
Chapter 3

The SGA Assembler

3.1 Introduction

In the previous chapter, I described an algorithm to construct an assembly string

graph Myers [2005] for a set of error-free sequence reads using the FM-index. In

this chapter, I expand upon the algorithms to build a fully-functional sequence

assembly program. I will describe algorithms to correct base calling errors, remove

duplicate and contained sequences and construct contigs and scaffolds for real

sequencing data. These algorithms are implemented in my software called SGA

(String Graph Assembler)1. SGA is implemented as a modular pipeline, which

allows it to be easily extended as improved algorithms are developed or sequencing

technology changes.

3.1.1 Publication Note

The work described in this chapter was previously published in [Simpson and

Durbin, 2012]. Sections 3.2.7, 3.3.1 and 3.3.5 describe currently unpublished

results. The work described is the sole work of the author, under the supervision

of his PhD supervisor, Richard Durbin.

1Source code available at www.github.com/jts/sga
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3.1.2 Algorithm Overview

The SGA algorithm is based on performing queries over an FM-index constructed

from a set of sequence reads. The SGA pipeline begins by preprocessing the

sequence reads to filter or trim reads with multiple low-quality or ambiguous

base calls. The FM-index is constructed from the filtered set of reads and base-

calling substitution errors are detected and corrected using k-mer frequencies.

The corrected reads are re-indexed then duplicated and contained sequences are

removed, remaining low-quality sequences are filtered out and a string graph is

built. Contigs are assembled from the string graph and constructed into scaffolds

if paired end or mate pair data is available. Figure 3.1 depicts the flow of data

through the SGA pipeline. I discuss the major components of SGA below.
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Figure 3.1: Schematic of the flow of data through SGA.
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3.2 SGA Algorithms

3.2.1 Construction of the FM-index for large read sets

The algorithm begins with the construction of the FM-index for the complete set

of reads. In Chapter 2, I described a modified version of the Nong-Zhang-Chan

algorithm [Nong et al., 2009]. This algorithm has the drawback that to compute

the Burrows-Wheeler transform of a set of reads, R, it must first construct the

full suffix array for a read set. The full suffix array requires N log(N) bits of

memory, where N is the total number of bases in the read set. For a human

genome sequenced to 30X coverage, this would require over 400GB of memory.

As using this amount of memory during index construction would eliminate any

benefit of using a compressed data structure for assembly, I have taken a different

approach. I have implemented a distributed construction algorithm that builds

an FM-index for subsets of R, R1, R2,..,Rm. I then iteratively merge pairs of

the intermediate indices together using a BWT merging algorithm [Ferragina

et al., 2010] until a single index of the entire data set is obtained. As the space

occupancy of the FM-index is typically less than an order of magnitude smaller

than that of a suffix array, this indexing strategy allows us to efficiently build the

FM-index for very large sequence collections. This construction strategy can be

easily parallelized as the construction of the FM-index for each read subset, and

most merging operations, can be computed independently.

Recently Bauer, Cox and Rosone designed an algorithm specifically tailored to

the problem of computing the BWT for a very large collection of short (≈ 100bp)

sequence reads [Bauer et al., 2011]. Their algorithm directly computes the BWT

of a read set without the need to first construct a suffix array. Their algorithm

has two variants. Let n be the number of reads and l be the read length. The

first variant, named BCR, uses O(n log(nl)) bits of working space, and O(lsort(n))

time, where sort(n) is the time required to sort n integers. The second variant,

BCRext, uses external memory (disk storage) for most data structures. It requires

O(ln) time with constant memory usage and overall I/O volume O(l2n). Both

algorithms work by progressively building partial BWTs, starting from the last

base of each read. At each iteration j, the position to insert the next base of
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each read into the partial BWT can be calculated from the previous iteration,

j − 1. In both variants of the algorithm the partial BWTs are stored on disk to

save memory. As BCR and BCRext use disk-based storage to store intermediate

files, their performance is dependent on the I/O and seek times of the underlying

harware1. For this reason, I implemented a variant of BCR within SGA that uses

in-memory storage of the partial BWT files. I compare the performance of the

indexing algorithms in section 3.3.1. All algorithms can be used by SGA - the

Nong-Zhang-Chan and in-memory BCR algorithms are natively implemented in

SGA. BCR and BCRext are available by running the authors’ reference implemen-

tation (BEETL2) then running a script to convert the output into SGA’s BWT

file format.

3.2.2 k-mer based error correction algorithm

Real sequencing data contains base calling errors. SGA’s error corrector is cur-

rently designed to handle substitution errors, which are the dominant error mode

in the Illumina sequencing platform [Bentley et al., 2008]. I have implemented two

error correction methods. The first is a k-mer frequency-based corrector, which

has been successfully used in other sequence assemblers [Kelley et al., 2010; Li

et al., 2010c; Pevzner et al., 2001]. The second algorithm is based on finding

inexact overlaps between sequence reads. In my tests the k-mer based corrector

is faster than the overlap-based corrector and is therefore the default method of

correction using SGA. Both correction methods have an option to use per-base

quality scores of the read being corrected to vary the coverage threshold required

to support a base call.

The primary error correction algorithm in SGA is based on k -mer frequencies.

Assuming base-calling errors are a random process that occur independently, k -

mers covering a incorrectly-called base in a read will occur in the entire data set

with low frequency (typically k -mers covering an error will form unique strings).

This is illustrated in figure 3.2, which plots a histogram of k-mer frequencies for

simulated error-free data and simulated data with 1% error rate. For both data

1The authors of BCRext found that Solid State Drives offered the fastest indexing perfor-
mance

2www.github.com/BEETL/BEETL
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sets, 30X coverage of 100bp reads from the E. coli genome was generated. In the

perfect data, there are almost no k-mers in the read set that are seen less than

5 times. In contrast, for the 1% error rate data, there is a large proportion of

k-mers are low frequency (<5 occurrences). These are k-mers that are very likely

to contain sequencing errors. We can therefore use k-mer occurrence counts to

distinguish between correct and erroneous k-mer strings.
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Figure 3.2: k-mer occurrence histogram for simulated perfect data (left) and simulated
data with 1% uniform base calling errors (right). The y-axis records the number of
times a k-mer with frequency x occurs in samples of the data set. For example, there
are 57,059 k-mers seen 20 times in the perfect data set. The histogram was calculated
by sampling 10,000 random reads.

Our correction algorithm follows from other k -mer based correctors [Kelley

et al., 2010; Li et al., 2010c; Pevzner et al., 2001] in that it attempts to identify

positions in the read that are incorrect, then searches for a suitable correction.

The algorithm scans each read left-to-right to identify bases that are not present

in a k -mer of frequency at least c. We iterate over the potentially incorrect bases

and change the base in the left-most k -mer covering the position to the 3 other

possibilities. If exactly one of the possibilities yields a k -mer with frequency at

least c, the correction is made. If no correction can be found using the left-

most covering k -mer, the right-most covering k -mer is tested. If this test also

fails the procedure terminates and returns the original read sequence. If a set
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of corrections is found that makes all bases in the read trusted (frequency ≥ c),

then the procedure terminates and returns the modified sequence.

The minimum coverage parameter c is conservatively chosen to avoid collaps-

ing SNPs (if the genome is diploid) or distinct copies of a repeat. This parameter

can either be manually provided or automatically selected by SGA by finding the

trough in the k-mer frequency histogram.

Unlike previous k-mer based error correctors, the k-mer frequencies are not

stored in a lookup or hash-table but rather directly calculated from the FM-

index. Each k-mer frequency lookup in the FM-index only requires O(k) time

when using the algorithm countOccurrences.

Algorithm 9 countOccurrences(R, Q) - count the number of times Q and its

reverse complement occurs in R

c← 0

[l, u]← backwardsSearch(R, Q)

if l ≤ u then

c← u− l + 1

[l, u]← backwardsSearch(R, Q)

if l ≤ u then

c← c+ u− l + 1

return c

In addition to being computationally efficient, this has the advantage of using

comparatively little memory and allowing greater flexibility in the parameter

choices as the FM-index can support any value of k, unlike a hash table which

must be reconstructed for each choice of k.

3.2.3 Overlap based error correction

The second error correction algorithm in SGA is based on finding inexact overlaps

between reads. In the next section, I describe the algorithm to compute overlaps.

In the following section, I describe how these overlaps are used to correct reads.
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3.2.3.1 Finding Inexact Overlaps with the FM-Index

The overlap algorithm from 2.5.2 can be extended to allow mismatches in the

overlaps. Let ε be the maximum allowed mismatch rate between two overlapping

strings (for example ε = 0.05 would allow 1 mismatch in a 20bp overlap). At each

stage of the overlap extension, we can branch to each possible base A,C,G, T .

If the base that we extend to is different from the current position in X, we

increment a mismatch counter d. If the value of d exceeds the maximum number

of mismatches for an overlap of length |X|−1 the current search path is terminated

as a valid overlap cannot possibly be found. When an overlap of length at least τ is

found and the mismatch rate is at most ε we output overlaps as in findOverlaps.

We then recursively branch the search, updating the mismatch counter as needed.

The pseudocode for this algorithm is presented below in findOverlapsInexact

and findOverlapsInexactExtend. While this matching algorithm will return

the complete set of τ, ε-overlaps, it is inefficient. This naive search will branch

excessively at the beginning of the search (when i is close to |X|) as the overlap

lengths are not large enough to exclude strings that are matched by chance.

Once the overlap length becomes long enough (i.e. for |X| − i ≈ 16) then most

branches will not form valid matches (and hence have empty suffix array intervals)

and therefore stop the recursion.

Algorithm 10 findOverlapsInexact(X, R, τ , ε) - find all reads overlapping X

by at least τ bases with error rate at most ε

i← |X|
for all b ∈ [A,C,G, T ] do

l← CR(b)

u← CR(b+ 1)− 1

if X[i] 6= b then

findOverlapsInexactExtend(X, i, 1, [l, u],R, τ, ε)

else

findOverlapsInexactExtend(X, i, 0, [l, u],R, τ, ε)
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Algorithm 11 findOverlapsInexactExtend(X, i, d, [l, u], R, τ , ε) - perform one

round of extension of the inexact search. The current suffix array interval is

given by l and u which corresponds to a string from the end of X to base i with

d mismatches.
// check if the number of mismatches exceeds the maximum

// possible for a valid overlap

m← b(|X| − 1) ∗ εc
if d > m then

return

// check if overlaps should be output

o← |X| − i+ 1

r ← d/o

if o ≥ τ and r ≤ ε then

[l$, u$]← updateBackwards(R, [l, u], $)

if l$ ≤ u$ then

outputOverlaps(X, [l$, u$])

// perform branched extension

if i > 1 then

i← i− 1

for all b ∈ [A,C,G, T ] do

[l′, u′]← updateBackward(R, [l, u], b,R)

if l′ ≤ u′ then

if X[i] 6= b then

findOverlapsInexactExtend(X, i, d+ 1, [l′, u′],R, τ, ε)

else

findOverlapsInexactExtend(X, i, d, [l′, u′],R, τ, ε)

We can design a more efficient algorithm using the seed-and-extend method

of sequence alignment. This method is based on the principle that if we want to

align a string X to a text T with up to d mismatches, we can create d+ 1 seeds

over the sequence of X, one of which must be matched exactly to T . The seed

matches can then be extended allowing for mismatches. We have adapted this

method of alignment to finding inexact overlaps with the FM-index. We must
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take care when choosing the seed length to ensure that at least one seed matches

exactly between any two reads that have a τ, ε-overlap. Let dτ = bετc be the

maximum number of differences between two reads that overlap by the minimum

amount. We define the minimal seed region of the read as rmin = ddτ/εe and

calculate the seed length lseed = brmin/(dτ + 1)c. This value of lseed is small

enough such that for all overlap lengths i ≥ τ we are guaranteed to have biεc+ 1

seeds covering the suffix of X of length i and hence we can find all τ, ε-overlaps.

Once the seed positions of X have been calculated, we can find the suffix ar-

ray intervals for the seeds using an exact match with the FM-index. The seeds can

then be extended with a branching algorithm similar to that of findOverlapsInexact.

We note that in this case, the extensions are not a strict right-to-left search as

in findOverlapsInexact as some seeds start in the middle of the read. We use

the bidirectional search procedure outlined in Chapter 2 to extend the seeds both

left-to-right and right-to-left. See also [Välimäki et al., 2010] for a discussion of

other inexact prefix-suffix matching algorithms.

3.2.3.2 Overlap Based Error Correction Algorithm

Let X be a read in R that we want to correct. We use the seed-and-extend

algorithm presented in the previous section to find all reads in R with a τ, ε-

overlap with X. This set of reads forms a multiple alignment with respect to

X. Let C[i] be a 4 element vector of the counts for each base call in column i

of the multiple alignment. A simple consensus-based correction algorithm would

be to set X[i] to the element of C[i] with the highest value. However, we must

take care to avoid collapsing variation (if the sequenced genome is diploid) or

distinct copies of a repeat. We filter the multiple alignment by excluding reads

that have consistent mismatches with respect to X. If two elements of C[i] have

a count of at least v, we label position i as conflicted. The reads that match X at

all conflicted columns are kept and the remainder excluded; C[i] is re-calculated

from the filtered multiple alignment. We correct X[i] to be the consensus base

indicated by C[i] if there is a single base in C[i] that occurs more than c times.

This condition helps avoid setting X[i] to an incorrect base in the situation that

multiple well-supported bases remain in the multiple alignment. The values of
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v (the conflict threshold) and c (the minimum base call support required) are

command line parameters (the default values are 5 and 3, respectively).

As the number of overlaps for a given read is dependent on sequence depth, the

runtime of the overlap based algorithm is dependent on the depth of sequencing.

The run time of k-mer based algorithm presented in the previous section does

not depend on the sequence depth. For this reason, it tends to be much faster

than the overlap-based algorithm presented here, and therefore the k-mer based

algorithm is the default method of correction used in SGA.

3.2.4 Read filtering

To construct the string graph we require a subset of R consisting of unique reads.

We achieve this by removing contained and duplicated reads. To compute this

subset, we use the FM-index to calculate full-length matches for each read in R.

If a read Ri has a full length match (including reverse complements) to some

other read Rj we keep Ri iff i < j, otherwise Ri is discarded. Once the unique

subset U of R has been calculated, we do not need to re-compute the FM-index

of U from scratch. The BWT of U can be derived from the FM-index of R by

marking the positions in BR that correspond to reads that were discarded and

exporting only the unmarked positions as BU [Sirén, 2009].

Some reads remain uncorrected after error correction. To prevent these se-

quences from impacting the assembly, we remove sequences with unique k-mers.

By default, this filter requires all 27-mers in a read to be seen at least twice.

3.2.5 Read merging and assembly algorithm

After correction and filtering, the vast majority of the remaining reads do not

contain errors. We could directly apply our string graph construction algorithm

(section 2.5.3) to these, however the resulting graph would have a vertex for every

read and therefore require a substantial amount of memory when assembling very

large genomes (as demonstrated in table 2.1). The majority of reads in the initial

graph are simply connected (that is, without branching) to two other reads - one

matching a prefix of the read and one matching a suffix. Such chains of reads,

referred to as unipaths, can be unambiguously merged to reduce the size of the
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graph. We have developed an algorithm to merge unipaths by locally constructing

the assembly graph around each read. For each read, we find the predecessor

and successor vertices in the graph by querying the FM-index for its irreducible

edge set using findIntervals and extractIrreducible from section 2.5.3. If

the read connects to its neighbors without branching, we continue the search

from the neighboring reads. This search stops when a branch in the graph, or no

possible extension, is found. This procedure will discover all non-branching chains

in the graph and allow the chain to be replaced by a single merged sequence. As

the predecessor/successor queries only require the FM-index, not the complete

structure of the graph, this merging step requires comparatively little memory.

Once we have performed this merging step, we build an FM-index for the merged

sequences and use this FM-index to construct the full string graph. We then

perform the standard assembly graph post-processing step of removing tips (see

section 1.2.2.1) from the graph where a vertex only has a connection in one

direction [Chaisson and Pevzner, 2008; Li et al., 2010c; Simpson et al., 2009;

Zerbino and Birney, 2008].

To account for heterozygosity in a diploid genome, we have developed an

algorithm to find and catalog variation described by the structure of the graph,

similar to the “bubble-popping” approaches taken by de Bruijn graph assemblers.

Let v be a vertex in the graph which branches (the prefix or suffix of v has multiple

overlaps). Following each branch, we search outwards from v for a set of walks,

W, which meets the following conditions: 1) all walks terminate at a common

vertex u and 2) no vertex visited in any walk between v and u has an edge to

a vertex that is not present in a walk in W. The first condition ensures that

the walks describe equivalent sequence in G - any assembly of G that visits v

and u must use one of the found walks. The second condition ensures that the

induced subgraph of G described by the walks is self-contained - we can remove

any walk in W without breaking any walk in G \W . Once a set of walks meeting

these conditions has been found, we select one of the walks to remain in the

graph. We align the sequence described by the other walks to the sequence of

the selected walk and, if the sequence similarity is within tolerance (by default

95%) in all cases, the non-selected walks are removed from the graph. We retain

the sequences of the removed walks in a FASTA file to allow the heterozygous
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variation present in the genome to be analyzed after assembly.

3.2.6 Paired end reads/Scaffolding

The final stage of the assembly is to build scaffolds from the contigs using paired-

end or mate-pair data. Similar to other approaches to scaffolding [Pop et al.,

2004], our method is based on constructing a graph of the relationships between

contigs. We begin by re-aligning the paired reads to the contigs using bwa [Li and

Durbin, 2009]. The copy number of each contig in the source genome is estimated

from the number of reads aligned to the contig using Myers’ A-statistic which

approximates the log-odds ratio between the contig being unique and a collapsed

repeat [Myers, 2005]. By default, we classify contigs with an A-statistic ≥ 20

as unique and the remainder as repetitive. We construct a scaffold graph where

each unique contig is a vertex. Contigs linked with read pairs are connected by a

bidirected edge labeled with the estimated gap size separating the contigs. Paths

through this scaffold graph describe layouts of the contigs into scaffolds. The gap

sizes are estimated using the DistanceEst subprogram from ABySS [Simpson

et al., 2009].

Our scaffolder first removes ambiguous or likely erroneous edges from the

graph. For each contig in the graph with more than one edge in a particular

direction, we test whether the linked contigs have an ordering that is consistent

with each pairwise distance estimate. An ordering of contigs C1, C2, ..., Cn is

called consistent if no pair of contigs has an overlap (implied by their positions

in the layout) greater than α bases (α = 400 by default). If the contigs cannot

be consistently ordered, we break the graph by removing all edges of the affected

contigs.

Once the graph has been cleaned of inconsistent edges, we find and isolate any

directed cycles then compute the connected components of the graph. For each

connected component, we find the terminal vertices of the component (vertices

that have an edge in only one direction) and find all paths between each pair of

terminal vertices. The path containing the largest amount of sequence is retained

as the primary layout of the scaffold. The SGA scaffolder supports multiple

libraries of different sizes.
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The scaffolds are represented as an alternating list of contigs and gaps, C1, g1, C2, g2, ..., Cn.

We attempt to fill in the gaps through a three-stage process. Let Ci and Cj be

two adjacent contigs separated by a distance of gi. As Ci and Cj are vertices in

the string graph we previously constructed, we search the string graph for a walk

connecting these vertices with the constraint that the total walk length can be

no larger than |Ci| + |Cj| + gi + θi where θi allows for the inexact distance esti-

mate (by default 3 times the standard error of the distance estimate). If a single

walk is found to meet this constraint, we replace Ci, gi, Cj in the scaffold by the

walk string. If no walk can be found connecting the vertices and gi is negative

(the contigs are predicted to overlap), we align the ends of Ci and Cj. If the

predicted overlap is confirmed to exist, the sequences of Ci and Cj are merged. If

the gap cannot be resolved, we simply fill the sequence between Ci and Cj with

gi ambiguity (“N”) symbols.

As described in section 2.6, we can use the FM-index as a representation of

the de Bruijn graph for all k. In the latest version of SGA, we can use this

feature to optionally fill in scaffold gaps by finding walks through a de Bruijn

graph. Let Ci, gi, Cj be two contigs in a scaffold separated by a gap. Starting at

k = 91, we use the last k-mer of Ci to seed a breadth-first search through the

91-mer de Bruijn graph. If a path through the graph ending at the first k-mer

of Cj can be found, and the length of the path is within 100bp of the estimated

size of the gap, the gap is replaced by the string corresponding to the path. To

avoid searching very dense regions of the graph, the breadth-first search aborts

if more than 2000 vertices have been visited, if the search branches more than 50

times or if more than 20 branches are being simultaneously following. If the gap

cannot be successfully filled, k is decreased by 10 and the procedure restarts. This

continues until the gap is filled or k is less than 51. The starting and stopping k

are parameters to the program. There also exists an option to ignore k-mers that

are seen less than t times in the reads (t = 3 by default). This method is typically

able to fill 10-20% of the scaffold gaps, leading to slightly increased contig N50.

This de Bruijn graph gap-filling procedure is a standalone component of SGA -

it can be used on scaffolds from any assembler.
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3.2.7 Implementation Details

3.2.7.1 FM-Index Implementation

SGA relies on pattern searches over the FM-index for both error correction and

the construction of the string graph. While the FM-index provides optimal O(|P |)
queries for a pattern P , the implementation of the data structure has a signifi-

cant impact on the performance of these queries. In this section I describe the

implementation of the FM-index within SGA.

As described in section 2.4, the FM-index of a string X over an alphabet Σ

consists of three data structures:

• BX - the Burrows-Wheeler transform of X

• OccX(a, i) - the number of occurrences of the symbol a in BX[1, i].

• CX(a) - the number of symbols in X that are lexicographically lower than

the symbol a

CX only requires storing |Σ| integers. If we explicitly stored OccX(a, i) for all

i ∈ {1, |X|} the amount of memory required would be |X||Σ| log2(|X|). In our

case with an alphabet of size 5, |Σ| log2(|X|) ≈ 40 bytes. This huge memory cost

would offset any benefit of using the FM-index. A common method to reduce

the memory usage is to only store OccX(a, i) for i which is a multiple of a fixed

value d. When a value OccX(a, j) is requested that is not explicitly stored,

the closest stored value to j, OccX(a, k) is looked up and the requested value

is calculated by explicitly counting the symbols in BX between j and k. This

allows the memory usage to be reduced to 40|X|/d bytes. The value of d offers

a tradeoff between space and time. Larger values of d will use less memory but

require longer stretches of BX to be traversed during counting. In SGA, we use a

two-tier encoding of the occurrence array similar to the encoding used in [Healy

et al., 2003]1. We store the absolute number of times each symbol have been

seen in BX[1, i] using an 8 byte integer for all i divisible by 8192. We call these

absolute counts large markers. For all i divisible by d, we store a two-byte integer

small marker which is the symbol count relative to the previous large marker.

1This implementation of the occurrence array was suggested to us by Travis Wheeler
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This encoding requires an extra addition when calculating a value of OccX, but

lowers the memory usage to 40|X|/8192 + 10|X|/d bytes. The d parameter is

chosen by the user at runtime and defaults to 128.

A naive encoding of BX would require |X| log2 |Σ| bits. However, as the

Burrows-Wheeler transform sorts substrings of X, BX contains long runs of re-

peated symbols. To account for this, we use run length encoding for BX. Each

run is a byte encoding a <symbol, length> pair. We use 3 bits for the symbol

and 5 bits for the length of the run. This encoding scheme is efficient for high-

coverage data and requires ≈ 1.3 bits per base on average for high-depth data.

However, when the run lengths are short due to lack of coverage or sequenc-

ing errors, this encoding scheme is inefficient. During the development of SGA

I experimented with different methods of encoding BX, including Huffman and

Golomb coding. Each of these encodings offered greater space efficiency than the

<symbol, length> pair encoding, however they were all slower to decode during

the critical OccX counting procedure. This issue remains to be further investi-

gated as significant space savings could be made in SGA. Ideally, the FM-index

would be implemented as a separate software library, allowing the time/space

tradeoff to be selectable by the user.

3.2.7.2 Progam Design, Implementation and Libraries

SGA is implemented in C++. It uses zlib (www.zlib.net) to read compressed

files and BamTools [Barnett et al., 2011] to read SAM/BAM files. It is multi-

threaded using pthreads and the hoard parallel memory allocator [Berger et al.,

2000]. The source code is licensed under GPLv3 and freely available online

www.github.com/jts/sga.

SGA is designed to be modular, so that components of the assembler can be

replaced as improved algorithms are available. The major components of SGA

are listed below.

• sga index - constructs the FM-index for a set of sequence reads.

• sga merge - merges two indices together into a single index.
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• sga correct - performs the error correction routines described in section

3.2.2 and 3.2.3.

• sga filter - removes duplicate reads and reads that contain low-frequency

k -mers from the read set.

• sga stats - infers the error rate for a set of reads.

• sga overlap - constructs a string graph from the FM-index using the al-

gorithm described in Simpson and Durbin [2010].

• sga fm-merge - detects and merges unipaths in the string graph.

• sga assemble - simplifies the string graph by removing sequence variation

bubbles and outputs contigs.

• sga scaffold - reads in a scaffold graph and constructs linear scaffolds

with gap size estimates.

• sga scaffold2fasta - attempts to fill in scaffold gaps and outputs the

scaffolds in FASTA format.

• sga gapfill - standalone gapfiller based on de Bruijn graphs.

3.3 Results

In this section, I demonstrate the use of SGA on a variety of real data sets. I

begin by benchmarking the indexing performance of the algorithms discussed in

section 3.2.1. I then perform an assembly of a medium sized genome to compare

the performance of SGA against widely used de Bruijn graph assemblers. I also

use SGA to assemble a human genome, demonstrating the benefits of using a

compressed data structure on memory usage. Finally, I describe the assembly of

104 Schizosaccharomyces pombe yeast strains.
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Program CPU time Walltime Max Memory
sga-sais 12581s 12567s 17.0 GB
sga-bcr 5393s 5367s 9.3 GB
BCR 9553s 18184s 1.1 GB
BCRext 4761s 7953s 0.05 GB

Table 3.1: Running time and memory usage for four different methods of constructing
the BWT for 66.7 million 100bp reads.

3.3.1 Index construction results

I profiled the SGA implemention of Nong-Zhang-Chan (sga-sais), BCR, BCRext

and the SGA implementation of in-memory BCR (sga-bcr) on 66.7 million 100bp

reads from the C. elegans genome. In this test, I used version 0.9.20 of SGA

and version 0.0.2 of the BCR authors’ non-commerical reference implementation,

named BEETL1. To conserve memory in sga-sais, the read set was broken into

4 subsets. sga-sais was used to calculate the BWT of each subset, then 2 BWT

merging rounds were performed to compute the final result. For the other three

algorithms the BWT was directly constructed from the full read set.

Each test was run on an Intel Xeon X5650 CPU (2.67GHz) with 38GB of

available memory. The input, temporary and output files were stored on a Lustre

parallel distributed file system. All programs were run with a single thread. The

results are summarized in table 3.1. The wall-clock, cpu time and memory usage

was all measured by our cluster computing environment, LSF (Load Sharing

Facility).

The BCRext algorithm required negligable memory and was the fastest pro-

gram when measured by CPU time. My in-memory implementation of BCR was

the fastest program when measured by wall-clock time, however it required 9.3GB

of memory. The Nong-Zhang-Chan algorithm implemented in SGA required the

most CPU time and the most memory.

1www.github.com/BEETL/BEETL
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3.3.2 C. elegans Assembly

To assess the performance of SGA I performed assemblies of the nematode C.

elegans using SGA and three other assemblers. The Velvet assembler [Zerbino

and Birney, 2008] was one of the first de Bruijn graph-based assemblers for short

reads and has become a standard tool for assembling small to medium sized

genomes. The ABySS assembler [Simpson et al., 2009] was developed to handle

large genomes by distributing a de Bruijn graph across a cluster of computers.

SOAPdenovo is also based on the de Bruijn graph and designed to assemble large

genomes [Li et al., 2010b,c].

C. elegans provides a good real-world test case for assembly algorithms be-

cause it has a complete and accurate reference sequence [C. elegans Sequencing

Consortium, 1998], it propagates as a hermaphrodite so the genome of an in-

dividual (or strain) is homozygous and essentially free of SNPs and structural

variants, and the genome is a reasonable size for evaluation (100 Mbp). I down-

loaded C. elegans sequence reads (strain N2) from the NCBI SRA (accession

SRX026594). The data set consists of 33.8M read pairs sequenced using the Illu-

mina Genome Analyzer II. The mean DNA fragment size is 250 bp from which

reads of length 100 bp were taken from both ends of the fragment. To reduce

the impact of differences between the sequenced individual and the reference se-

quence, I called a new consensus sequence for the C. elegans reference genome

(build WS222, www.wormbase.org) based on alignments of the reads to the ref-

erence using samtools as specified by the documentation1.

As sequence assemblers are often sensitive to the input parameters, I per-

formed multiple runs with each assembler. The de Bruijn graph assemblers were

run for all odd k-mer sizes between 51 and 73 (inclusive). The k-mer size provid-

ing the largest scaffold N50 was selected for further analysis (67 for ABySS, 61

for Velvet, 59 for SOAPdenovo). Similarly, for SGA the k-mer size used for error

correction and the minimum overlap parameter for assembly were selected to pro-

vide the largest scaffold N50 (k=41 for error correction, τ=75 for the minimum

overlap). I also performed a SOAPdenovo assembly using their GapCloser pro-

gram after scaffolding. GapCloser was able to fill in many gaps within scaffolds,

1The command run was samtools mpileup -uf ref.fa aln.bam | bcftools view -cg
-
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which increased the contig N50 and genome coverage. However, these increases

came at the cost of substantially lowered accuracy. In the following analysis, I

use the SOAPdenovo assembly without using GapCloser.

I broke the assembled scaffolds into their constituent contigs by splitting each

scaffold whenever a run of “N” bases was found. I filtered the contig set by

removing short contigs (< 200bp in length). The remaining contigs were aligned

to the consensus-corrected reference genome using bwa-sw [Li and Durbin, 2010]

with default parameters. I considered a number of different assessment criteria,

which are described below and summarized in table 3.2.

SGA Velvet ABySS SOAPdenovo

Scaffold N50 size 26.3 kbp 31.3 kbp 23.8 kbp 31.1 kbp
Aligned contig N50 size 16.8 kbp 13.6 kbp 18.4 kbp 16.0 kbp
Mean aligned contig size 4.9 kbp 5.3 kbp 6.0 kbp 5.6 kbp
Sum aligned contig size 96.8 Mbp 95.2 Mbp 98.3 Mbp 95.4 Mbp
Reference bases covered 96.2 Mbp 94.8 Mbp 95.9 Mbp 95.1 Mbp
Reference bases covered
by contigs ≥ 1kb

93.0 Mbp 92.1 Mbp 93.9 Mbp 92.3 Mbp

Mismatch rate at all as-
sembled bases

1 per 21,545 bp 1 per 8,786 bp 1 per 5,577 bp 1 per 26,585 bp

Mismatch rate at bases
covered by all assemblies

1 per 82,573 bp 1 per 18,012 bp 1 per 8,209 bp 1 per 81,025 bp

Contigs with split/bad
alignment (Sum size)

458 (4.4 Mbp) 787 (7.2 Mbp) 638 (9.1 Mbp) 483 (4.4 Mbp)

Total CPU time 41 hr 2 hr 5 hr 13 hr
Max Memory usage 4.5 GB 23.0 GB 14.1 GB 38.8 GB

Table 3.2: Assessment of various assembly programs on the C. elegans data set.

3.3.2.1 Substring coverage

For the first assessment, I sampled strings from the consensus sequence and tested

whether they were exactly present in the contigs. I sampled 10,000 strings of

length from 50 bp up to 5,000 bp. This assessment combines three measures; the

contigs must be accurate (as exact matches are required), complete (as the string

must be present in the contig) and contiguous (as strings broken between multiple
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contigs will not be found). Figure 3.3 plots the proportion of strings found in the

contigs as a function of the string length. All assemblers perform well for short

strings (50 to 100 bp). For longer string lengths, SGA slightly outperforms the

other three assemblers.
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Figure 3.3: Reference string coverage analysis for the C. elegans N2 assembly. For

string lengths from 50bp up to 5,000bp, 10,000 strings were sampled from the consensus-

corrected C. elegans reference genome. The proportion of the strings found in the SGA,

Velvet, ABySS and SOAPdenovo assemblies is plotted.

3.3.2.2 Assembly Contiguity

I assessed the contiguity of the assemblies by calculating the contig alignment

length N50. By analyzing the contig alignment lengths, as opposed to the length

of contigs themselves, I account for misassembled contigs that can inflate the

assembly statistics. For SGA, contig alignments 16.8 kbp and greater covered
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50% of the reference genome (50 Mbp). ABySS, SOAPdenovo and Velvet had

contig alignment N50s of 18.4 kbp, 16.0 kbp and 13.6 kbp, respectively.

3.3.2.3 Assembly Completeness

The contigs assembled by SGA covered 95.9% of the reference genome. The

ABySS assembly covered 95.6%, Velvet covered 94.5% and SOAPdenovo covered

94.8%. Figure 3.4 plots the reference genome coverage as a function of minimum

contig alignment length. In this assessment ABySS generated the best assembly

as it covered more of the reference genome with long contigs.
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Figure 3.4: The number of bases of the C. elegans reference genome covered as a func-

tion of minimum contig alignment length.
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3.3.2.4 Assembly Accuracy

I assessed both the structural accuracy and the per-base mismatch rate of the

contigs. First, I categorized the contig alignments into three groups. The first

group (“full-length”) contains contigs that had a single alignment to the reference

containing at least 95% of the contig length. The second group (“split”) contained

contigs that had two alignments to the same chromosome in close proximity

(<10,000bp). These split contigs may either contain local assembly errors, or

structural variation (for example a large insertion or deletion) with respect to

the reference. All remaining alignments (“bad”) were partially aligned (< 95%

of the contig aligned to the reference), aligned to multiple chromosomes, aligned

in greater than 2 pieces or did not align to the reference at all. For all assemblies

a substantial proportion of the contigs were found to match the E. coli genome.

As C. elegans eat E. coli, this is an expected contaminant and one might suspect

other bacterial sequences to also be present. For this reason contigs that did not

align to the C. elegans reference were not included in this analysis.

For the first measure of assembly accuracy, I counted the number and to-

tal size of contigs with split or bad alignments. The accuracy of the SGA and

SOAPdenovo contigs was similar - 458 contigs for SGA (totaling 4.4 Mbp) and

483 contigs for SOAPdenovo (4.4 Mbp) had split or bad alignments. Velvet and

ABySS had 787 contigs (7.2 Mbp) and 638 contigs (9.1 Mbp) with split or bad

alignments, respectively.

For the second accuracy assessment, I calculated the rate at which aligned

contig bases did not match the reference. In this assessment, I used the fully-

aligned contigs only. I evaluated each assembly at all reference positions covered

by its contigs, and also at the subset of positions that were covered by all assem-

blies. The latter case provides a fairer basis for comparison, removing the effect

of differences of coverage of repetitive or complex sequence between the four as-

semblies. The results are summarized in table 3.2. Again, the accuracy of the

SGA and SOAPdenovo assemblies was comparable, and both were more accurate

than Velvet and ABySS. The mismatch rate of the SGA assembly at reference

positions assembled by all four programs was approximately 1 mismatch per 83

kbp. SOAPdenovo, Velvet and ABySS had error rates at shared positions of 1
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per 81 kbp, 1 per 18 kbp and 1 per 8 kbp, respectively.

3.3.2.5 Computational Requirements

Of the four assemblers, SGA used the least memory (4.5 GB vs 14.1 GB, 23.0 GB

and 38.8 GB for ABySS, Velvet and SOAPdenovo, respectively). The de Bruijn

graph assemblers were considerably more computationally efficient however as

the SGA assembly required 8 times more CPU hours than ABySS, 20 times

more than Velvet and 3 times more than SOAPdenovo. This speed difference

is largely due to the time required to build the FM-index. However, we can

reuse one FM-index for multiple runs of SGA, for instance to try different error

correction or assembly parameters, whereas the de Bruijn table for ABySS, Velvet

and SOAPdenovo must be re-calculated for each choice of k.

3.3.3 Human Genome Assembly

As a second demonstration, I assessed the ability of SGA to scale to very large

data sets by assembling a human genome. I downloaded 2.5 billion reads (252 Gbp

of sequence) for a member of the CEU HapMap population (identifier NA12878)

sequenced by the Broad Institute1. The reads are 101bp in length from a paired-

end insert library of 380 bp mean separation. As the total sequence depth is 84x,

I chose to only assemble half the data to reflect typical coverage depths seen for

human shotgun sequence data sets.

I constructed an FM-index for subsets of 20 million reads at a time (using

the sga-sais variant of our indexing algorithm), then iteratively merged the

sub-indices in pairs to obtain a single FM-index for the entire data set. I ran

the error correction process using a cluster of computers. Each process used the

full FM-index to correct 20 million reads. An FM-index was constructed for the

corrected reads, duplicate and low-quality reads were removed, and non-branching

chains of reads were merged together. A string graph was constructed from the

merged sequences using a minimum overlap parameter τ = 77. I re-aligned the

reads to the resulting contig set using bwa [Li and Durbin, 2009] and constructed

1ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20101201_cg_
NA12878/NA12878.hiseq.wgs.bwa.raw.bam
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scaffolds.

In total, the assembly took 1,427 CPU hours across 140 wall clock hours,

just under 6 days. The most compute intensive stages were error correcting the

reads and building the FM-index of the corrected reads, which each required 355

CPU hours. However these stages were distributed across a cluster of comput-

ers by simply splitting the input data, substantially reducing the elapsed (wall

clock) time. I ran 123 indexing/merging processes and 63 correction processes;

the elapsed time for these stages was 32 hours and 1 hour, respectively. The

post correction read filtering stage - where duplicate and low quality reads are

discarded - was the memory high-water mark, requiring 54 GB of memory. Com-

plete details of the number of processes, running time and memory usage for each

stage of the assembly can be found in table 3.3.

Stage Processes Wall time CPU time Max Memory

Build index (raw) 123 23 hr 187 hr 45 GB
Correct reads 63 1 hr 355 hr 28 GB
Build index (corrected) 123 32 hr 355 hr 44 GB
Filter reads 1 33 hr 167 hr 54 GB
Merge reads 1 15 hr 105 hr 48 GB
Assemble reads 3 23 hr 41 hr 16 GB
Align to contigs 62 6 hr 210 hr 10 GB
Build scaffolds 4 7 hr 7 hr 13 GB

All stages - 140 hr 1427 hr 54 GB

Table 3.3: Running time and memory summary for the SGA human genome assembly

I also assembled the data with SOAPdenovo [Li et al., 2010c]. I first error

corrected the reads using the SOAPdenovo error correction tool then performed

three assemblies, with k-mer sizes 55, 61 and 67. The 61-mer assembly had the

largest scaffold and contig N50 and was used for the subsequent analysis. The 61-

mer SOAPdenovo assembly (including error correction) required 479 CPU hours

across 121 wall clock hours. The maximum amount of memory used was 118 GB.

As with the C. elegans assembly described above, I did not use the SOAPdenovo

GapCloser.

I evaluated the assemblies in terms of contiguity, completeness and accuracy.

Note that unlike for the C. elegans assembly, in this case the sequenced sample
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differs from the reference genome. As in the C. elegans analysis, I broke the

assembled scaffolds into their constituent contigs, filtered out contigs less than

200bp in length then aligned the remaining contigs to the human reference genome

(build GRC 37) using bwa-sw [Li and Durbin, 2010].

The SGA contig alignments cover 2.69 Gbp of the human reference autosomes

and chromosome X (95.0% of the non-N portions of these chromosomes). The

SOAPdenovo contigs cover 2.65 Gbp of the human reference (93.6%). The SGA

contig alignment N50 is 9.4 kbp and the SOAPdenovo contig alignment N50 is

6.6 kbp. The corresponding raw contig N50s are 9.9 kbp and 7.2 kbp. Figure 3.5

plots the amount of the reference genome covered by each assembly as a function

of the minimum contig alignment length. Across all contig alignment lengths,

the SGA assembly covered more of the reference genome than SOAPdenovo. In

contrast, SOAPdenovo gave larger scaffolds (N50 length of 34.8 kbp compared to

25.1 kbp for SGA), though the single short insert library for this data set limits

the ability to build larger scaffolds.

The overall assembly accuracy for both SGA and SOAPdenovo was high;

94.5% of SGA contigs (totaling 2.64 Gbp) had full-length alignments to the ref-

erence genome, 1.1% (68 Mbp) had split alignments and 4.3% (50 Mbp) had

low-quality alignments or did not align at all. 96.8% of the SOAPdenovo contigs

had a full-length alignment to the reference (totaling 2.60 Gbp), 1.0% had split

alignments (53 Mbp) and 2.2% (33 Mbp) had low-quality alignments or did not

align to the reference at all. This is consistent with the SGA assembly being a

little larger, covering a little more of the reference but also containing a little

more additional material.

I also calculated the per-base mismatch rate of the contigs using the same

methodology as the C. elegans assembly. In this case, I used the human reference

genome combined with SNP calls produced by the Broad Institute in the same

individual from the same data set by a mapping rather than assembly based ap-

proach [DePristo et al., 2011]. I only counted mismatches at positions that did

not match the reference and did not match a Broad SNP call. I also calculated

the mismatch rate at the subset of positions assembled by both SGA and SOAP-

denovo. As both SNP calling and assembly can be confused by genomic repeats

and segmental duplications, I also calculated the per-base accuracy at positions
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Figure 3.5: The amount of the human reference genome covered by a contig as a func-
tion of the minimum contig alignment length. For each length L on the x-axis, contig
alignments less than L bp in length were filtered out and the amount of the reference
genome covered by the remaining alignments was calculated.

of the reference that are not masked by RepeatMasker1 and not annotated as

segmental duplications (1.3 Gbp of the reference genome remains after this fil-

ter). Both assemblies were highly accurate. The mismatch rate for SGA over

all covered positions of the reference was 1 per 3,574 bp. For SOAPdenovo, the

mismatch rate was 1 per 4,285 bp. If I only consider reference positions covered

by a contig from both assemblies, the mismatch rates are 1 in 4,325 bp for SGA

and 1 per 5,041 bp for SOAPdenovo. When restricting the analysis to positions

not masked by RepeatMasker and not annotated as segmental duplications, the

mismatch rate is 1 per 52,464 bp for SGA and 1 per 51,125 for SOAPdenovo. At

1http://www.repeatmasker.org
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positions assembled by both programs and not masked as repeats or segmental

duplications, the mismatch rates are 1 per 59,884 bp and 1 per 60,511 bp, for

SGA and SOAPdenovo, respectively.

I note that both the contig mismatches and the mapping-based SNP calls will

contain false-positive variants due to mapping errors between the contig or read

sequences and the reference. These false positives will have an opposing effect; if

the contig sequence is misaligned to the reference, we may count a mismatch in the

assembly that is not truly present. This will cause the error rate in the assembly

to be overestimated. It is also possible that false positives from misalignments in

the mapping-based call set may overlap errors in the assembly. This would lead

to an underestimate of the assembly error rate. As I cannot assess the magnitude

of these effects it is difficult to accurately estimate the true base-level error rate in

the assemblies. However, if we conservatively consider all remaining mismatches

to be assembly errors it would indicate the per-base accuracy of the SGA and

SOAPdenovo assemblies are very similar and better than 1 error in 50 kbp in

non-repetitive regions. The accuracy of SGA is supported by an independent

assessment of our assemblers performed during the Assemblathon competition,

which is described in the next section.

3.3.4 The Assemblathon

In 2010, a community organized project was launched with the goal of providing

a simulated data set to benchmark and evaluate assembly software. This project

was organized by UC Davis and UC Santa Cruz. They simulated a diploid genome

derived from human chromosome 13. The organizers sampled simulated sequence

reads from this genome from both short insert (200-300bp paired end separation)

and long insert (3kb and 10kb) libraries. With the goal of modelling real sequence

data, the organizers introduced base-calling errors, PCR duplications and bacte-

rial contamination [Earl et al., 2011]. The sequence reads were openly released to

the community and the developers of assembly software were invited to submit

assemblies of the data. The organizers performed the analysis of the submitted

assemblies, providing an unbiased comparison of assemblers on simulated data. I

entered SGA into the competition. In the assessment, SGA had the largest scaf-
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fold path NG50 (a measure of scaffold length, corrected for assembly errors), the

lowest number of substitution errors, and the second lowest number of structural

errors [Earl et al., 2011], highlighting the accuracy of my software. Overall, SGA

placed 3rd out of 17 groups, behind ALLPATHS-LG [Gnerre et al., 2011] and

SOAPdenovo [Li et al., 2010c].

3.3.5 Schizosaccharomyces pombe assemblies

As a final assessment of SGA, I assembled 104 strains of the fission yeast, Schizosac-

charomyces pombe. These strains were sequenced as part of a project to determine

the genetic diversity across the S. pombe population. There are two groups of

strains. The first group (97 strains) had 65X sequence depth on average (range

29-91X). The second group (7 strains) were sequenced much deeper (mean 210X,

range 107-436). I assembled each strain with SGA using a minimum overlap pa-

rameter (τ) of 65. Additionally for the ≥ 100X strains, I set a fixed threshold

of 5 k-mer occurrences when running error correction. For the other strains, this

parameter was automatically learned from the data.

With such a high number of samples, I am able to evaluate the impact of

sequence coverage depth on contig N50, as well as run time and memory usage.

The relationship between coverage and contig N50 is shown in figure 3.6. Contig

N50 increases with coverage up to 100X, likely due to being able to use a longer

overlap at higher coverage. Beyond 100X, adding additional coverage does not

help and may actually be detrimental to assembly contiguity at very high depth

(>200X). The relationship between coverage and CPU time is almost perfectly

linear (figure 3.7).
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Figure 3.6: The relationship between sequence coverage and contig N50 for the S. pombe
data set. The plot in the left panel displays the complete data set. The plot in the right
panel only shows strains that have <100X coverage.
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Figure 3.7: The relationship between sequence coverage and CPU time for the S. pombe
data set.
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