

X and Y are necessarily from opposite sequencing strands.

Walks through the graph must respect the edge types. For example, for the

walk X ↔ Y ↔ Z to be valid, if typeyx = S then typeyz must be P and vice

versa. In other words, if we enter a vertex via a suffix overlap, we must leave the

vertex using a prefix overlap. This makes the string graph bidirected. We can

associate a string with a walk through the graph by concatenating the label of

each edge in the walk to the sequence of the first vertex in the walk.

Definition 1. Let X1 ↔ X2 ↔ ...↔ Xn be a valid walk through the edge-labelled

graph. We assume that X1, X2, ..., Xn are from the same sequencing strand. If

not, we preprocess the walk by changing the strand of each edge label to match the

strand of X1. After such a step, we define the string corresponding to the walk to

be:

Ax1x2...xn =

{
X1Lx1x2 ...Lxn−1xn if typex1x2 = S

Lxn−1xn ...Lx1x2X1 if typex1x2 = P

The final difference between the string graph and the overlap graph is that

transitive edges are removed.

Definition 2. Consider a read X that overlaps reads Y and Z, which mutually

overlap. The initial overlap graph will contain the edges X ↔ Y , X ↔ Z and

Y ↔ Z. We will say an edge X ↔ Z is transitive when the string spelled by path

X ↔ Z is the same as the string spelled by path X ↔ Y ↔ Z.

Transitive edges can be removed from the graph without reducing the set of

strings that can be spelled by the graph. We will refer to non-transitive edges

as irreducible. We will now define useful properties of transitive edges. For

25

the following properties we will assume without loss of generality that typexy =

typexz = S and all three reads are from the same strand. This implies X ↔ Y ,

X ↔ Z and Y ↔ Z are all SP -edges.

Property 1. The label of the transitive edge X ↔ Z is the concatenation of the

edge labels of the walk X ↔ Y ↔ Z.

Property 2. Lxy is a prefix of Lxz.

Proof. From the definition of a transitive edge Axz = Axyz. From definition 1,

Axz = XLxz and Axyz = XLxyLyz therefore Lxz = LxyLyz and Lxy is a prefix of

the transitive edge.

Property 3. Let C be the matched substring between X and Z. C is also a

substring of Y .

Proof. We can write X and Z in terms of C as X = X ′C and Z = CLxz.

Assume C is not a substring of Y and let C = C1C2 where C2 is the prefix of

Y that matches a suffix of X and C1 is not empty. Write Y and Z in terms

of these substrings as Y = C2Lxy and Z = C1C2Lxz. From property 1 we have

Lxz = LxyLyz therefore Z = C1C2LxyLyz. This implies that Y is contained within

Z which contradicts a precondition on the graph therefore C must be a substring

of Y .

Property 4. C is not a prefix of Y

Proof. The proof is similar to that of property 3 except we assume the prefix of

Y is C to arrive at a contradiction.

Property 5. The overlap between X and Y is longer than the overlap between

X and Z.

Proof. Again let C be the matched substring between X and Z. The length of

C is the length of the overlap between X and Z. As C is a substring of Y but

26

not a prefix of Y , the matched substring between X and Y is MC where M is

non-empty. The length of MC is therefore greater than the length of C.

An example string graph built from three overlapping reads is given in figure

2.1.

ACATACGATACA
   TACGATACAGTT
      GATACAGTTGCA

R1
R2
R3

R3
GTTGCA
ACATAC

GT
T

AC
A

GCATAC

A

B

R1

R2

Figure 2.1: Diagram of a simple assembly graph. Three overlapping reads (R1, R2, R3)

are shown in panel A. Panel B shows the graph constructed from the overlaps between

the reads. The arrowheads pointing into the nodes depict an edge of type P and ar-

rowheads pointing away from the nodes depict edges of type S. For example the edge

between R1 and R2 is a SP -edge. The edge R1 ↔ R3 is transitive. Removing this edge

will turn the graph into a string graph.

Transforming an overlap graph into a string graph by removing duplicated

and contained reads, along with transitive edges, avoids the quadratic expansion

of edges with sequencing depth and repeat copy number. Like in the de Bruijn

graph, repeats are collapsed to single segments in the graph. The string graph

therefore represents an alternative to the de Bruijn graph, with the important

benefit that the graph contains the full read sequences, representing the complete

information present in R.

27

The string graph can be built indirectly by first constructing an overlap graph

then removing duplicate and contained reads, then removing transitive edges.

Myers provides an O(|E|) expected-time algorithm to perform transitive reduc-

tion on an existing overlap graph Myers [2005]. The fundamental problem of

overlap assembly remains however, in that the computation of the overlap graph

is the computational bottleneck. This is the problem that we address in this

chapter by devising an algorithm to directly output the string graph, without

the need to transitively reduce an overlap graph. This algorithm will allow us

to construct the graph in linear-time, bringing the algorithmic complexity of the

string graph in line of that of the de Bruijn graph. We begin the description of

this algorithm with an introduction to text indices.

2.4 The Suffix Array, BWT and FM-Index

The suffix array data structure was introduced by Manber and Myers [1990] as

a succinct representation of the lexicographic ordering of the suffixes of a string.

The suffix array of a string X, denoted SAX, is a permutation of the integers

{1, 2, ..., |X|} such that SAX[i] = j iff X[j, |X|] is the i-th lexicographically lowest

suffix of X. For example, if X = AAGTA$ then SAX = [6, 5, 1, 2, 3, 4]. Since the

suffix array is a sorted data structure, the start positions of all the instances of a

pattern Q in X will occur in an interval in SAX. We refer to such an interval as

a suffix array interval and associate with it a pair of integers [l, u] denoting the

first and last index in SAX that correspond to a position in X of an instance of

Q. Using SAX and the original string X, l and u can be efficiently found with a

binary search for Q. Ferragina and Manzini [2000] developed a related method of

indexing text, called the FM-index, which requires considerably less memory than

a suffix array and can compute l and u in O(|Q|) time, independent of the size of

the text being searched. Central to the FM-index is the Burrows-Wheeler trans-

form (BWT). Originally developed for text compression [Burrows and Wheeler,

1994] the Burrows-Wheeler transform of X, denoted BX, is a permutation of the

symbols of X such that:

28

BX[i] =

{
X[SAX[i]− 1] if SAX[i] > 1

$ if SAX[i] = 1

Restated, BX[i] is the symbol preceding the first symbol of the suffix starting

at position SAX[i]. For the example string X from above, BX = AT$AAG.

Ferragina and Manzini extended the BWT representation of a string by adding

two additional data structures to create a structure known as the FM-index. Let

CX(a) be the index in SAX of the first suffix starting with symbol a. If v is the

number of symbols lexicographically lower than a in X, then CX(a) = v+ 1. Let

OccX(a, i) be the number of occurrences of the symbol a in BX[1, i]1. We note

that CX and OccX include counts for the sentinel symbol, $.

CX(a) for the example string X is:

a $ A C G T

CX(a) 1 2 5 5 6

OccX(a, i) for X is:

a $ A C G T

OccX(a, 1) 0 1 0 0 0

OccX(a, 2) 0 1 0 0 1

OccX(a, 3) 1 1 0 0 1

OccX(a, 4) 1 2 0 0 1

OccX(a, 5) 1 3 0 0 1

OccX(a, 6) 1 3 0 1 1

Using CX(a) and OccX(a, 1), Ferragina and Manzini provided an algorithm

to search for a string Q in X. Let S be a string whose suffix array interval is

1These definitions use 1-based coordinates. When implementing these data structures 0-
based coordinates are preferred. To allow this, we modify the definition of CX(a) to equal v
and OccX(a, i) to count over BX[0, i]. The following algorithms work in either case.

29

known to be [l, u]. The interval for the string aS can be calculated from [l, u]

using CX and OccX by the following:

l′ = CX(a) + OccX(a, l − 1) (2.1)

u′ = CX(a) + OccX(a, u)− 1 (2.2)

We encapsulate equations (2.1) and (2.2) in the following algorithm, updateBackward.

Algorithm 1 updateBackward([l, u], a)

l← CX(a) + OccX(a, l − 1)
u← CX(a) + OccX(a, u)− 1
return [l, u]

To search for a string Q, we need to first calculate the interval for the last

symbol in Q then use equations (2.1) and (2.2) to iteratively calculate the interval

for the remainder of Q. The initial interval for a single symbol a is simply

[CX(a),CX(a+1)−1] where a+1 denotes the next largest symbol in the alphabet1.

The backwardsSearch algorithm presents the searching procedure in detail. If

backwardsSearch returns an interval where l > u, Q is not contained in X

otherwise SAX[i] is the position in X of each occurrence of Q for l ≤ i ≤ u.

Algorithm 2 backwardsSearch(Q) - find the interval in SAX for the pattern Q

i← |Q|
l← CX(Q[i])
u← CX(Q[i] + 1)− 1
i← i− 1
while l ≤ u & i ≥ 1 do

[l, u]← updateBackward([l, u], Q[i])
i← i− 1

return [l, u]

The backwardsSearch algorithm requires updating the suffix array inter-

val |Q| times. As each update is a constant-time operation, the complexity of

backwardsSearch is O(|Q|) given that the FM-index is already constructed.

1If a is the largest symbol in Σ, then CX(a + 1) simply returns n + 1 where n is the highest
index in SAX

30

2.4.1 The Generalized Suffix Array

We can easily expand the definition of a suffix array to include sets of strings. Let

T be an indexed set of strings and Ti be element T[i]. We define SAT[i] = (j, k)

iff Tj[k, |Tj|] is the i-th lowest suffix in T. In the generalized suffix array, unlike

the suffix array of a single string, two suffixes can be lexicographically equal. We

break ties in this case by comparing the indices of the strings. In other words

we treat each string in T as if it was terminated by a unique sentinel character

$i where $i < $j when i < j. We extend the definition of the Burrows-Wheeler

transform to collections of strings as follows. Let SAT[i] = (j, k) then:

BT[i] =

{
Tj[k − 1] if k > 1

$ if k = 1

Like the BWT of a single string, BT is a permutation of the symbols in T;

therefore the definitions of the auxiliary data structures for the FM-index, CT(a)

and OccT(a, i), do not change.

2.5 Direct Construction of the String Graph

In this section we describe the first results of this work, string graph construction

algorithms based on the FM-index of a set of reads. We will show that by using

the FM-index of R the set of overlaps can be computed in O(N + C) time for

error-free reads where C is the total number of overlaps found. We then provide

an algorithm which detects only the overlaps for irreducible edges - removing the

need for the transitive reduction algorithm and allowing the direct construction

of the string graph.

2.5.1 Building an FM-index from a set of sequence reads

To build the FM-index of R, we can first compute the generalized suffix array

of R. We could do this by creating a string which is the concatenation of all

members of R, S = R1R2...Rm and then use one of the well-known efficient suffix

array construction algorithms to compute SAS [Puglisi et al., 2007]. We have

adopted a different strategy and have modified the induced-copying suffix array

31

construction algorithm [Nong et al., 2009] to handle an indexed set of strings R

where each suffix array entry is a pair (j, k) as described in section 2.4.1. This

suffix array construction algorithm is similar to the Ko-Aluru algorithm [2005].

A set of substrings of the text (termed LMS substrings) is sorted from which

the ordering of all the suffixes in the text is induced. Our algorithm differs from

the Nong-Zhang-Chan algorithm as we directly sort the LMS substrings using

multikey quicksort [Bentley and Sedgewick, 1997] instead of sorting them recur-

sively. This method of construction is fast in practice as typically only 30− 40%

of the substrings must be directly sorted. Once SAR has been constructed, the

Burrows-Wheeler transform of R, and hence the FM-Index is easily computed as

described above. We also compute the FM-index for the set of reversed reads, de-

noted R′, which is necessary to compute overlaps between reverse complemented

reads. We also output the lexicographic index of R, which is a permutation of the

indices {1, 2, ..., |R|} of R sorted by the lexicographic order of the strings. This

can be found directly from SAR and is used to determine the identities of the

reads in R from the suffix array interval positions once an overlap has been found.

Alternatively, when all reads in R are short (≈ 100bp) then the Bauer-Cox-

Rosone algorithm [Bauer et al., 2011] can be used to construct BR. This topic

will be revisited in 3.2.1 when discussing our software implementation.

2.5.2 Overlap detection using the FM-Index

We now consider the problem of computing the set of τmin overlaps between reads

in R. Consider two reads X and Y . If a suffix of X matches a prefix of Y a SP -

edge will be created in the initial overlap graph. We will describe a procedure

to detect overlaps of this type from the FM-index of R. Let X be an arbitrary

read in R. If we perform the backwardsSearch procedure on the string X, after

k steps we have calculated the interval [l, u] for the suffix of length k of X. The

reads indicated by the suffix array entries in [l, u] therefore have a substring that

matches a suffix of X. Our task is to determine which of these substrings are

prefixes of the reads. Recall that if a given element in the suffix array, SAR[i], is

a prefix of a string then SAR[i] = (j, 1) for some j and BR[i] = $ by definition.

Therefore, if we know the suffix array interval for a string Q, the interval for the

32

strings beginning with Q can be determined by calculating the interval for the

string $Q using equations (2.1) and (2.2). This interval, denoted [l$, u$], indicates

that the reads with prefix Q are the l$-th to u$-th lexicographically lowest strings

in R. We can therefore recover the indices in R of the reads overlapping X using

lexicographic index of R. The algorithm is presented below in findOverlaps.

Algorithm 3 findOverlaps(X, τ) - determine the reads in R that overlap X by
at least τ symbols

i← |X|
l← CR(X[i])
u← CR(X[i] + 1)− 1
i← i− 1
while l ≤ u & i ≥ 1 do

if |X| − i+ 1 ≥ τ then
[l$, u$]← updateBackwards([l, u], $)
if l$ ≤ u$ then
outputOverlaps(X, [l$, u$])

[l, u]← updateBackward([l, u], X[i])
i← i− 1

if l ≤ u then
outputContained(X, [l, u])

The findOverlaps algorithm is similar to the backwards search procedure

presented in section 2.4. It begins by initializing [l, u] to the interval containing

all suffixes that begin with the last symbol of X. The interval [l, u] is then

iteratively updated for longer suffixes of X. When the length of the suffix is at

least the minimum overlap size, τ , we determine the interval for the reads that

have a prefix matching the suffix of X and output an overlap record for each entry

(using the subroutine outputOverlaps). When the update loop terminates, [l, u]

holds the interval corresponding to the full length of X. The outputContained

procedure writes a containment record for X if X is contained by any read in

[l, u]. The overlaps detected by findOverlaps correspond to SP -edges. We

must also calculate the overlaps for SS-edges and PP -edges, which arise from

overlapping reads originating from opposite strands. To calculate SS-edges we

use findOverlaps on the complement of X (not reversed) and the FM-index of

R′. Similarly, to calculate PP -edges we use findOverlaps on X (the reverse

33

complement of X) and the FM-index of R.

In rare cases, multiple valid overlaps may occur between a pair of reads. In this

case the interval set returned by findOverlaps will contain intersecting intervals.

To account for this, we sort the intervals and only keep the interval representing

a maximal overlap when two adjacent intervals intersect.

The overlap records created by outputOverlaps are constructed in constant

time as they only require a lookup in the lexicographic index of R. Let ci be

the number of overlaps for read Ri. The findOverlaps algorithm makes at most

|Ri| calls to updateBackwards and a total of ci iterations in outputOverlaps

for a total complexity of O(|Ri| + ci). For the entire set R, the complexity is

O(N +C) where C =

|R|∑
i=1

ci. Note that the majority of these edges are transitive

and subsequently removed. We can therefore improve this algorithm by only

outputting the set of irreducible edges, allowing the direct construction of the

string graph. We address this in the next section.

2.5.3 Detecting irreducible overlaps

To directly construct the string graph, we must only output irreducible edges.

Recall from section 2.3.3 that the labels of the irreducible edges for a given read

are prefixes of the labels of transitive edges. We use this fact to differentiate be-

tween irreducible and transitive edges during the overlap computation. Consider

a read X and the set of reads that overlap a suffix of X, O. We could devise an

algorithm to find the subset consisting only of irreducible edges by calculating the

edge-labels of all members of O and filtering out the members whose label is the

extension of the label of some other read. This would require iterating over all

members of O which can be quite large for repetitive reads or high-depth data.

We will now show that the labels of the irreducible edges can be constructed

directly from the suffix array intervals using the FM-index.

Consider a substring S that occurs in R and its suffix array interval [l, u].

Let a left extension of S be a string of length |S| + 1 of the form aS. We

can use BR[l, u] to determine the set of left extensions of S. Let B be the set

of symbols that appear in the substring BR[l, u]. The left extensions of S are

34

the strings aS such that a ∈ B. Note that we do not have to iterate over the

range BR[l, u] to determine B. Since OccR(a, i) is defined to be the number

of times symbol a occurs in BR[1, i] we can count the number of occurrences

of a in BR[l, u] (and hence aS in R) in constant time by taking the difference

OccR(a, u) − OccR(a, l − 1). If the $ symbol occurs in BR[l, u] we say that S

is left terminal, in other words one of the elements of R has S as a prefix. We

similarly define a right extension of S as a string of length |S|+ 1 of the form Sa.

While we cannot build the right extensions of S directly from the FM-index, the

right extensions of S are equivalent to left extensions of S ′ (the reverse of S) in

R′. Let S be right terminal if $ exists in BR’[l
′, u′], in other words S is a suffix of

some string in R.

The procedure to find all the irreducible edges of a read X and construct their

labels is to find all the intervals containing the prefixes of reads that overlap a suf-

fix of X, then iteratively extend them rightwards until a right-terminal extension

is found. The terminated read forms an irreducible edge with X and the label of

the edge is the sequence of bases that were used during the right-extension. All

non-terminated strings with the same sequence of extensions are transitive and

therefore not considered further.

The algorithm requires searching the FM-index in two directions, first back-

wards to determine the intervals of overlapping prefixes and then forwards to

extend those prefixes and build the irreducible labels. Naively this would re-

quire first determining the intervals [l, u] for each matching prefix, P , and then

reversing the prefix and performing a backwards search on the FM-index of R′

to find the interval [l′, u′] for P ′. The intervals [l′, u′] would then be used in the

extension stage to determine the labels of the irreducible edges. We can do better

however by noting that the interval [l′, u′] can be calculated directly during the

backwards search without using the FM-index of R′. We define OccLTR(a, i)

to be the number of symbols that are lexicographically lower than a in BR[1, i].

Let S = X[i, |X|] be a suffix of X and [li, ui] its suffix array interval. Suppose

we know the interval [l′i, u
′
i] for S ′ in R′. Let a = X[i − 1]. The interval for

S ′a = [l′i−1, u
′
i−1] is therefore:

l′i−1 = l′i + (OccLTR(a, ui)−OccLTR(a, li − 1)) (2.3)

35

u′i−1 = l′i−1 + (OccR(a, ui)−OccR(a, li − 1)− 1) (2.4)

The interval for X ′[1] is identical to that of X[|X|] since BR and BR’ are both

permutations of symbols in R therefore CR = CR’. We can therefore initialize

the interval [l′, u′] to the same initial value of [l, u] and perform a forward search

of X ′ simultaneously while performing a backward search of X using only the

FM-index of R. This does not require any additional storage as the OccLTR

array can easily be computed from OccR by summing the values for symbols less

than a. This procedure is similar to the 2way-BWT search recently proposed by

Lam et al. (2009) . The updateFwdBwd algorithm implements equations (2.3)

and (2.4) along with updateBackward to calculate the pair of intervals. The F

parameter to updateFwdBwd indicates the FM-index used - that of R or R′.

Algorithm 4 updateFwdBwd([l, u, l′, u′], a, F)

l′ ← l′ + (OccLTF(a, u)−OccLTF(a, l − 1))
u′ ← l′ + (OccF(a, u)−OccF(a, l − 1)− 1)
[l, u]← updateBackwards(l, u, a,F)
return [l, u, l′, u′]

We now give the full algorithm for detecting the irreducible overlaps for a

read X. The algorithm is performed in two stages, first a backwards search on

X is performed to collect the set of interval pairs, denoted I, for prefixes that

match a suffix of X. This algorithm is presented in findIntervals below and is

conceptually similar to findOverlaps.

The interval set found by findIntervals is processed by extractIrreducible

to find the intervals corresponding to the irreducible edges of X. This algorithm

has two parts. First, the set of intervals is tested to see if some read in the interval

set is right terminal. If so, the intervals corresponding to the right terminal reads

form irreducible edges with X and are returned. If no interval has terminated,

we create a subset of intervals for each right extension of I and recursively call

extractIrreducible on each subset.

The algorithm above assumes that R does not have any contained reads. If this

is not the case, a slight modification must be made. If the set of reads overlapping

X includes a read that is a proper substring of some other read it is possible that

36

Algorithm 5 findIntervals(X, τ)

I← ∅
i← |X|
l← C(X[i])
u← C(X[i] + 1)− 1
[l′, u′]← [l, u]
i← i− 1
while l ≤ u & i ≥ 1 do

if |X| − i+ 1 ≥ τ then
[l$, u$, l

′
$, u
′
$]← updateFwdBwd([l, u, l′, u′], $,R)

if l$ ≤ u$ then
I← I ∪ [l$, u$, l

′
$, u
′
$]

[l, u, l′, u′]← updateFwdBwd([l, u, l′, u′], X[i],R)
i← i− 1

return I

Algorithm 6 extractIrreducible(I)

if I = ∅ then
return ∅

L← ∅
for all [l, u, l′, u′] ∈ I do

[l′$, u
′
$, l$, u$]← updateFwdBwd([l′, u′, l, u], $,R′)

if l$ ≤ u$ then
L← L ∪ [l$, u$]

if L 6= ∅ then
return L

for all a ∈ Σ do
Ia ← ∅
for all [l, u, l′, u′] ∈ I do

[l′a, u
′
a, la, ua]← updateFwdBwd([l′, u′, l, u], a,R′)

if la ≤ ua then
Ia ← Ia ∪ [la, ua, l

′
a, u
′
a]

L← L ∪ extractIrreducible(Ia)
return L

37

the first right terminal extension found is not that of an irreducible edge but of

the contained read. It is straightforward to handle this case by observing that

such a read will have an overlap that is strictly shorter than that of the irreducible

edge. In other words, the only acceptable right terminal extension is to the reads

in I that have the longest overlap with X.

We can similarly modify extractIrreducible to handle overlaps for reads

from opposite strands. To do this, we use findIntervals to determine the

intervals for overlaps for the same strand as X and overlaps from the opposite

strand of X (using the complement of X as in the previous section). When

extending an interval that was found by the complement of X, we extend it by

the complement of a. In other words if we are extending same-strand intervals

by A, we extend opposite strand intervals by T and so on.

We now offer a sketch of the complexity of the irreducible overlap algorithm

in the case where all edges in the graph are part of the walk spelling the genome

sequence G. Let Li be the label of irreducible edge i. During the construc-

tion of Li at most ki intervals must be updated, corresponding to the number

of reads that have an edge-label containing Li. The sum over all irreducible

edges, E =
∑
i

(|Li|ki), is the total number of interval updates performed by

extractIrreducible. Note that each read in R is represented by a path through

the string graph. The total number of times edge i is used in the set of paths

spelling all the reads in R is ki and the amount of sequence in R contributed

by edge i is |Li|ki. This implies E can be no larger than N , the total amount

of sequence in R, and extractIrreducible is O(N). As findIntervals is also

O(N), the entire irreducible overlap detection algorithm is O(N).

2.5.4 Results

The algorithms described in this chapter form the basis of the assembler I de-

veloped, SGA1. As a proof of concept, I profiled these algorithms on simulated

error-free sequence reads. The assembly is broken into three stages: index, over-

lap and assemble. The index stage constructs the FM-index for a set of sequence

reads, the overlap stage computes the set of overlaps between the reads and

1String Graph Assembler

38

the assemble stage loads the graph, performs transitive reduction if necessary,

then compacts unambiguous paths in the graph and writes them out as a set

of contigs. I performed two sets of simulations. In all simulations the faster

Bauer-Cox-Rosone algorithm was used to calculate the FM-index. In both sets

of simulations, I compared the exhaustive overlap algorithm (which constructs

the set of all overlaps) and the direct construction algorithm (which only outputs

overlaps for irreducible edges). First, I simulated E. coli reads with average se-

quence depth from 5X to 100X to investigate the computational complexity of

the overlap algorithms as a function of sequence depth. After constructing the

index for each data set, I ran the overlap step in exhaustive and direct mode with

fixed τ = 27. The running times of these simulations are shown in figure 2.2. As

expected, the direct overlap algorithm scales linearly with sequence depth. The

exhaustive overlap algorithm exhibits the expected above-linear scaling as the

number of overlaps for a given read grows quadratically with sequence depth.

20 40 60 80 100

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

Sequence Depth

C
P

U
 T

im
e

(s
)

Overlap (exhaustive)
Overlap (direct)

Figure 2.2: The running time of the direct and exhaustive overlap algorithms for sim-

ulated E. coli data with sequence depth from 5X to 100X.

39

I also simulated data from human chromosomes 22, 15, 7 and 2 to assess how

the algorithms scale with the size of the genome. I pre-processed the chromo-

some sequences to remove sequence gaps then generated 100bp error-free reads

randomly at an average coverage of 20X for each chromosome. Again I compared

the direct construction algorithm to the exhaustive construction algorithm. The

overlap length was set to 45. The results of these simulations are summarized in

table 2.1.

chr 22 chr 15 chr 7 chr 2 ratio

Chr. size (bp) 34.9M 81.7M 155.4M 238.2M 6.8

Number of reads 7.0M 16.3M 31.1M 47.6M 6.8

Duplicated reads 684k 1,663k 3,103k 4,709k 6.9

Duplicated % 9.8% 10.2% 10.0% 9.9% -

Transitive edges 70.0M 176.4M 364.2M 583.8M 8.3

Irreducible edges 7.2M 17.2M 36.2M 57.4M 8.0

Assembly N50 (bp) 3.0k 4.1k 4.3k 4.8k -

Longest contig (bp) 41.4k 51.9k 63.2k 57.9k -

Index time 1,486s 3,652s 7,284s 11,443s 7.7

Overlap time (e) 3,595s 9,393s 27,736s 30,176s 8.4

Overlap time (d) 2,204s 7,885s 11,516s 17,596s 8.0

Assemble time (e) 1,399s 4,795s 15,287s 33,140s 23.7

Assemble time (d) 280s 694s 1,518s 2,432s 8.7

Index memory 1.0GB 2.2GB 4.2GB 6.5GB 6.5

Overlap mem. (e) 0.5GB 1.2GB 2.3GB 3.5GB 7.0

Overlap mem. (d) 0.5GB 1.2GB 2.3GB 3.5GB 7.0

Assemble mem. (e) 8.9GB 24.5GB 27.2GB 99.7GB 11.2

Assemble mem. (d) 2.1GB 5.0GB 10.0GB 15.7GB 7.5

Table 2.1: Simulation results for human chromosomes 22, 15, 7 and 2. For the overlap

and assemble rows, (e) and (d) indicate the exhaustive and direct algorithms, respec-

tively. The last column is the ratio between chromosome 2 and 22.

For all chromosomes the direct overlap computation algorithm was faster.

The direct overlap calculation step required almost half the run time when com-

40

pared to the exhaustive overlap calculation. When the full overlap graph was

constructed (exhaustive case) the assemble step required performing Myers’ tran-

sitive reduction algorithm on the graph. This step was over 23 times longer for

chromosome 2 than chromosome 22, as the chromosome 22 graph contained over

500 million transitive edges that needed to be removed. The vast number of tran-

sitive edges in this case caused the chromosome 2 graph to require nearly 100GB

of memory. The assemble step for the direct case was over 13 times faster on

chromosome 2 as the initial graph was much smaller and transitive reduction did

not need to be performed. These results verify the efficiency of my direct string

graph construction algorithm and the benefits when compared to building the

full overlap graph first.

The memory bottleneck in these assemblies is loading the string graph into

memory during the assemble step. This bottleneck will be addressed in the next

chapter, where I describe an algorithm to find and compress unipaths in the graph

without the need to load the entire string graph in memory.

2.6 Representing a de Bruijn Graph using the

FM-Index

Recall from section 2.3.2 that the set of distinct k-mers of R defines the vertices

of its de Bruijn graph. Likewise, the set of distinct ρ-mers defines the edges of the

graph. This observation allows us to use the FM-index as a representation of the

de Bruijn graph of R. Here we describe queries to compute the local structure of

the graph around a single vertex. To test whether a given k-mer is a vertex in the

graph, we can use algorithm isDBGVertex. This performs a simple backwards

search to check whether the k-mer, or its reverse-complement, has a non-empty

suffix array interval.

41

Algorithm 7 isDBGVertex(K, R)

[l1, u1]← backwardsSearch(K,R)

[l2, u2]← backwardsSearch(K,R)

if l1 ≤ u1 or l2 ≤ u2 then

return true

else

return false

We can also use the FM-Index to get the neighbors of a particular vertex

in the graph. For a k-mer K, there are 8 possible neighbors. To find which

are actually present in R, we can simply directly query for the 16 possible ρ-mers

describing these neighbors (including their reverse complements). Pseudocode for

this algorithm is shown in getDBGNeighborsSingleIndex. This requires 16(k+1)

interval updates.

If the FM-index of both R and R′ is available, we can implement a faster

procedure based on performing extension queries like those described in our string

graph construction algorithm in section 2.5.3. We start by calculating the interval

pair for K, then using OccR to calculate the possible left-extensions of K. This

query provides the ρ-mers of the form xK which define prefix neighbors of K.

To calculate suffix neighbors of K (of the form Kx), we can use right-extension

queries. These queries must also be performed with the reverse complement of

K, to cover both strands. In total, this procedure requires 4K interval updates

plus 8 accesses of the occurrence array. As we need the FM-index of R and R′ to

do the right-extension queries, the memory usage is doubled when compared to

getDBGNeighborsSingleIndex.

The description within this section uses Pevzner’s ρ-mer based formulation

of the de Bruijn graph. In our implementation of these algorithms we use a

slight modification. Instead of querying for ρ-mers, we directly query for the

neighboring k-mers (of the form xK[1, k − 1] and K[2, k]x for x ∈ {a, c, g, t}).
This is subtly different as connected vertices do not necessarily need to share a

ρ-mer - they only need to overlap by k − 1 bases.

42

Algorithm 8 getDBGNeighborsSingleIndex(K, R)

k ← |K|
for all Q ∈ {aK, cK, gK, tK} do

[l, u]← backwardsSearch(Q,R)
[l′, u′]← backwardsSearch(Q,R)
if l ≤ u or l′ ≤ u′ then

I← I ∪ {Q[1, k]}
for all Q ∈ {Ka,Kc,Kg,Kt} do

[l, u]← backwardsSearch(Q,R)
[l′, u′]← backwardsSearch(Q,R)
if l ≤ u or l′ ≤ u′ then

I← I ∪ {Q[2, k + 1]}
return I

43

