
Chapter 5

Assembly-Based Variant Calling

Results

5.1 Introduction

In the previous chapter, I described methods for finding sequence variation by

comparing sets of reads using a de Bruijn graph or string graph. In this chapter,

I explore this approach to variant calling.

In section 4.2.2 I proposed that k-mers unique to a particular genome (or set

of reads) can be used to discover candidate variant sequences. In section 5.2 I

test this idea by simulating random mutations in the human reference genome. In

sections 5.3 and 5.4 I test the full variant calling pipeline by simulating variants

and sequence reads. The benefit of using simulated data is that the true set of

variants is known, which allows direct calculation of the sensitivity and precision

of the variant calling procedure. However, these simulations do not model some

complications found in real data, like biased sequencing coverage, systematic

sequencing errors or large structural variants. The remainder of the chapter uses

real sequencing data from the Illumina platform. In section 5.5 I make variant

calls for an individual genome compared to the human reference sequence. The

variant calls for this individual are compared to previously published variants to

assess the performance of my method. In 5.6 I explore the false positive rate of

my variant caller.

94



In sections 5.7, 5.8 and 5.9 I apply my variant caller to three key variant calling

problems. In section 5.7 I call mutations that occur in the child of two parents

(de novo mutations) where all three individuals have been sequenced. Section

5.8 explores finding somatic mutations that occur during progression of cancer.

Section 5.9 describes the use of assembly-based variant calling for a population of

individuals, where each member of the population is sequenced at low coverage.

The data used in this section is part of the 1000 Genomes Project. The results in

this chapter demonstrate the performance of our algorithms and their software

implementation in a wide variety of contexts. In the last section of this chapter

the results are discussed in a broader context including future areas of work.

5.1.1 Implementation Note

The algorithms from Chapter 4 are implemented within my FM-Index assembler,

SGA. Version 0.9.30 of SGA was used for this chapter. The source code is freely

available online at www.github.com/jts/sga.

5.2 The power to detect variants using unique

k-mers

In section 4.2.2 I described an algorithm to find candidate variants between two

genomes, Gv and Gc, by finding k-mers unique to Gv. To assess the power of

detecting candidate variants using this approach, I performed a simulation by

introducing point mutations randomly into the human reference genome (build

GRC 37, preprocessed to remove sequence gaps). If any k-mer containing the

introduced point mutation is not found in the human reference genome (it is a

unique k-mer), I call the mutation detectable. If all k-mers containing the point

mutation are unique, I say that the mutation forms a clean bubble. I performed

this simulation for all k from 16 to 71. In each simulation, 10, 000, 000 random

mutations were introduced.

The results of this simulation are plotted in figure 5.1. When k = 21, 93.8%

of variants are detectable but only 63.6% of variants form clean bubbles. When

k = 51, 99.6% of variants are detectable and 93.7% form clean bubbles. These

95

www.github.com/jts/sga


results highlight the power of using unique k-mers for finding potential variants

- even for relatively small k most changes generate unique k-mers which we can

use to start the haplotype assembly process described in the previous chapter.

20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

P
ro

po
rt

io
n

Detectable
Clean Bubble

Figure 5.1: The k-mer detectability of point mutations introduced into the human ref-

erence genome. The black line indicates the proportion of introduced variants that are

detectable at a given k. The red line indicates the proportion of variants that form clean

bubbles.

5.3 Simulated single-genome variants calls

As an initial test of our complete variant calling algorithm, I generated two new

chromosomes derived from human chromosome 20. First, the human chromo-

some 20 sequence was pre-processed to remove “N”s from the reference without

changing the coordinate system by choosing a random base for each “N” symbol.

I then generated two sets of mutations - one set of homozygous changes and one

96



set of heterozygous changes. Each set contained random substitution mutations

at a frequency of 1 in 2, 000bp and random indel mutations at frequency 1 in

20, 000bp. The indel size was generated by starting at 1bp and extending the

event with probability 0.3. In total, 34, 701 homozygous and 34, 670 heterozy-

gous events were created. The heterozygous events were randomly partitioned

into two subsets. To derive the new chromosomes from chromosome 20, all ho-

mozygous events were applied to chromosome 20 and one of the two heterozygous

subsets using the tool FastaAlternateReferenceMaker from the Genome Anal-

ysis Toolkit [DePristo et al., 2011]. I will refer to the derived chromosomes as G1

and G2.

I sampled 20X read coverage from each of G1 and G2 (100bp reads, uniform

1% error rate) using DWGSIM1. The 20X read sets were mixed together into one

40X read set, which simulates random shotgun coverage of a diploid genome. I

built an FM-index from the 40X reads using the sga-bcr algorithm. Variant

calls were made by comparing these reads against the chromosome 20 reference

sequence. This is the reference-based calling mode of our program - the reference

genome serves as the set of control sequences. To assess the performance of

the de Bruijn graph haplotype generator (4.2.3) and the string graph haplotype

generator (4.2.4), calls were made using both modes. I will refer to these modes

as the de Bruijn graph caller and the string graph caller, respectively. To assess

the effect of the k-mer parameter, I ran multiple trials with each caller, using k

from 33 to 75 in increments of 3. A minimum of 5 variant k-mer occurrences were

required to trigger haplotype assembly.

Figure 5.2 plots the sensitivity (true positives / (true positives + false nega-

tives)) and precision ((true positives / (true positives + false positives)) for each

caller as a function of k. Here k refers to the variant detection k-mer for the

string graph caller and both the variant detection and haplotype assembly k-mer

for the de Bruijn graph caller.

1https://github.com/nh13/DWGSIM

97

https://github.com/nh13/DWGSIM


40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Single Genome Sensitivity

k

S
en

si
tiv

ity

String Graph
de Bruijn Graph

40 50 60 70
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

Single Genome Precision

k

P
re

ci
si

on
String Graph
de Bruijn Graph

Figure 5.2: Sensitivity (left panel) and precision (right panel) of reference-based calls

on simulated data. Note the different range of the y-axis in each panel.

The sensitivity of the de Bruijn graph method decreased sharply with increas-

ing k. This is due to the need to sample a k-mer for every position overlapping

the point of variation. When k is large there is insufficient read coverage to en-

sure that each position has been sampled. This has a weaker effect on the string

graph method, as k-mers are only used to detect the variant and a perfect tiling

of k-mers is not necessary. Additionally, by performing error correction the string

graph caller is able to recover some k-mers that are lost to the de Bruijn graph

caller due to sequencing errors.

The peak sensitivity for the de Bruijn method was 0.9476 at k = 42. At this

k, 96.16% of the homozygous variants were found and 93.34% of the heterozy-

gous variants were found. The increased sensitivity for homozygous variants is

expected as they have twice the sequence coverage as heterozygous differences.

The sensitivity for indels was slightly higher than that of SNPs (0.9553 vs 0.9469).

The peak sensitivity for the string graph method was 0.9770 at k = 36. At

k = 36, the string graph method recovered 98.50% of the homozygous variants

and 96.88% of the heterozygous variants. Like for the de Bruijn graph method,

the sensitivity for indels was slightly higher than that of SNPs (0.9821 and 0.9764,

98



respectively).

At the k-mer chosen to maximize sensitivity the precision of the two meth-

ods was 0.9445 (de Bruijn graph) and 0.9781 (string graph). Of the 3, 865 false

positive calls for the de Bruijn graph method, 360 (9.3%) are within annotated

segmental duplications of the human genome1. The string graph method gen-

erated 1, 520 false positives at k = 36, 1, 289 (85%) of which are in segmental

duplications. The lower precision for the de Bruijn graph method is due to the

low k-mer used to maximize sensitivity. When a low k-mer is chosen, it is much

more likely that a complete bubble forms around sequencing errors. As an illus-

tration of this principle consider the case when k is less than half the read length.

When an error occurs in the middle of the read, the erroneous k-mers may be

flanked by correct k-mers at the ends of the read. This sequence of k-mers will

generate a complete path in the de Bruijn graph between the correct k-mers.

When k is high, this situation is much less likely to occur as the sequencing error

would need to occur in multiple reads for a complete bubble to form. This effect

will be offset to an extent by the requirement that each variant k-mer is seen in

at least 5 reads.

In practice the string graph caller with k in the range 50 − 60 gives better

precision (0.9912 to 0.9937) and good sensitivity (0.9690 to 0.9435). For this

reason, the default k-mer is set to 54.

5.3.1 Computation Requirements

The de Bruijn graph caller is significantly faster than the string graph caller

(10.4 CPU hours versus 24.5 CPU hours, respectively). As both algorithms use

the same compressed FM-index, both modes have the same peak memory usage

of 1.5GB.

5.4 Simulated genome comparison

Our variant calling model is designed to directly detect variation between two

related genomes by directly comparing their sequence reads. I designed a second

1as annotated by the UCSC genome browser

99



simulation to test this method. I started from the pair of chromosomes G1 and

G2 used in the previous simulation. I generated a new set of substitution variants

at frequency 1 in 10, 000bp and indels at 1 in 100, 000bp. These variants were

split into two sets and one set was applied to G1 and one set was applied to G2

to generate two new genomes G3 and G4
1. I sampled 20X coverage from each of

G3 and G4 and mixed the reads into one 40X set. Let RA be the reads generated

from G1 and G2 in the previous section and RB be the new reads generated from

G3 and G4 in this section. I made comparative calls using RB as the variant

sequences and RA being the control sequences. Chromosome 20 was used as the

reference genome. To trigger assembly, a unique k-mer in RB must occur at least

5 times in the RB reads and not be present in RA. Again I used both the de

Bruijn graph caller and string graph caller over a range of k.

The results are presented in figure 5.3. The overall trend - that sensitivity

decreases as a function k - is similar to the single-genome assessment. At peak

sensitivity, the string graph method made slightly more calls (sensitivity 0.9290

at k = 45) than the de Bruijn graph method (sensitivity 0.9205 at k = 36) and

was more accurate (precision 0.9954 vs 0.9752). As in the previous simulation

the sensitivity to detect indels was slightly higher (string graph 0.9489 vs 0.9271,

de Bruijn graph 0.9425 vs 0.9183).

1Note this implies all variants are heterozygous in this simulation

100



40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Paired Genome Sensitivity

k

S
en

si
tiv

ity

String Graph
de Bruijn Graph

40 50 60 70
0.

90
0.

92
0.

94
0.

96
0.

98
1.

00

Paired Genome Precision

k

P
re

ci
si

on
String Graph
de Bruijn Graph

Figure 5.3: Sensitivity (left panel) and precision (right panel) of the simulated genome

comparison. Note the different range of the y-axis in each panel.

5.4.1 Computation Requirements

The de Bruijn graph caller required 10.3 CPU hours to make calls at k = 36. The

string graph caller required 11.4 CPU hours at k = 45. Despite having the same

number of reads as the reference-based simulation in the previous section both

programs were faster in a comparative calling framework. This is particularly true

for the string graph caller, which required less than half the time. These results

highlight that the number of variants is a crucial determinant of the runtime of

the program. The memory usage for both modes was 2.4GB.

5.5 Reference-based Substitution Calls

The results presented above validates that our assembly-based variant calling

method can recover the vast majority of simulated SNPs and indels, while retain-

ing high accuracy. Real sequencing data is more challenging however as sequence

bias, systematic errors and large structural variants complicate variant calling.

To explore the application of our approach to real data, I made reference-based

101



calls for an individual genome. I used 100bp Illumina sequence data from the

NA12878 individual of the CEU population, which has been extensively studied

before [Conrad et al., 2011; DePristo et al., 2011; Simpson and Durbin, 2012]. The

input data set is available online at ftp://ftp.1000genomes.ebi.ac.uk/vol1/

ftp/technical/working/20120117_ceu_trio_b37_decoy/. I used human chro-

mosome 20 as a test case. Reads for this chromosome were extracted from the

whole genome BAM file. An FM-index of this subset of reads was created using

the sga-bcr algorithm. When aligning haplotypes to the reference, I did not limit

the alignment to chromosome 20 but rather used the entire reference genome as I

found that this helped to reduce the number of false positive variants due to the

input reads being mapped to the wrong chromosome. I made two call sets, one

using the full set of reads (over 80X coverage) and one using half of the reads. As

before, calls were made using both the de Bruijn graph caller and string graph

caller.

As the true differences between NA12878 and the reference genome are un-

known, I cannot directly evaluate the sensitivity and precision of my variant calls.

Instead, I assessed the completeness of my call set by calculating the proportion

of mapping-based calls that were found by the assembly callers. The mapping-

based calls are from the publication of the GATK variant caller [DePristo et al.,

2011]. As a measure of the accuracy of my calls, I compared the calls to variants

present in dbSNP v1.32. This build of dbSNP contains variants found by the pilot

project of the 1000 Genomes Project which includes NA12878 as a sample. Both

of these assessments are restricted to SNP calls. The results are summarized in

figure 5.4.

102

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20120117_ceu_trio_b37_decoy/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20120117_ceu_trio_b37_decoy/


40 50 60 70

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Proportion of GATK SNPs Found

k

P
ro

po
rt

io
n

String Graph
de Bruijn Graph

40 50 60 70
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

Proportion of SNPs in DBSNP v1.32

k

P
ro

po
rt

io
n

String Graph
de Bruijn Graph

Figure 5.4: The left panel plots the proportion of mapping-based SNP calls using GATK

that were found by the de Bruijn graph and string graph callers as a function of k. In

the right panel, the proportion of SNP calls that are found in dbSNP v1.32 is plotted.

The peak proportion of mapping SNP calls recovered by the string graph

method was 0.8764 at k = 51. For the de Bruijn graph method, the peak was

0.8512 at k = 54. The performance of the string graph caller was more consistent

across the range of k. The proportion of variants found by the de Bruijn graph

caller dropped at low and high k-mer values, highlighting the importance of care-

fully choosing this parameter. Both methods were accurate when assessed by the

number of variant calls that are already present in dbSNP v1.32 - 96.88% for the

string graph calls (k = 51) and 96.74% for the de Bruijn graph calls (k = 54)

were in dbSNP.

When downsampling the coverage to 42X, the differences between the algo-

rithms become more apparent (figure 5.5). The peak proportion of mapping calls

dropped from 0.8764 to 0.8498 for the string graph method (k = 39) and 0.8512

to 0.8248 for the de Bruijn graph method (k = 45). The profile of the de Bruijn

graph caller was similar to the results for simulated data in section 5.3 - there was

a steep drop in sensitivity for large k due to lack of coverage. The accuracy was

largely unaffected by the decrease in coverage. The proportion of SNPs found

103



in dbSNP v1.32 for the string graph method at k = 39 was 97.25%. For the de

Bruijn graph method the dbSNP proportion was 96.87% at k = 45.

40 50 60 70

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Proportion of GATK SNPs Found

k

P
ro

po
rt

io
n

String Graph
de Bruijn Graph

40 50 60 70

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Proportion of SNPs in DBSNP v1.32

k

P
ro

po
rt

io
n

String Graph
de Bruijn Graph

Figure 5.5: The proportion of mapping-based SNPs found (left) and the proportion of

our SNP calls contained in dbSNP v1.32 (right) for the downsampled data set.

To further characterize the performance of my assembly based variant caller,

I investigated the variant calls that were found by the mapping-based caller

(GATK) but not called by the assembly-based callers. In total, GATK called

75, 838 substitutions on chromosome 20. Of these, 42, 686 (56.3%) are in known

segmental duplications or repetitive elements masked by RepeatMasker1. The

string graph caller (k = 51) did not find 9, 391 GATK calls in the high depth

(>80X) data set. Of these 8, 093 (86.2%) lie within annotated repeats. Similarly

the de Bruijn graph caller (k = 54) missed 11, 300 variants, 9, 714 (86.0%) of

which are in known repeats. This suggests that our ability to make assembly

calls is higher in non-repetitive regions of the genome. This is expected as repet-

itive regions will lead to a more complicated assembly graph making it less likely

that clean haplotypes can be assembled. It is also possible that the false positive

rate of the mapping caller is higher in these difficult regions of the genome.

1Annotations were downloaded from the UCSC genome browser

104



5.6 Estimating the background error rate for

comparative variant calling

I used the NA12878 sequence data to estimate the false positive rate of our

comparative variant caller. I split the NA12878 chromosome 20 reads into two

subsets of approximately 40X each by randomly assigning each read pair to one

of two files. I will refer to these two halves as H1 and H2. I made comparative

calls by using H1 as the variant sequences and H2 as the control sequences. As all

the reads were drawn from the same individual no variants should be called - all

variants found by this procedure are false positives either due to sequencing errors,

assembly errors or incorrectly aligning the assembled haplotypes to the reference

genome. As before, I ran the caller in both the string graph mode and de Bruijn

graph mode over a range of k. I required 5 occurrences of a k-mer to trigger

variant assembly. I classified the errors into three categories - substitutions,

indels in homopolymer sequences (a string of ≥ 7 or more occurrences of the

same base) or indels outside of homopolymers. The results are summarized in

table 5.1. The number of false positive calls drops sharply with increasing k. In

all cases, the majority of false positive calls are due to mis-calling the length of a

long homopolymer run. This is likely due to the increased sequencing error rate

associated with these regions [Albers et al., 2011; Li, 2012].

105



Table 5.1: False positive variant calls found by splitting the NA12878 chromosome 20

data into two halves. The variants are classified into substitutions (Subs), indels outside

of homopolymer runs (non-HP indels) and indels within homopolymer runs (HP indels).

de Bruijn Graph Calls String Graph Calls

k Subs Non-HP indels HP indels Subs Non-HP indels HP indels

33 41 6 118 15 2 48

36 24 6 112 13 4 50

39 20 7 97 15 3 48

42 18 6 83 16 2 45

45 8 4 71 16 2 46

48 5 3 55 16 1 47

51 11 2 39 12 1 44

54 3 2 31 14 1 39

57 1 2 15 10 1 30

60 2 2 6 10 1 22

63 2 0 4 7 1 18

66 0 1 2 6 1 17

69 0 1 2 7 2 9

72 0 0 0 2 2 5

75 0 0 0 2 3 3

5.7 Calling de novo mutations in a trio

I will now describe the application of our comparative variant caller to real se-

quencing problems. The first problem I will address is the discovery of de novo

mutations. These are mutations that occur in the germline of an individual’s

parents and are subsequently passed along to the child. De novo mutations have

been implicated in a number of human diseases including schizophrenia [Girard

et al., 2011] and autism [Sanders et al., 2012]. To find de novo mutations the

genome of a child is sequenced along with the genome of both of its parents (this

is commonly referred to as a sequencing a “trio”). Conrad et al. [2011] devel-

oped an algorithm to call de novo mutations using reads mapped to a reference

genome. Their framework considers the three individuals jointly in a Bayesian

106



framework1.

I used our assembly-based approach to call de novo mutations in a trio from

the CEU population, which was also studied by Conrad et al. [2011] using lym-

phoblastoid cell line DNA. It is known there are many somatic cell line mutations

in this sample. The individual NA12878 used in section 5.5 is the child in this

trio. Conrad et al. used early Illumina sequencing data from the pilot of the 1000

Genomes Project. In this section, I use more recent data consisting of 101bp

reads2. In this data set, NA12878 was sequenced to 81X depth. The parents

were sequenced to 71X (identifier NA12891) and 70X (NA12892). I used the

read set of the child, Rc, as the variant sequences and the union of the read sets

from the two parents, Rp, as the control set. For computational convenience, I

made calls chromosome-by-chromosome by taking reads mapped to the reference

genome and separating them into subsets based on the chromosome the reads

mapped to. While this introduces a weak bias towards the reference genome, I

believe this drawback is offset by the reduction in run time and memory usage.

I used k = 54 when making calls and required 5 occurrences of a variant k-mer

to trigger assembly. Candidate haplotypes were mapped to the full reference

genome.

In Conrad et al.’s original paper, they selected a large number of calls for

experimental validation. The selected calls were validated by PCR amplifica-

tion followed by Illumina sequencing or target enrichment followed by SOLiD

sequencing. As the first measure of the performance of my software on calling de

novo mutations, I compared our calls to the successfully validated mapping calls.

The results are presented in table 5.2. In total, the de Bruijn graph caller found

908 of the 936 (97.0%) of the validated subset of calls. The string graph caller

found 898 of 936 (95.6%). While these results are encouraging, it is worth noting

that the calls selected for validation were filtered to avoid difficult regions of the

genome. Mapping-based calls in simple repeats, known copy number variants,

segmental duplications or in dbSNP v1.29 were excluded from this validation set.

Additionally, sites without read coverage in all three individuals or near a short

1Details can be found in [Conrad et al., 2011]
2ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20120117_ceu_

trio_b37_decoy/

107

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20120117_ceu_trio_b37_decoy/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20120117_ceu_trio_b37_decoy/


polymorphic indel were removed. In total, these filters excluded 468 Mbp of the

genome.

Table 5.2: Chromosome by chromosome breakdown of the number of de novo substi-

tution calls in the validation set and for the de Bruijn (DBG) and string graph (SG)

callers.

Chr. Validated DBG Calls Found by DBG (%) SG Calls Found by SG (%)

1 51 184 51 (100.0%) 199 50 (98.0%)

2 63 235 63 (100.0%) 267 61 (96.8%)

3 71 201 71 (100.0%) 219 70 (98.6%)

4 100 252 97 (97.0%) 276 99 (99.0%)

5 92 187 92 (100.0%) 213 92 (100.0%)

6 64 176 60 (93.8%) 190 58 (90.6%)

7 64 115 60 (93.8%) 118 59 (92.2%)

8 75 155 73 (97.3%) 165 72 (96.0%)

9 58 128 56 (96.6%) 146 57 (98.3%)

10 47 113 45 (95.7%) 131 45 (95.7%)

11 27 128 26 (96.3%) 144 26 (96.3%)

12 17 89 16 (94.1%) 95 15 (88.2%)

13 31 119 30 (96.8%) 128 30 (96.8%)

14 31 121 29 (93.5%) 129 28 (90.3%)

15 28 94 28 (100.0%) 104 28 (100.0%)

16 23 63 21 (91.3%) 73 18 (78.3%)

17 20 49 20 (100.0%) 64 20 (100.0%)

18 33 80 30 (90.9%) 89 30 (90.9%)

19 8 97 7 (87.5%) 114 7 (87.5%)

20 22 62 22 (100.0%) 69 22 (100.0%)

21 8 24 8 (100.0%) 38 8 (100.0%)

22 3 27 3 (100.0%) 31 3 (100.0%)

total 936 2699 908 (97.0%) 3002 898 (95.9%)

The assembly-based callers found thousands of substitutions that are not

present in the validation set. To get a more complete measure of the perfor-

mance of the assembly caller, I compared the assembly calls to the raw output of

108



Conrad’s caller, DeNovoGears. Here I did not use the same DeNovoGears callset

as in [Conrad et al., 2011] but rather I used an updated call set using the most

recent version of the program (v0.3) on the recent 101bp sequencing data 1. I

parsed the raw DeNovoGear output to remove SNP calls that had a posterior

probability of being a de novo mutation less than 0.75. After this filter, 4488

calls remained. 2006 of the 2699 de Bruijn graph SNP calls (74.3%) are found in

this set of DeNovoGears calls. For the string graph caller, 2003 of 3002 (66.7%)

are found in the DeNovoGear set. This suggests that the majority of the assembly

substitution calls are true de novo mutations, not false positives.

The de Bruijn graph caller made 2,157 indel calls. After filtering out indels

that occur in homopolymers of length 7 or greater, 245 indels remain. The String

Graph caller made 2,795 indel calls, 321 of which are not in homopolymer runs.

In both call sets the non-homopolymer events are biased towards deletions. In

the de Bruijn graph call set the ratio of deletions to insertions is 4.3:1. In the

string graph call set the ratio is 3.2:1.

5.8 Cancer mutations

As a second test of our comparative assembly algorithm, I called mutations in a

human breast cancer. A typical cancer sequencing experiment sequences a tumor

along with the individual’s matched normal genome. Variants found only in the

tumor are putative somatic mutations. In this test, I used a breast cancer sample

sequenced at the Sanger Institute as part of the Cancer Genome Project. The

tumor read set consists of 1.65 billion 100bp reads (55X). The matched normal

genome has 1.32 billion reads (44X). This data set was recently used as part of

a large project to catalog mutations [Nik-Zainal et al., 2012a] and mutational

history [Nik-Zainal et al., 2012b] in 21 breast cancers. Finding cancer mutations

is a more difficult use case than other applications as tumors typically exhibit

subclonal structure and some mutations are found only in a subset of tumor cells.

In addition the tumor is typically not an entirely pure sample and is contaminated

with normal tissue. For this reason, some mutations will be covered by few reads.

1These calls are provided by Art Wuster of the Hurles lab

109



To account for this I used a lower number of required k-mer occurrences to trigger

assembly, 3. As in the trio variant calling, I used k = 54.

In the framework of my comparative variant caller the reads from the tumor,

RT , are the variant reads, and the reads from the normal, RN are the control

set. As in the trio experiment I made calls chromosome-by-chromosome. As part

of the Cancer Genome Project’s standard pipeline they call somatic mutations

from the mapped reads using in-house software. In table 5.3 I compare CGP’s

mapping calls to the assembly calls. Of the 10, 381 calls found by CGP’s mapping

based caller, the de Bruijn graph caller found 8,035 (77.4%). The string graph

caller found 8, 593 (82.8%). There is a noteworthy excess of substitutions on

chromosome 6. Closer inspection revealed a dense cluster of C>T transitions on

this chromosome. These events occurred primarily in a TpC context (TC>TT

substitution). As these C>T events are in close proximity, they often assemble

into a single haplotype. Using the string graph calls as an example, the most

divergent chromosome 6 haplotype assembled had 35 C>T mutations. Nik-Zainal

et al. studied this hypermutation phenomenon in detail in [Nik-Zainal et al.,

2012a].

110



Table 5.3: Chromosome-by-chromosome breakdown of the substitutions called in the

breast cancer tumor.

Chr. Mapping Calls DBG Calls Found by DBG (%) SG Calls Found by SG (%)

1 783 807 612 (78.2%) 973 647 (82.6%)

2 849 827 660 (77.7%) 946 699 (82.3%)

3 632 590 489 (77.4%) 678 537 (85.0%)

4 645 613 502 (77.8%) 678 536 (83.1%)

5 480 438 366 (76.2%) 482 393 (81.9%)

6 1286 1262 1050 (81.6%) 1313 1082 (84.1%)

7 837 921 661 (79.0%) 1096 717 (85.7%)

8 459 457 352 (76.7%) 519 377 (82.1%)

9 296 309 222 (75.0%) 357 241 (81.4%)

10 519 499 399 (76.9%) 592 422 (81.3%)

11 429 431 329 (76.7%) 491 349 (81.4%)

12 391 419 311 (79.5%) 490 330 (84.4%)

13 247 224 186 (75.3%) 249 204 (82.6%)

14 186 178 143 (76.9%) 215 157 (84.4%)

15 192 185 146 (76.0%) 220 157 (81.8%)

16 260 282 194 (74.6%) 379 211 (81.2%)

17 181 205 113 (62.4%) 241 136 (75.1%)

18 379 396 316 (83.4%) 463 328 (86.5%)

19 128 144 81 (63.3%) 213 93 (72.7%)

20 228 318 176 (77.2%) 387 178 (78.1%)

21 198 197 151 (76.3%) 240 163 (82.3%)

22 95 107 66 (69.5%) 169 76 (80.0%)

X 681 661 510 (74.9%) 701 560 (82.2%)

total 10381 10470 8035 (77.4%) 12092 8593 (82.8%)

The Cancer Genome Project validated 309 of the substitution calls made by

their mapping-based caller. Of these 309, 255 were found by the de Bruijn graph

caller (82.5%) and 270 (87.4%) were found by the string graph caller.

The de Bruijn graph caller made 4, 499 indel calls, 974 of which are not in

a homopolymer run. For the string graph caller 4, 510 indel calls were made,

1, 104 outside of homopolymers. The Cancer Genome Project called indels on

111



this sample using Pindel [Ye et al., 2009], 333 of which were validated. Of the

333 validated indels, 297 (89.2%) were found by the de Bruijn graph caller and 293

(88.0%) were found by the string graph caller1. A number of the assembly indel

calls are near a CGP validated indel but did not have the exact same sequence. If

I relax the matching criteria to only require the assembly call to be within 20bp of

the CGP event, the number of matching events increases to 320 for the de Bruijn

graph caller (96.1%) and 319 for the string graph caller (95.8%)2. The reasons

that the breakpoint sequences differ in these cases remains to be investigated.

Our probabilistic realignment method estimates the allele frequency of vari-

ants. In the context of cancer sequencing, this is an estimation of the proportion

of chromosomes present in the entire tumor sample (including non-cancerous

contaminating tissue) that harbors a particular mutation. Figure 5.6 plots the

distribution of allele frequencies for the substitutions called by our string graph

method. If mutations occurred on one of the two chromosomes at random and the

mutated chromosome was present in all cells of the tumor, we would expect the

allele frequencies to be distributed around 0.5. However as cancers continuously

accumulate mutations as they evolve, all cells will not contain every mutation.

Additionally, contamination by normal tissue will shift the allele frequency dis-

tribution towards lower frequency. These effects are shown in figure 5.6 as the

median allele frequency is 0.225.

1Homopolymer indels were included in this analysis
2Calculated with BEDTools’ intersectBED program

112



String Graph Substitution Allele Frequency Distribution

Allele Frequency

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0
80

0

Figure 5.6: The allele frequency distribution for substitution calls made by the string

graph caller

To assess the accuracy of our allele frequency estimates, I compared our es-

timates to those made by CGP’s mapping-based pipeline. The allele frequency

estimates for variants common to both call sets is plotted in figure 5.7. Our al-

lele frequency estimates are well-correlated to those of the mapping based caller

(r = 0.957).

The string graph substitution call set contains 447 substitutions with esti-

mated allele frequency 1.0. Few of these calls are also contained in the CGP

call set (figure 5.7). Of the 447 high allele frequency substitution calls, 376 are

found in dbSNP v1.32. This suggests these calls are probably homozygous SNPs

that are incorrectly called as somatic mutations. The likely cause for these false

positives is poor sequence coverage of the sites in the matched normal sample.

113



Figure 5.7: The allele frequency calculated by the string graph caller (x-axis) and CGP

(y-axis) for calls made a common sites

Finally, I assessed the functional consequences of the string graph calls. Using

the Variant Effect Predictor provided by Ensembl [Flicek et al., 2012; McLaren

et al., 2010], I predicted the effect of all substitution mutations and all non-

homopolymer indels. Ensembl release version 66 was used. My mutation call

set had 3 frameshift mutations, including a single base deletion in the important

tumor suppressor TP53. This variant was also found by the CGP and experimen-

tally validated. Two substitution mutations generated new stop codons. There

are 47 non-synonymous coding mutations and 32 synonymous changes.

114



5.8.1 Analysis Notes

The mapping-based variants, their estimated allele frequencies and validation

status were provided by Serena Nik-Zainal of the Cancer Genome Project. The

CGP variant calls were made by Caveman, an in-house caller.

5.9 Low-Coverage Population Calls

Finally, I used the assembly-based variant caller on low-coverage human popu-

lation sequencing. The data used is from Phase 2 of the 1000 Genomes Project

[1000 Genomes Project Consortium, 2010]. I used all reads mapping to chromo-

some 20 for the African continental group (LWK, YRI, ASW, ACB populations).

Only individuals that had 75bp reads or greater were included. This subset of

the data contains 191 individuals. I used the de Bruijn graph caller for this data

set with a k-mer size of 61. Five occurrences of a k-mer were required to trigger

assembly and five occurrences of a k-mer were required to use it in the de Bruijn

graph (m parameter in generateDeBruijnHaplotypes).

The de Bruijn graph caller found 218, 852 single nucleotide polymorphisms,

35, 846 indels and 2, 246 multi-nucleotide polymorphisms1. To assess the accu-

racy of my call set, I calculated the transition/transversion ratio of the SNP

variants and the proportion of variants that were previously found. For com-

pletely random mutations in random sequence the transition/transversion ratio

(Ti/Tv) would be 1:2. In actual sequence however transitions are more likely to

occur [Wakeley, 1996]. The transition/transversion ratio of the chromosome 20

calls for African samples in phase 1 of the 1000 Genomes Project is 2.37. The

transition/transversion ratio of my call set is 2.20:1. To assess the novelty of my

calls, I compared the SNP calls to dbSNP v1.32, which contains calls for the pilot

data of the 1000 Genomes Project. 89.68% of my SNP calls are known variants.

In addition to SNPs and MNPs, I called 35, 846 indels. To assess the accuracy

of my indel calls, I calculated the ratio of in-frame indels (those that do not

change the reading frame of protein translation) versus the number of frameshift

mutation. As it is expected that frameshift mutations are significantly damaging

1Block substitutions of length > 1

115



to protein function, very few frameshift mutations are expected. My call set

contains 14 in-frame and 14 frameshift indels.

Our population caller estimates genotype likelihoods for each sequenced indi-

vidual and uses these likelihoods to estimate allele frequencies in the population.

The allele frequency distribution for the de Bruijn graph SNP and indel calls is

presented in figure 5.8. As the assembly based caller requires significant read

coverage of each variant sequence to successfully assemble it into a haplotype, we

have reduced power to detect low-frequency variants (allele frequency < 5%).

SNP Allele Frequency Distribution

Allele Frequency

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

Indel Allele Frequency Distribution

Allele Frequency

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00
30

00

Figure 5.8: The allele frequency distribution for SNP and Indel calls on the AFR

continental group of the 1000 Genomes Project

I also compared my indel calls to the mapping-based indel calls from phase 1

of the 1000 Genomes Project1. The mapping-based calls were made from 1,094

individuals. I made a subset of the phase 1 calls consisting of calls on chromosome

20 that are not contained in the “excluded” calls file2. The mapping-based indel

1The calls were downloaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/
analysis_results/consensus_call_sets/indels/ALL.wgs.VQSR_V2_GLs_polarized.
20101123.indels.low_coverage.sites.vcf.gz

2ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/
supporting/excluded_indel_sites/ALL.wgs.excluded_sites_20120312.20101123.
indels.sites.vcf.gz

116

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/consensus_call_sets/indels/ALL.wgs.VQSR_V2_GLs_polarized.20101123.indels.low_coverage.sites.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/consensus_call_sets/indels/ALL.wgs.VQSR_V2_GLs_polarized.20101123.indels.low_coverage.sites.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/consensus_call_sets/indels/ALL.wgs.VQSR_V2_GLs_polarized.20101123.indels.low_coverage.sites.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/excluded_indel_sites/ALL.wgs.excluded_sites_20120312.20101123.indels.sites.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/excluded_indel_sites/ALL.wgs.excluded_sites_20120312.20101123.indels.sites.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/excluded_indel_sites/ALL.wgs.excluded_sites_20120312.20101123.indels.sites.vcf.gz


call set contains few calls of length greater than 20bp. Despite using far fewer

samples, the assembly call set contains many more large indels, demonstrating

the benefit of assembly approaches for finding complex variation (figure 5.9).

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●● ● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

−40 −20 0 20 40

1

10

100

1000

10000

Indel size (bp)

C
ou

nt

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Assembly Calls
Phase1 calls

Figure 5.9: The distribution of insertion (positive) and deletion (negative) lengths for

the 1000 Genomes data set. The data set consists of 35, 846 assembly indel calls (black

points) and 64, 319 mapping calls from Phase 1 of the 1000 Genomes Project (red

points). Events larger than 50bp were excluded from this plot.

5.9.0.1 Computation Requirements

Constructing the FM-index for the population required 162 CPU hours (59 hours

elapsed time). The peak memory usage during index construction was 26GB.

Variant calling required 359 CPU hours. Variant calling was run using 16 com-

putation threads, which allowed the task to complete in 29 wall-cloock hours.

117



The peak memory usage during variant calling was 39GB.

5.10 Discussion

In this chapter, I explored the properties of our assembly-based approach to vari-

ant calling. On simulated data, the assembly-based caller recovered the majority

of variants while retaining high accuracy. For real data, some power is clearly

lost when compared to mapping-based approaches. It is an open question of how

many of the “missed” mapping-based variants are true SNPs or indels and how

many are false positives. Assembly-based calling requires higher coverage than

mapping so it is expected that some true variants will be missed due to insuffi-

cient sequence depth. Likewise, we do not yet use read pairs in our haplotype

generation functions. This may lead to a loss of power in difficult to assem-

ble regions, which is reflected by the fact that most of the GATK SNPs that we

missed in NA12878 are found in annotated repeats. Despite these limitations, the

assembly-based approach is promising. The assembly-based caller found most of

the validated de novo mutations in the trio and validated indels in the cancer sam-

ple. The indel size distribution on the 1000 Genomes data suggests the assembly

caller has better representation of large events when compared to mapping-based

approaches.

Assembly-based variant calling is a new technique. Cortex [Iqbal et al., 2012]

and Fermi [Li, 2012] were published this year - the algorithms described in this

work were developed in parallel. I did not directly compare to Cortex and Fermi

due to the practicalities of running these programs on the range of data sets

presented here. A comparison and assessment including Cortex, SGA and state

of the art mapping and local reassembly methods is underway for phase 2 of the

1000 Genomes Project. This upcoming assessment should help demonstrate the

pros and cons of assembly based approaches.

118


