
Chapter 4

Algorithms for Variant Detection

from an Assembly Graph

4.1 Introduction

In the preceding chapters, I described algorithms for assembling the complete

genome of an individual from a set of sequence reads. Often we are only interested

in the ways in which two (or more) genomes differ. For example, we may be

interested in the differences between a sequenced individual and the reference

genome for a species, or differences between a child and its parents. I will refer

to the problem of finding genomic differences between closely related genomes as

variant detection.

Reference-based variant detection algorithms map and align reads to a refer-

ence genome then find substrings of the reads that are consistently different with

respect to the reference. As reads contain sequencing errors, the differences be-

tween the reads and reference are typically assessed using a probabilistic model

to help distinguish between errors (either due to base-calling errors during se-

quencing or mis-aligning the reads to the reference) and true variants. While

mapping-based algorithms have become the standard method for variant detec-

tion, it is considerably more difficult to accurately find indel variants than it is to

find substitution variants [Li and Homer, 2010]. For this reason, assembly-based

variant calling algorithms have been proposed [Catchen et al., 2011; Iqbal et al.,

74

2012]. In chapter 3 we saw how allelic differences present in a diploid genome

form “bubbles” in the assembly graph. Typically assemblers will find and remove

these structures to output a linear contig, with one of the two possible allelles

chosen to represent the locus in the contig. Most assemblers will catalog these

structures for later consideration as candidate variants1. However, for a diploid

genome this will only find heterozygous sites. The Cortex program [2012] uses

multi-colored de Bruijn graphs to directly compare the sequences of two or more

genomes - each color in the graph represents a single individual. Walks following

a single color in the graph provide partial assemblies of a single individual. By

analyzing the pattern of colors through bubbles in the graph, variants can be

found and attributed to particular individuals.

The method I discuss below is conceptually similar to that of Cortex with the

major difference being that we use the FM-index as the underlying representation

of the assembly graph, instead of explicitly using a hash-table based de Bruijn

graph with a fixed k-mer size. As described in Chapter 2, the FM-index can

represent both the de Bruijn graph (for all k up to the read length) and the

string graph. We use this property to develop both de Bruijn graph and string

graph-based variant detection algorithms. Additionally, we can use the fact that

the FM-index stores the complete sequence of each read to extract all reads

harboring a potential variant and use them as input into a Bayesian model to

distinguish between true variants and sequencing errors.

The remainder of this chapter will describe the algorithms I have developed.

In the following chapter I demonstrate the versatility of these algorithms by

finding polymorphisms present in a human population, finding de novo mutations

acquired by a child with respect to its parents and to discover mutations occurring

in a tumour with respect to an individual’s inherited genome.

4.1.1 Collaboration Note

The methods described in this chapter were developed in collaboration with Cor-

nelis Albers. The variant detection, haplotype assembly, haplotype alignment

1ABySS and SGA write the sequences of the bubbles to a file, ALLPATHS-LG uses a
marked-up FASTA file to describe the ambiguity in the assembly.

75

and read extraction algorithms are by the author. The probabilistic realignment

model described in section 4.3 was developed by Cornelis Albers. Its description

is included in this text to complete the description of the variant calling model.

4.2 Algorithms

We use the FM-index to represent the assembly graphs formed from the sets of

sequencing reads. We will typically compare two sets of sequences against each

other. We will call one set of sequences the control set and one set of sequences

the variant set. We will call the underlying genomes Gc and Gv, respectively.

The variant sequences will always be a set of sequence reads drawn from Gv.

We will denote this read set as Rv. The control sequences can either be a set

of reads or the chromosomes of a reference genome. Below, we will describe the

algorithms in general terms to cover both cases, with minor modifications that

will be stated. We will refer to the set of control sequences in general as C.

Our goal is to determine the loci in Gv that differ with respect to Gc. When a

reference genome Gr is available, we will use it to provide a common coordinate

system to describe the differences between Gv and Gc. The differences between

one of the genomes and Gr will be described in terms of changes to Gr with tuples

of the form:

<reference-position, reference-sequence, variant-sequence>1

These tuples encode the information required to locally change Gr into Gv at

the variant site. Let Avr be the set of tuples describing differences between Gv

and Gr and Acr be the corresponding set of tuples describing differences between

Gc and Gr. The set of positions we are interested in finding is B = Avr − Acr.

When the control genome is the reference genome, this is just Avr.

We begin by building an FM-index for each of Rv and C using the methods

presented in Chapter 3. We load the pair of FM-indices into memory, then our

algorithm has four stages. First, we find a set of substrings that are present in

Rv but not C. These substrings may cover locations in Gv that are different with

respect to Gc. We then extend these substrings into candidate haplotypes using

1This is information is typically encoded in a Variant Call Format (VCF) file

76

the joint assembly graph of Rv and C, as represented by the pair of FM-indices.

We then align the candidate haplotypes to Gr. Finally, we use a probabilistic

model to assess whether the assembled haplotypes represent true differences be-

tween Gv and Gc or sequencing errors. The tuples for variants that are called

by our probabilistic model are output to a VCF file. Each stage is discussed in

detail below.

4.2.1 Motivating Example

Consider the simple case where Gv and Gc are random genomes that differ at

a single position. For some k large enough to avoid spurious matches between

unrelated sequence, let Sv = K1xK2 and Sc = K1yK2 be the 2k + 1 substrings

of Gv and Gc surrounding this single difference. Sv[1, k] = Sc[1, k] = K1 and

Sv[k + 2, 2k + 1] = Sc[k + 2, 2k + 1] = K2 are the k-mers that occur immediately

before and after the single difference. These k-mers are shared between Gv and

Gc. The k-mers covering x and y are unique to Gv and Gc. There are k such

k-mers, which are the substrings Sv[1+ i, 1+ i+k] for all i ∈ {1..k} (respectively,

Sc). Under our assumption that k is sufficiently large, then Sv[1 + i, 1 + i + k]

k-mers are unique to Gv. It is this set of k-mers that we wish to find as the set

of candidate variant k-mers. This situation is depicted in figure 4.1.

K
1

K
2

Figure 4.1: A bubble in a de Bruijn graph built from Gv and Gc. The grey k-mers

(labelled K1 and K2) are shared between Gv and Gc and are the entry/exit points of the

bubble. The red and blue vertices represented k-mers unique to Gv and Gc, respectively.

Once we have found the candidate variant k-mers, we assemble them into

77

haplotypes. In the context of the de Bruijn graph1 shown in figure 4.1, we would

start the haplotype generation process from one of the six red k-mers. The

haplotype generation would perform a breadth-first search by starting from a

red node and continue until both grey junction nodes have been found. The set

of nodes found during this search would define a path through the red half of

the bubble. We can calculate the assembly string corresponding to this path and

output it as a candidate haplotype. We can perform an additional search between

the two grey junction nodes using just the control sequences. This will search

the blue half of the bubble and generate candidate haplotypes in the control

sequences. It is worth noting that these haplotypes may also be present in the

variant sequences.

After haplotypes have been generated, we align them to the reference genome

then extract all the raw sequence reads from the FM-index that share a k-mer

with a candidate haplotype. The candidate haplotypes, their alignments to the

reference and the raw sequence reads are input into the Bayesian model which

assesses the evidence for each haplotype and makes the final variant calls.

4.2.2 Discovering Candidate Variants

The first stage of the algorithm attempts to find k-mers of Gv that are not present

in Gc. If we know the sequence of Gv and Gc this problem is easy. We could

decompose the genomes into their k-mer sets Kv and Kc and compute the set

D = Kv \ Kc. Of course, we do not know the full sequence of Gv so we must

approach the problem from a different direction. In Pevzner’s original paper on

de Bruijn graph assembly [2001], he observed that the set of k-mers present in a

set of sequence reads drawn from Gv approximates the set of k-mers of Gv itself.

In Chapter 3 we used this fact to correct substitution sequencing errors. Here,

we use it again to solve the problem of finding k-mers unique to Gv. We could

explicitly subtract the k-mers of C from the k-mers of Rv but this would require

the intermediate storage of the full k-mer sets. Instead, we developed an efficient

streaming algorithm.

For the moment we will ignore sequencing errors. The algorithm begins by

1A string graph based algorithm is given in section 4.2.4

78

iterating over all reads in Rv and all k-mers in each read. For each k-mer, Q, we

use the FM-index to count the number of occurrences of Q in Rv and the number

of occurrences in C. If Q only appears in Rv, we emit it as a candidate variant.

As the same k-mer may appear in multiple reads, we want to avoid emitting

duplicate k-mers. To do this, we use an efficient bit-vector marking procedure.

At the program’s start, we create a bit vector B with one bit per base in Rv,

initialized to zero. When we first visit a k-mer Q, we calculate its suffix array

interval [lQ, uQ] and set the bit B[lQ] to be one. Subsequent visits to Q will see

that B[lQ] is one and skip it as it has already been visited. This avoids emitting

duplicate candidate variants for the same k-mer and also accelerates the search

by avoiding redundant k-mer occurrence queries.

An alternative approach to finding k-mers unique to Rv can avoid traversing

over each read in Rv. We can simulate a breadth-first traversal of the implicit

suffix tree represented by the FM-index of Rv, stopping once we have reached

depth k. Such a traversal operates over suffix array intervals instead of individual

k-mers, and hence visits each distinct k-mer only once without the need of the

bit vector. When we visit a k-mer, we can check its count in the FM-index of

C to determine whether it should be emitted as a candidate variant. While this

algorithm is cleaner than iterating over every read in Rv, it is faster in practice

only for small k. The bit-vector based algorithm is very easy to parallelize using

multiple threads. Our implementation uses atomic marking (implemented with

compare-and-swap instructions) to allow concurrent updates of the bit vector

without requiring locks. This highly parallel implementation makes the k-mer

discovery portion of the algorithm very fast in practice.

In the presence of sequencing errors, the above algorithms require minor

modifications. As discussed in the previous chapter, sequencing errors gener-

ate low-frequency k-mers. To help distinguish between unique k-mers arising

from errors and unique k-mers arising from true variants, we set a threshold of

d (typically 3-5) on the minimum number of occurrences of Q in Rv to emit the

k-mer as a candidate variant. As an additional filter we require that both Q

and Q are present in Rv - this requires that k-mer is seen on both sequencing

strands, which helps discard systematic errors [Meacham et al., 2011]. Algorithm

generateCandidateVariant encapsulates the procedure for finding candidate

79

variants.

Algorithm 12 generateCandidateVariants(k, d, Rv, C) - find candidate variant

substrings

for all R ∈ Rv do

n← |R| − k + 1

for i = 1→ n do

Q← R[i, i+ k]

if not isMarked(Q) then

mark(Q)

vf ← countOccurrences(Q,Rv)

vr ← countOccurrences(Q,Rv)

c← countOccurrences(Q,C) + countOccurrences(Q,C)

if c = 0 and vf > 0 and vr > 0 and vf + vr ≥ d then

emit(Q)

Once the candidate variant k-mers have been found, we attempt to assemble

them into haplotypes. We have two procedures for doing this, one which uses a

de Bruijn graph and one which uses a string graph. We describe both below.

4.2.3 de Bruijn graph haplotype generation

Let Q be a variant k-mer found during the previous portion of the algorithm.

If Q represents a true difference with respect to Gc it will lie on one branch of

a bubble in the de Bruijn graph formed from the union of Rv and C. For each

vertex (k-mer) of this de Bruijn graph, we can indicate whether it is a k-mer from

Rv, C or both (see figure 4.1). By definition, Q is a k-mer present only in Rv.

The algorithm to assemble Q into a candidate haplotype proceeds by performing

a breadth-first search starting from Q. The search proceeds until we find k-mers

that are present in both Rv and C. In the context of figure 4.1 we would start the

search on one of the red k-mers, and perform the breadth first search outwards

in both directions until one of the grey shared k-mers is reached. These join

k-mers are the entry/exit points of the bubble. As sequencing errors generate

new k-mers and paths in the graph, when searching the graph we ignore k-mers

80

that have not been seen at least m times (typically m is 1 to 3). Pseudocode for

this algorithm is presented in generateDeBruijnHaplotypes.

The generateDeBruijnHaplotypes algorithm begins by initializing an empty

de Bruijn graph (line 1) and two empty arrays (lines 2 and 3). The arrays will

hold the join vertices, where the two halves of the bubble converge. We perform

a breadth-first search for these vertices, starting at Q. Lines 5-7 initialize a

direction-specific traversal queue with an element for searching from the prefix

(left) side of Q and an element for searching from the suffix (right) side of Q.

As de Bruijn graphs can be very complex in repetitive regions, we set a limit

on how far we will search before aborting the process (lines 9 and 10). The

algorithm then loops over all elements of the queue (lines 12-28). As each node

is popped from the queue, its neighbors in the de Bruijn graph are found (lines

15-27) and added as vertices if they meet the minimum coverage parameter of m

(lines 23,26). If the vertex is found in both Rv and C, then the vertex is added

to the LEFT or RIGHT join array, depending on the direction of traversal (lines

22-24). If the vertex is only present in Rv, it is enqueued and the main loop

starts over. Once the graph exploration phase of the algorithm is complete if we

have found left and right join vertices we generate candidate haplotype strings

by following the graph through each pair of join vertices (lines 28-33). This uses

the function buildHaplotypes which takes a pair of vertices in the de Bruijn

graph and generates all possible paths between the pair of vertices and returns

the corresponding assembly string for each path. The strings generated by this

procedure are the candidate haplotypes covering the input k-mer.

After candidate variant haplotypes have been generated, we use a similar

procedure to generate candidate haplotypes using the control sequences. We

perform a directed search of the de Bruijn graph of the control sequences between

each pair of join vertices. The assembly string for each path found during this

procedure is added to the set of candidate haplotypes.

81

Algorithm 13 generateDeBruijnHaplotypes(Q, k, m, Rv, C) - assemble candi-

date variant into a haplotype

1: init(graph, Q)

2: joins[LEFT] ← ∅
3: joins[RIGHT] ← ∅
4: queue ← ∅
5: append(queue,kmer=Q, direction=LEFT)

6: append(queue,kmer=Q, direction=RIGHT)

7: iterations ← 0

8: max iterations ← 10000

9:

10: while queue not empty and iterations < max iterations do

11: n← pop(queue)

12: S ← n.kmer

13: for all b ∈ {A,C,G, T} do

14: if n.direction is LEFT then

15: T ← bS[1, k − 1]

16: else

17: T ← S[2, k]b

18: v ← countOccurrences(T,Rv) + countOccurrences(T ,Rv)

19: c← countOccurrences(T,C) + countOccurrences(T ,C)

20: if v ≥ m and c > 0 then

21: addDBGVertex(graph, T, BOTH)

22: append(joins[n.direction], T)

23: else if v ≥ m then

24: addDBGVertex(graph, T, n.direction)

25: append(queue,kmer=T , direction=n.direction)

26: iterations ← iterations +1

27:

28: haplotypes ← ∅
29: if joins[LEFT] not empty and joins[RIGHT] not empty then

30: for all l ∈ joins[LEFT] do

31: for all r ∈ joins[RIGHT] do

32: push(haplotypes, buildHaplotypes(graph, l, r)

33: return haplotypes

82

4.2.4 String graph haplotype generation

The second haplotype generation function uses the string graph. The string

graph haplotype generation algorithm is a composition of algorithms described

previously in chapters 2 and 3. Like in Chapter 3, we require all reads to be

error corrected before inserting them in the graph. Likewise, we only allow exact

overlaps between reads. Unlike our whole genome assembly algorithm we do not

error correct the full read set. When Gv and Gc are closely related it is expected

that they will have very few differences. In this case it would be inefficient to

error correct every read, as most would not harbor variation. Instead, we correct

each read as it is processed by the algorithm. The algorithm is described at high

level in generateStringGraphHaplotypes.

We begin by initializing an empty graph, and arrays to hold join vertices. We

extract all reads containing the input k-mer Q from the FM-index of Rv. This set

of reads is error corrected using the k-mer correction method described in Chapter

3. The corrected reads are inserted into the graph, and exact overlaps between

the vertices are computed. Here, we simply use a hash of τ -mer sequences to

compute candidate overlaps. The main loop of the algorithm finds “tip” reads

in the graph - those that only have a neighbor on one side (a prefix neighbor

or suffix neighbor). Reads sharing a substring with a tip vertex are extracted

from the FM-Index (by findNewOverlaps) and corrected. The newly corrected

reads are then added into the graph. As each read is inserted into the graph,

we determine if it is a join vertex. If the k-mer at the start of read X occurs in

both Rv and C, we say that X is a left-join vertex. If the k-mer at the end of

read X occurs in both Rv and C, we say that X is a right-join vertex. After all

new vertices have been added to the graph, we run Myers’ transitive reduction

algorithm [Myers, 2005] on the graph. We then attempt to find walks from the

left-joins to the right-joins that cover the reads containing the candidate variant

k-mer Q. If these reads are covered by walks, the walks are returned as the

candidate haplotypes. As in generateDeBruijnHaplotypes we set a bound of

max iterations on the number of times to extend the graph before aborting.

Finally, we generate haplotypes for the control sequences using the same pro-

cedure as section 4.2.3. Here, we do not explicitly have the set of join vertices

83

in the implicit de Bruijn graph. Instead, we use the first and last k-mer of each

variant candidate haplotype to seed the directed search through the de Bruijn

graph.

84

Algorithm 14 generateStringGraphHaplotypes(Q, k, τ , Rv, C) - assemble can-

didate variant into a haplotype

1: init(graph)

2:

3: joins[LEFT] ← ∅
4: joins[RIGHT] ← ∅
5: iterations ← 0

6: max iterations ← 1000

7:

8: I ← extractReads(Q,Rv)

9: Ic ← correctReads(I,Rv)

10: for all r ∈ IC do

11: addStringVertex(graph, r)

12: while iterations < max iterations do

13: T ← findGraphTips(graph)

14: if T is ∅ then

15: return ∅
16: for all t ∈ T do

17: O ← findNewOverlaps(graph, t, τ,Rv)

18: Oc ← correctReads(O,Rv)

19: for all o ∈ Oc do

20: addStringVertex(graph, o)

21: if isLeftJoin(o, k,C) then

22: push(joins[LEFT], o)

23: if isRightJoin(o, k,C) then

24: push(joins[RIGHT], o)

25: myersTransitiveReduction(graph)

26: if joins[LEFT] 6= ∅ and joins[RIGHT] 6= ∅ then

27: haplotypes ← findHapWalks(graph, joins[LEFT], joins[RIGHT])

28: if haplotypes 6= ∅ then

29: return haplotypes

30: iterations ← iterations + 1

85

4.2.5 Haplotype quality control

After we generate candidate haplotypes we perform a quality check. For a hap-

lotype string H and a set of reads, let kmax be the largest k such that all k-mers

in H are seen at least l times in the reads. In other words, all kmax-mers in H

are seen at least l times in the FM-index but some (kmax + 1)-mers of H are not

found l times. We expect that haplotypes that are truly present in a genome and

well-covered by sequence reads will have a large value kmax. Conversely, if a hap-

lotype is not present in a genome, kmax will be very small as it will require random

k-mer matches to find covering k-mers (we would expect kmax to be ≈ log(|G|)
for a random haplotype not present in a genome). We can use these observations

to define a quality check on the haplotypes that we assembled above. For a hap-

lotype H, let v be kmax for the haplotype in the variant read set R. Let c be the

corresponding value for kmax for the control sequences. We filter out haplotypes

when c ≥ 31 or when v − c < 10. The first check (c ≥ 31) indicates that the

haplotype is well-supported in the control sequence set. In this case it is unlikely

that it represents a true difference between Gv and Gc. The second check requires

the support for a haplotype to be significantly stronger in the variant sequences

than the control sequences. The parameter of l (the number of times each k-mer

must be seen) is determined by the control sequences. If we are calling variants

between two sets of reads, we use l = 2 (every k-mer must be seen twice). If we

are calling variants against a reference genome we use l = 1.

4.3 Probabilistic realignment

To distinguish between sequencing errors and true variants, we use a probabilistic

model to determine how well each candidate haplotype is supported by the raw

read sequences. Our FM-index based approach easily allows this, as we are able

to efficiently extract the full sequence of each read from the index. Our realign-

ment method begins by extracting reads from the FM-index that may match one

of the assembled candidate haplotypes. These reads, along with the candidate

haplotypes, are the input into our Bayesian model.

86

4.3.1 Extracting Haplotype Reads from the FM-Index

Extracting a single indexed read from the FM-index is straightforward. Let Ri be

the read in the indexed sequence collection whose sequence we wish to extract.

From the definition of the BWT in section 2.4, we know that the suffix array

interval for the empty suffix of Ri is I = [i, i]. Correspondingly, the last base of

Ri is given by BR[i]. Let this base be denoted by b. We can use the function

updateBackward(I, b) from section 2.4 to calculate the suffix array interval for

the one-base suffix of Ri, consisting of the string b$. The corresponding character

in the BWT gives the second-last base of Ri. If we iterate this procedure until

we reach the $ symbol in the BWT string, we will have extracted the complete

sequence of Ri, as desired.

The procedure to extract haplotype reads is based on k-mer matches. Let

H be a haplotype that we wish to find reads for. Let K1, K2, K3...Kn be the

sequence of k-mers for a haplotype H. We use the FM-index (of Rv or C) to find

suffix array intervals for each of these k-mers. From these k-mer intervals, we

backtrack in the FM-index until we reach the terminating $ symbols. Once the

dollar symbols are reached, we use the lexicographic index (section 2.5.1) to map

from the lexicographic order of a read to its numeric index in R. These numeric

indices are then used in the procedure described in the previous paragraph to

extract the full read sequence.

As some reads will share multiple k-mers with a haplotype, the procedure

described above is inefficient. To account for multiple k-mers we cache visited

intervals during backtracking. If a previously visited interval is visited during

backtracking, we exclude that position from further consideration.

For each candidate haplotype we extract the reads from both Rv and C match-

ing the haplotype. The set of haplotypes and their matching raw sequence reads

are passed to the probabilistic model.

When performing multi-sample calling, like when calling variants present in a

low-coverage population of individuals, we need to associate with each read the

sample that it originated from. To do this, we create a single FM-index from all

samples. We construct the read set R such that all the reads for sample i are

before all reads for sample j. We can then build a simple interval index associating

87

a range of indices in R with which sample those reads came from. When extracting

read i from the FM-index, we can then return the sample identifier along with

the read sequence.

4.3.2 Probabilistic read-haplotype alignment

The purpose of realigning reads to candidate haplotype is to obtain the likelihoods

P (Ri|Hj, θ). Here, Ri is the sequence of read i as generated by the sequencing

machine and extracted from the FM-index in the previous section, Hj is the

sequence of candidate haplotype j assembled in section 4.2.3 or 4.2.4, and θ is

the vector of model parameters. As we do not currently use quality scores for the

read bases the model parameters include an assumption that each read base is

Q20. The parameters also include homopolymer sequencing error indel rates as

described in [Albers et al., 2011]. These read-haplotype likelihoods are combined

with a suitable prior probability distribution1 over the haplotypes to infer which

haplotypes are present in a sample or population of samples. The model that

underlies the likelihood P (Ri|Hj, θ) is the Bayesian network described previously

[Albers et al., 2011]. Here we use a fast approximate version of this model. The

approximation consists of testing only two seed alignments rather than all possible

alignments. The two seed alignments are computed using a 8-base hash of the

read and haplotype sequence.

4.3.3 Annotating variants in the candidate haplotypes

The strategy for calling sequence variation in a reference-free fashion is to first

determine which haplotypes are supported by the data, and only then to anno-

tate the haplotypes with respect to a particular coordinate system or reference

sequence. In principle the alignment of haplotypes to a reference sequence is

a post-processing step. However, there are several advantages of having haplo-

type mapping locations available during the inference of the haplotypes. The

confidence in a variant call depends on whether the haplotype(s) containing the

variant is supported by the data, and whether the haplotype can be confidently

1The choice of prior probability distribution depends on whether we are calling variants by
comparing two genomes or multiple individuals sequenced at low coverage

88

placed onto the reference. If one of these two factors is uncertain the variant call

quality will be low. Furthermore, it is desirable to have available a number of

statistics for each variant call that can be used for filtering. For instance, it is

useful to know how many reads cover the variant without any mismatch. To be

able to provide this information it is necessary to know all the possible mapping

locations of a haplotype to a given reference sequence. To the end-user it may be

also be useful to know that a novel haplotype is strongly supported by the data

but cannot be confidently placed.

4.3.4 Aligning haplotypes to a reference genome

We align the candidate haplotypes to the reference genome, Gr. Our alignment

method uses the FM-index of Gr to find l-mer seed matches between each hap-

lotype and the reference genome Gr. These candidate alignments are refined by

dynamic programming. During dynamic programming, we require a semi-global

alignment between the haplotype and the reference (we require an end-to-end

alignment of the haplotype but a local alignment to the reference). We do not

require the alignment of the haplotype to the reference genome to be unique.

For each candidate alignment, we calculate the number of edit events in the

alignment. An edit event is a contiguous stretch of differences in the alignment

between the haplotype and the reference (for example a 5bp deletion counts as

one event, not 5). We keep all alignments that have fewer than 9 edit events.

For a repetitive haplotype this may result in multiple locations with a reasonable

alignment score.

Each alignment location may result in a different set of variants. We also com-

pute a mapping quality for each mapping location using the haplotype-reference

alignment scores. This mapping quality will be used in the calculation of the

variant qualities as described below.

4.3.5 Comparative variant-calling

In comparative variant calling we have reads for both Gv and Gc and we wish to

detect variants that are only found in Gv but not Gc. A primary application of

comparative variant calling is finding somatically acquired mutations in a cancer

89

from a sequenced tumour-normal pair. We describe our comparative variant

calling model in these terms. Since a tumour sample is not clonal and many

contain entire chromosome duplications or loss, one can not assume a diploid

model. We therefore assume that the number of haplotypes present in the tumour

sample can be greater than two. For simplicity we made the same assumption

for the normal sample.

To deal with a possibly large number of haplotypes, we apply a model selection

approach to infer which haplotypes are supported by the reads. In this model

selection approach, haplotypes are iteratively added until the improvement to the

total score is below the minimum threshold required for adding a new haplotype.

After the model selection algorithm has converged, the haplotype frequencies are

estimated using the Expectation-Maximization algorithm [Dempster et al., 1977].

The scores for the haplotypes used in the model selection are defined as follows.

The increase to the total score by adding a candidate haplotype j to the model

is given by

∆Sj =
∑
i

(logP (Ri|Hj, θ)− si) , (4.1)

where

si = arg max
k∈selected haplotypes

logP (Ri|Hk, θ). (4.2)

For the first iteration, when no haplotypes have been selected yet, si is set to a

default minimum score. This minimum score is approximately log 10−6 (Q60), so

that in practice a read-haplotype alignment with more than indel (penalty of Q40

outside homopolymer runs) or four mismatches (Q20 per mismatch) will not be

above this minimum threshold. This minimum score prevents reads that do not

have a reasonable alignment to any of the candidate haplotypes from favoring one

haplotype over the other because of irrelevant differences in the read-haplotype

likelihood.

To estimate the probability that a candidate variant is a somatic variant,

a joint set of candidate haplotypes is created from the candidate haplotypes

detected in the normal sample and the candidate haplotypes detected in the

tumour sample. Conditional on the joint set of candidate haplotypes, inference

in the normal and the tumour sample can be performed independently.

90

The quality scores for a somatic variant v are next computed as follows:

P (v is somatic|Rnormal,Rtumour) = P (v is present|Rtumour)P (v is absent|Rnormal),

(4.3)

where P (v is present|Rtumour) is the probability that a haplotype containing the

variant v is present in the tumour, and P (v is absent|Rnormal) is the probability

that there is no haplotype containing the variant v in the normal sample. The

quality score for a variant being present in a sample is calculated as follows:

P (v is not present|Rsample) ≈∏
j∈selected,Hjcontains v

(
1− P (Hj is present|Rsample)P (Hj maps to reference location of v)

)
≈
∏
j

(
1−

(
1− exp(−∆Sj)

)
P (Hjmaps to reference location of v)

)
(4.4)

Thus, the variant quality takes into account both the uncertainty in the presence

of the haplotype containing the variant, as well as the uncertainty that each of

those haplotypes maps to the location of the variant.

4.3.6 Population calling

The algorithm for population calling is similar to the comparative variant-calling

algorithm. The main difference is the calculation of the increase in the score from

selecting a haplotype. Instead of Eq. 4.1 we use a multisample EM algorithm

to estimate the increase in the likelihood achieved by adding a haplotype j. The

log-likelihood for the model consisting of the candidate haplotypes selected in

iterations 1, . . . , k − 1 and candidate haplotype j in iteration k is defined as:

expLkj = max
fk−1,j

∏
i

∑
h1

i

∑
h2

i

P (h1
i |fk−1,j)P (h2

i |fk−1,j)
∏

l∈reads

(1

2
P (Rl

i|Hh1
i
, θ)+

1

2
P (Rl

i|Hh2
i
, θ)
)

(4.5)

Here h1
i and h2

i are indicator variables for the two haplotypes present in sam-

ple i; we explicitly assume a diploid model. P (Rl
i|Hh1

i
, θ) is the read-haplotype

likelihood computed by the probabilistic realignment algorithm for read l from

individual i. fk−1,j is the vector of haplotype frequencies that is estimated using

91

the EM algorithm. The frequencies fk−1,j are optimized subject to the constraint

that only the haplotypes selected in iterations 1, . . . , k − 1 and the candidate

haplotype j can have non-negative values; other candidate haplotypes (not yet

added to the model) are set to zero.

We then define the score as:

∆Sj = Lkj − Lk−1, (4.6)

with Lk−1 the log-likelihood of Eq. 4.5 for the candidate haplotype added at

iteration k − 1. Finally, in iteration k we add the candidate haplotype with the

largest ∆Sj to the model. Candidate haplotype are added to the model until

there is no candidate haplotype with a score ∆Sj above the threshold.

4.4 Discussion

In this chapter I described a framework for performing assembly based variant

calling with a probabilistic model. There are a number of improvements to this

model that could be made in the future. In section 4.2.2 we assume that a

variant k-mer does not appear in the control sequence set. In the case of high-

depth sequence data, there may be sequencing errors that generate k-mers in

the control sequences that match the variant k-mers by chance. These erroneous

k-mers may mask the presence of variant k-mers and cause our model to miss

variants. In practice this is not a significant problem because there is redundancy

in the k-mer detection step, as up to k k-mers may contain the variant sequence -

we will detect the variant k-mer if any of these is unique to the variant sequence

set. When k is greater than half the read length, the same sequencing error

would need to occur in multiple reads to mask all of these k-mers. Despite this

redundancy in detection, we are likely to lose some variant calls due to errors,

therefore this is a possible point of improvement.

In our probabilistic model, we do not use the per-base quality scores output

by the sequencing instrument. An obvious point of improvement is to incorporate

these into our model. Quality scores are typically encoded using a single ASCII

character, which requires one byte per base. If we naively recorded the quality

92

scores for each base, this amount of memory would be far larger than the size

of the FM-index to store the reads. In the future we intend to investigate other

means of storing and accessing the quality values, including compressed repre-

sentations (for example, Huffman coding) or downsampling the quality scores to

a smaller range (for example using 2 bits per score by quantizing the scores to 4

levels).

Two recently published programs also take an assembly-based approach to

variant calling. Cortex [Iqbal et al., 2012] builds a colored de Bruijn graph from

the sequence reads from multiple individuals. It then searches for diverging paths

in the graph, which are assembled into haplotypes. The haplotypes are mapped to

the reference genome in a post-processing step. While my fundamental approach -

finding divergent paths through an assembly graph built from multiple individuals

- is similar to Cortex there are a number of important differences. The FM-index

represents all de Bruijn graphs for k up to the read length. This allows flexibility

in parameter choice as the graph does not need to be reconstructed for every k.

Cortex represents the graph as a fixed hash table of k-mers and therefore needs to

construct a new graph for every k that is used. The FM-index also allows string

graph-based haplotype generation, as demonstrated in section 4.2.41. Finally, the

FM-index provides access to the full read sequences, allowing the haplotypes to

be assessed in our probabilistic model after assembly (section 4.3).

Fermi [Li, 2012] uses modified versions of the algorithms in Chapter 2 and

3 to assemble reads into contigs using a string graph. After assembly the con-

tigs are aligned to a reference genome and variants are parsed from the align-

ments. Fermi performs full assembly, in contrast to Cortex and the algorithms

described in this chapter which only assemble the haplotypes that are expected

to contain variation. The author of Fermi demonstrates impressive performance

for human genome variation detection, with SNP calling sensitivity approaching

that of mapping-based methods. However at this time Fermi is limited to single

samples and does not support comparing multiple individuals.

1In the following chapter the difference in performance between the de Bruijn graph and
string graph based approaches will be explored

93

