1 Introduction

A decade ago, large-scale genome-wide association studies (GWAS) conducted as part of
the Wellcome Trust Case Control Consortium led to the discovery of 24 genomic loci
associated with common human diseases (Wellcome Trust Case Control Consortium 2007).
Prior to this, linkage mapping in human pedigrees had been successful in identifying genes
and genetic variants leading to Mendelian diseases, but had largely failed for complex traits.
Although the amount of phenotypic variation explained by these GWAS associations was
small, they provided the first unbiased, genome-wide view of the genetic architecture of
complex traits. Since then, GWAS have been done with increasing sample sizes for many
human traits, leading to thousands of genomic loci associated with hundreds of traits.
However, at the vast majority of these loci the causal variants and molecular mechanisms
are uncertain. At present, most GWAS associations only represent leads into a wealth of
underlying biology that will require new data and new methods to unravel. If we can do so,
there is the promise that they will lead to a new understanding of complex traits, and new

treatments for common diseases that together affect a large fraction of the population.

In this chapter, | outline the reasons that determining the causal variants and mechanisms
behind GWAS associations is so challenging. | discuss how studies of molecular traits can
provide insight into the functionality of different genomic regions, and introduce the reference
datasets that many of my analyses are based on. Some human cell types are difficult to
access, but differentiating specific cell types from induced pluripotent stem cells (iPSCs) can
enable studying molecular traits in these cells in vitro. | provide background to the use of
iPSC-derived cells as model systems, as well as the challenges to their use. Finally, | review
existing methods that use functional genomic data to predict the functionality of genetic

variants, and to fine-map causal variants at GWAS loci.

1.1 The challenge of determining mechanisms
underlying complex trait genetic associations

1.1.1 Common variants with small effects

A complex trait is one that is not determined by a single locus with a large effect, and can
include anthropometric traits such as height, molecular traits such as metabolite levels, or
risk for common diseases like cancer or type 2 diabetes. An early observation from GWAS
was that across many human traits, the effect sizes of the loci discovered were small.

Moreover, even for the most highly powered studies, the fraction of trait heritability explained
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by all genome-wide significant loci together was also small, typically below 10%. This came
to be termed the problem of “missing heritability” (Manolio et al. 2009). Based on this, some
criticized the principle behind GWAS, suggesting that rare variants may explain more
heritability than the common variants which GWAS is well-powered to discover (McClellan
and King 2010). However, recent work has shown that when all assayed variants are
accounted for, more than 30% of heritability can be explained by common variants for many
complex traits (Speed et al. 2017), and for one of the most highly powered GWAS, human
height, more than 50% is explained by all common variants at current sample sizes (Yang et
al. 2015). This is supported more directly by large-scale sequencing, which for type 2
diabetes has shown that low-frequency and rare variants appear to play only a minor role in
disease risk (Fuchsberger et al. 2016). It appears that, to understand the genetic contribution
to complex traits, unraveling the biology behind common variant GWAS associations is

essential.

It is common to refer to “causal variants” for complex traits, but it is not always explicit what
this means. For Mendelian diseases the picture is clearer: most such diseases have high
penetrance, and a single mutation either occurs de novo or segregates within a family along
with a clear phenotype. The vast majority of Mendelian diseases with known genetic causes
have been explained by mutations in protein-coding genes (Chong et al. 2015). In contrast,
GWAS now routinely discover dozens of loci associated with individual complex traits. At
each locus, there are usually many variants statistically associated with the trait, and it is
assumed that only one or a small number of these variants causally influence the trait. Here,
causal means that some molecular mechanism links a particular variant to the trait, and that
having a different allele of that variant would alter the quantitative trait or the risk for disease.
Because the effects of these loci are small, a given causal variant has only a minor influence
on the value of a quantitative trait. Similarly, for common diseases a causal risk variant is

neither necessary nor sufficient to cause disease.

Pathway and tissue-specific enrichments of genes at common variant associations have led
to new insights into the aetiopathogenesis of many disorders, including ankylosing
spondylitis (Evans et al. 2011), schizophrenia (Schizophrenia Working Group of the
Psychiatric Genomics Consortium 2014), and obesity (Claussnitzer et al. 2015). However,
GWAS identify associated variants rather than genes, and these enrichments are only
possible by looking broadly at the genes in a window around each association. In other
words, both the causal variants and the relevant genes at individual GWAS loci are usually

unknown.
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Identifying the causal variants for GWAS associations is important because it facilitates
experiments to investigate disease mechanisms, which typically must be done in specific cell
types (or model organisms) and with specific perturbations. This is increasingly done using
genome editing with the CRISPR/Cas9 nuclease to engineer deletions or alter alleles of
specific variants, followed by evaluating the molecular effects of the changes. Because these
experiments are limited in throughput, it is essential to have a clear hypothesis as to which
variant is causal. Genome editing experiments can then elucidate which genes are affected
by causal variants, and this in turn can inform therapeutic hypotheses. However, a number

of challenges make it difficult to identify causal variants at GWAS loci.

1.1.2 Linkage disequilibrium and genotype imputation

GWAS are based on the principle of “tagging” the majority of common genetic variation in
the genome by assaying only a subset of variants, specifically, single nucleotide
polymorphisms (SNPs). This cost-effective approach enables a large sample size, which
maximizes the power to detect associated loci. Tagging is possible because nearby regions
of a chromosome tend to be transmitted together to offspring, which leads to correlation
between alleles that is referred to as linkage disequilibrium (LD). The level of LD between
two variants is commonly measured by the R-squared (r?) of their correlation across
chromosomes in a population. Over time, recombination of chromosomes between two
alleles reduces their pairwise LD. Recombination is not evenly distributed across
chromosomes, but tends to occur in hotspots. As a result, the human genome has segments

of variable length, typically 10 - 100 kb but sometimes longer, with many alleles in high LD.

Because only tag SNPs are measured, the causal variant for a GWAS association is often
not among those tested. This has been changing with the availability of reference panels of
genetic variation discovered using whole genome sequencing (WGS), such as the 1000
genomes project (1000 Genomes Project Consortium et al. 2015). Using WGS, the full range
of genetic variation in an individual can be discovered, including SNPs, but also insertions or
deletions (indels) of various lengths, copy number variants (CNVs), and more complex
structural variants. GWAS can leverage these reference data to impute genotypes at
variants that are not directly assayed in the study. This enables association testing for all 5 -
10 million common variants present in human populations. However, the LD which makes
imputation possible also means that many variants at a locus have similar association

statistics.
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Imputation brings its own problems: while common variants can generally be well imputed,
accuracy is reduced for low-frequency variants, and greatly reduced for rare variants (Howie
et al. 2012), due to their lower LD with tag SNPs. Most GWAS to date have been imputed
using the 1000 genomes project reference panel, which was based on low-depth (7x) whole
genome sequencing of individuals from multiple global populations. Imputation can only be
as accurate as the reference panel itself. While SNPs are accurately recovered in low-depth
sequencing, sensitivity for detection of short indels is lower, and for different classes of
structural variants ranges from 32% - 88% (Sudmant et al. 2015). Reference panels for
imputation are improving — by combining together many low-depth WGS studies, the
majority from European cohorts, the Haplotype Reference Consortium has created a panel
of 64,976 haplotypes at ~39 million SNPs (S. McCarthy et al. 2016). Despite this, it is
important to realise that association statistics are influenced by the quality of the genotypes
for particular variants. As statistical power increases, the effects of genotyping inaccuracies

on association statistics are amplified.

In the future, high-depth WGS may become feasible for large-scale association studies. This
will enable better discovery of rare variant associations and will overcome some of the
challenges of genotype imputation. However, the difficulty of resolving causal common

variants will remain due to broad LD at many associated loci.

1.1.3 Most associated variants are non-coding

At the majority of loci discovered by GWAS for complex traits, no variants in protein-coding
genes are compelling candidates for explaining the association (Hindorff et al. 2009; H.
Huang et al. 2017; Farh et al. 2015). This contrasts sharply with Mendelian diseases, where
most causal variants alter protein-coding sequence, and are either de novo mutations or are
extremely rare. A common hypothesis is that many complex trait associations are driven by
changes to gene expression. A key mechanism whereby genetic variants influence gene
expression is by altering DNA sequence motifs for transcription factors (TFs) at their binding
sites (TFBS), which are commonly found at enhancer, repressor, and promoter elements.
One of the pioneering studies demonstrating this showed that a variant 35 kb distal from
SORT1 creates a C/EBP binding site and alters expression of SORT1 in liver hepatocytes
(Musunuru et al. 2010). This in turn alters plasma LDL-C levels and provides a plausible
explanation for the GWAS association of this locus with myocardial infarction. Examples are
accumulating of complex trait-associated variants which disrupt or create TFBS, and thereby

affect gene expression (Praetorius et al. 2013; Guenther et al. 2014; Soldner et al. 2016).
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If we could predict which non-coding genetic variants are functional, then we might be able
to unravel non-coding GWAS associations. Yet, despite a large body of work investigating
the genetic basis of gene regulation, our ability to predict these effects remains poor. Unlike
protein-coding variation, where the genetic code maps precisely from nucleotide sequence
to amino acids, the rules governing noncoding sequence are more probabilistic and

complex. Understanding this “regulatory code” is a key goal in genomics.

Researchers therefore face clear challenges to interpreting non-coding GWAS associations.
Many mechanisms for non-coding variants to influence complex traits are possible, including
by altering gene splicing (Gregory et al. 2012), the action of noncoding RNAs (Ling et al.
2013), or altering expression of microRNAs or their binding sites in the untranslated regions
(UTRs) of genes (Ghanbari et al. 2016). Indeed, multiple noncoding variants can act
independently or in concert to affect gene expression (Glubb et al. 2015; Bojesen et al.
2013). In addition, regulatory variants can influence distal genes, and so at each locus many
genes are candidates to mediate the association. Finally, because gene regulation can be
cell type- and context-specific, it is difficult to know which context is the most relevant for

investigating a given trait association.

1.1.4 Non-coding associations may span long distances

GWAS loci are also enriched near genes, but because the mechanisms for these
associations are not generally known, it is unclear how often the nearest gene to a GWAS hit
is the one mediating the association. In some fraction of cases, the top GWAS variants
appear to be in or very near the causal genes. For example, there are cases where a GWAS
association occurs in a gene that is the known target of a drug for the same disease, as with
cholesterol-lowering statin drugs and the LDL association at HMGCR (Kathiresan et al.
2008). Further, enrichment of genes at GWAS loci for known pathways and biological
mechanisms has been shown for a number of traits, such as pancreatic islet cell function in
type 2 diabetes (Pasquali et al. 2014), and inflammatory signalling pathways in a number of

autoimmune disorders (Parkes et al. 2013).

GWAS variants can also regulate distal genes. An early GWAS success was the discovery
of a strong association between obesity and variants in introns 1-2 of FTO. This gene was
initially seen as a strong candidate for regulating body mass, and indeed studies in mice
showed that FTO knockout led to growth retardation and reduced adipose tissue (Fischer et
al. 2009), while FTO overexpression increased body and fat mass (Church et al. 2010).

However, these studies either removed or duplicated the FTO obesity risk region along with
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FTO itself, and so did not preclude that the effect was mediated by another gene.
Subsequently, it was found that the FTO intronic variants form long-range connections with
IRX3, more than 500 kb distal (Smemo et al. 2014). It was then convincingly shown that the
causal obesity risk variant acts through /RX3 rather than FTO (Claussnitzer et al. 2015).

The number of examples of complex trait associations acting via distal genes is growing: the
SNP that causes blond hair in Europeans likely acts via a reduction in KITLG expression,
some 350 kb away (Guenther et al. 2014); a vascular disease association acts through
EDN1, 600 kb away (Gupta et al. 2017); and a prostate cancer risk variant acts through
SOX9, 1 Mb away (Zhang et al. 2012). Newly developed methods that integrate gene
expression with summary association statistics from GWAS have estimated that around two-
thirds of GWAS associations are not mediated by the nearest gene (Zhu et al. 2016; Gusev
et al. 2016). These examples illustrate that, even when a plausible gene overlaps a GWAS

association, it is not safe to assume that it is causal for the association.

1.1.5 Gene regulation can be cell type- and context-specific

Genetic variants act via molecular pathways to alter higher-level phenotypes. It is intuitive
that the effects of such variants will be specific to certain cell types relevant to the
phenotype. A primary way to study these effects is by measuring gene expression in specific
tissues across multiple individuals, which enables the discovery of loci that influence gene
expression, termed expression quantitative trait loci (eQTLs). An early eQTL study examined
primary fibroblasts, T cells, and lymphoblastoid cell lines (LCLs), and suggested that 68-70%
of regulatory variants were cell type-specific (Dimas et al. 2009). However, the degree of
overlap is highly dependent on power, and subsequent studies have demonstrated that the
majority of eQTLs are shared (Ding et al. 2010; Nica et al. 2011). The pilot analysis of the
genotype-tissue expression project (GTEXx), examining eQTLs across 100 - 150 samples in
nine tissues, found that more than 50% of eQTLs were shared across all nine tissues, and
only 10-30% of eQTLs were tissue-specific (GTEx Consortium 2015). As GTEx increases its
sample size and the number of tissues measured, the degree of tissue-specificity is likely to
drop even lower. These results suggest that to integrate eQTLs with GWAS results, it may
not be necessary to have a perfect match between the eQTL tissue and the “causal” tissue

for the trait association.
Despite the widespread sharing of gene regulatory effects across tissues, it would seem odd

to investigate trait associations using a cell type with no apparent connection to the

phenotype, not least because the results would be hard to interpret. Even if the genetic
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effect of a trait-associated variant were detectable in such a cell type, the results might not
reflect the downstream molecular mechanisms relevant to the trait. The high estimates of
sharing from tissue studies may also reflect the broad mix of cell types present in whole
tissues, and so underestimate eQTL specificity at the level of cell types. In the FTO and
obesity example above, regulatory variants were found to influence IRX3 expression in pre-
adipocytes but not in whole adipose tissue (Claussnitzer et al. 2015), indicating that
specificity is possible even across closely related cell types. For this reason, investigators
are performing gene expression studies using increasingly specific cell types, such as sorted
regulatory T cells implicated in autoimmune disease (Ferraro et al. 2014), specific brain
regions associated with psychiatric and neurodegenerative disorders (Ramasamy et al.
2014), and multiple regions of the colon associated with inflammatory bowel disease (Singh
et al. 2015).

In addition, some gene regulatory effects responsible for disease associations may only be
detectable under specific conditions, such as in response to immune stimulus. Fairfax et al.
exposed primary CD14+ human monocytes from 432 individuals to interferon-y or two
durations (2 and 24 hrs) of bacterial lipopolysaccharide (LPS), and found hundreds of
context-specific eQTLs dependent on the type or duration of stimulus (Fairfax et al. 2014).
Similarly, Lee et al. derived dendritic cells from human peripheral blood monocytes of 534
individuals, and exposed these to either LPS, influenza virus, or the cytokine interferon-8
(IFN-B), followed by measuring expression of 415 genes (M. N. Lee et al. 2014). Among the
eQTLs they discovered were a number which overlapped with common disease associations

and which were only discovered in stimulated cells.

1.2 Genomics of molecular traits

Deeper understanding of molecular traits holds great promise for revealing the mechanisms
behind many complex trait associations. A large number of molecular traits are potentially
informative, including gene expression and splicing, protein expression, chromatin
accessibility, chromosomal conformation, histone modifications, and transcription factor
binding. Whereas GWAS for complex traits generally only began to discover loci at genome-
wide significance with samples sizes of thousands of individuals, genetic studies of
molecular traits routinely discover replicable effects with fewer than one hundred samples. A
likely reason for this is that molecular traits are more directly downstream of DNA sequence
in the cascade of events influenced by genetics. Also, the technologies and analysis
methods differ between GWAS and molecular traits. For many molecular traits, we know

where to look in the genome — it is common to statistically test only variants near the gene
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or feature, since these are more likely to have an effect. To make appropriate inferences, it

is important to understand the opportunities and limitations of these different types of data.

1.2.1 Gene expression

While proteins are key actors in carrying out cellular functions, it is technically difficult to
measure protein levels in a precise and high-throughput manner, although some progress is
being made towards these ends (Melzer et al. 2008; Stark et al. 2014; Battle et al. 2015).
Due to the lower cost and more accessible technology, most studies of gene regulation have
quantified steady-state mRNA levels. Early studies measured total expression using arrays
of probes specific to one or more exons of each of the approximately 20,000 protein-coding
genes in the human genome. Subsequently, the availability RNA sequencing made it
possible to measure not just total expression levels, but also alternative splicing, which

revealed previously unknown exons and alternative UTRs (J. K. Pickrell et al. 2010).

When gene expression is measured genome-wide across many samples, mapping eQTLs is
similar to doing a GWAS for each gene. However, a key difference is that it is common to
only test variants within 1 Mb of each gene for association with the gene’s expression, since
very few variants beyond this distance influence expression. For example, in data from a
large-scale study of LCLs (Lappalainen et al. 2013), which is used in Chapter 3 of this thesis,
only around 25% of lead eQTL variants are more than 50 kb from the genes they regulate.
Since most eQTLs are local to the regulated gene, they are presumed to act in cis, that is,
the alleles of a variant lead to differential expression of a target gene nearby on the same
chromosome. When an individual is heterozygous for a variant within a gene transcript,
allele-specific expression (ASE) can be detected, which can confirm that an eQTL acts in

cis. While eQTLs can also act in trans, few trans-eQTLs have been discovered.

Based on highly powered eQTL studies in blood, it has become clear that most genes in the
genome have a detectable cis-eQTL (Battle et al. 2014; Westra et al. 2013). Furthermore,
most eQTLs appear to propagate their effects to protein levels, and to be associated with
changes to chromatin accessibility at nearby regulatory elements (Y. I. Li et al. 2016). This
leads to the concept of a regulatory cascade: genetic variants alter TFBS at distal regulatory
regions or promoters; this leads to changes in chromatin accessibility and histone
modifications, followed by changes to gene expression, and finally translation and protein
expression levels. Not all gene regulation occurs via this model, however. With RNA-seq
data, QTLs can also be mapped for the rate of splicing of gene introns (sQTLs), and a recent
study estimated at least as high an enrichment of GWAS hits for sQTLs as for eQTLs (Y. I.

20



Li et al. 2016). This suggests that, to date, changes to gene splicing may have been an

underappreciated mechanism linking genetic variation to complex traits.

Because eQTLs and sQTLs are linked to specific genes, a powerful way to interpret GWAS
associations is to look for overlap with a QTL, in which case the regulated gene is a good
candidate for mediating effects on the complex trait. Yet, despite growing eQTL datasets,
only a few GWAS loci have been clearly demonstrated to act via this mechanism. In
addition, estimates of the fraction of autoimmune GWAS loci that share causal genetic
variants with eQTLs put the number at just 25% (Chun et al. 2017). This is puzzling, since in
the absence of coding variant associations, effects on gene expression would seem to be
the primary alternative explanation. A few reasons may explain the failure so far to link a
large number of GWAS associations with eQTLs. First, eQTLs suffer the same problem as
GWAS, in that LD makes it difficult to identify causal variants. Second, it is almost certain
that we have not yet discovered all of the QTLs, across all cell types and contexts. Third,
determining overlap between QTLs and GWAS associations is non-trivial, since the
prevalence of QTLs across the genome means that chance overlaps are common
(Lappalainen et al. 2013). Rigorous statistical methods, such as coloc (Giambartolomei et al.
2014), are essential to evaluate whether a given overlap is more consistent with shared or
distinct causal variants. However, the sensitivity of these methods to detect true overlaps,

particularly in the case of multiple causal variants, is unknown.

There remains hope that studies of gene expression will ultimately help to elucidate
molecular mechanisms at a large fraction of GWAS loci. The GTEXx project has to date
released eQTL analyses for only about half of its target sample size. In contrast with
previous reports, the latest GTEx analysis found that 52% of GWAS associations across 21
traits were colocalized with an eQTL in at least one tissue (GTEx Consortium et al. 2017). As
the GTEx sample size grows, this fraction is likely to increase. In addition, a number of
ongoing eQTL studies are being performed in specific cell populations not profiled by GTEX,
and under conditions of cellular stress or immune challenge. It is noteworthy, however, that
half of the GWAS loci colocalized with a GTEx eQTL actually colocalized with more than one
eGene. This implies that identifying the causal gene will still require further mechanistic

evaluation of any colocalized eGenes.

1.2.2 Transcription factor binding

There are an estimated 1,000 - 2,000 human genes encoding transcription factors (TFs)

(Vaquerizas et al. 2009). Each TF binds to DNA having specific sequence features, which is
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primarily determined by the nucleotide sequence itself. The preferred sequences to which a
TF binds can be captured as a short sequence motif (< 20 nucleotides). As a cell
differentiates from pluripotent or progenitor cell states to more specific cell types, numerous
genes are activated and others are repressed. A subset of TFs known as pioneer TFs are
efficient at opening repressed chromatin, and these are often critical “master regulators” of
specific cell lineages, such as FoxA for liver (lwafuchi-Doi et al. 2016), GATA4 for heart (P.
Zhou, He, and Pu 2012), and PU.1 and C/EBPa for macrophages (Ruffell et al. 2009; Heinz
et al. 2010). Where pioneer TFs have opened the DNA, other TFs are then able to bind,
creating loops between regulatory regions and gene promoters to determine expression
levels of specific genes. This co-binding of multiple TFs is a common feature of gene

regulation and lineage specification (Chronis et al. 2017).

The ENCODE project has used chromatin immunoprecipitation followed by sequencing
(ChIP-seq) to profile the binding of dozens of TFs across many human cell types (ENCODE
Project Consortium 2012). Since it is thought that many gene regulatory variants act by
altering TF binding, a knowledge of the locations of TFBS should be highly informative for
locating causal regulatory variants. There are a number of reasons why this has not yet been
fully realized. First, even the more than 2,000 TF binding assays performed by ENCODE are
still a sparse sampling of the full matrix of TFs and cell types. Second, high quality
antibodies are only available for some TFs. Third, it is unknown what fraction of TBFS are
functional; because TF motifs are short, they are highly numerous across the genome. Not
all occurrences of a motif are bound by an expressed TF with preference for that motif, and
conversely, not all TFBS have a distinguishable motif present. Lastly, TF binding can be
influenced by factors outside of core motifs, such as DNA shape (Mathelier et al. 2016), DNA

accessibility, and the co-binding of other TFs to nearby sites.

1.2.3 Histone modifications

Histones are proteins conserved across all living organisms which bind as octamers to DNA,
composed of pairs of subunits H1, H2, H3, and H4. These histone octamers, called
nucleosomes, each have around 150 base pairs of DNA wrapped around them, and are
bound across most of the DNA in a cell. Histones are essential to compacting the billions of
base pairs of DNA sequence in a eukaryotic cell into the nucleus. They also are key factors
in determining which regions of DNA are active or repressed, which differs between cell
types. The N-terminal tails of histones H3 and H4 protrude from the nucleosome, and
specific amino acid residues can have covalent modifications added to them. These post-

translational modifications are highly correlated with different aspects of the DNA sequence,

22



such as transcribed and regulatory regions. For example, the gene bodies of actively
transcribed genes tend to have nucleosomes with high levels of trimethylation at lysine 36 of
histone H3, abbreviated H3K36me3. Both promoters and active transcriptional enhancers
are often marked with acetylation at lysine 27 of histone H3 (H3K27ac). Antibodies are
available for many specific histone modifications, so that ChlP-seq can be used to measure
these genome-wide. There are more than a hundred sites at which histones can be modified

(Tan et al. 2011), but only a few of these have been studied in depth, summarised in Table 1.

Histone modification | Association

H3K4me1 activation: broad peaks at enhancers

H3K4me3 activation: sharp peaks at promoters of poised and active
genes

H3K9ac activation: active promoters, release of paused RNA Pol I

(Gates et al. 2017)

H3K9me3 silencing: broad regions of heterochromatin

H3K27ac activation: sharp peaks at active enhancers and promoters
(Creyghton et al. 2010)

H3K27me3 silencing: broad regions of Polycomb repression,
poised/bivalent gene promoters

H3K36me3 activation: active transcription, transcriptional elongation

H3K79me1/me2 activation: active and silent promoters

Table 1: Properties of widely studied histone modifications. Most are described in (Barski et al.
2007). Abbreviations are as follows: me1: mono-methylation; me2: di-methylation; me3: tri-

methylation; ac: acetylation.

Histone modifications have contributed greatly to the annotation of regulatory DNA. They are
one of the widely-used inputs for genome segmentation, in which a model attempts to
integrate multiple annotations to assign distinct states, such as enhancer, promoter, or
transcriptional elongation, to each DNA segment across the genome (Ernst and Kellis 2012;
Hoffman et al. 2012). Genome segmentation simplifies interpretation of the complex patterns
of co-occurring histone modifications along the genome, which are often highly correlated
amongst each other. However, because histones are present in nucleosomes with a
periodicity along the DNA of ~150 - 200 bp, the resolution of regulatory information

contained in histone modifications is also naturally limited to around 200 bp.
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1.2.4 Chromatin accessibility

Regulatory regions of the genome have a DNA conformation that is open and accessible to
transcription factor binding, whereas most other genomic regions have lower accessibility. A
key advantage of measuring chromatin accessibility is that it is agnostic to the particular TFs
that bind and open DNA at regulatory regions and promoters. Therefore, these regions can
be identified in any cell type, without a need to assay each TF independently. In addition,
using TF sequence motifs it is sometimes possible to predict the TFs that are bound at a
regulatory region without directly measuring them. A method based on this idea, called
centisnp, suggested that 97% of genetic variants in inferred TF binding footprints have no
effect on chromatin accessibility (Moyerbrailean et al. 2016). Predictions from this method

are used as one of the inputs the model that | describe in Chapter 3.

Until recently, chromatin accessibility was primarily measured by digesting native DNA with
DNase | followed by sequencing, which found open chromatin covering about 1% of the
genome. More recently, an alternative measure of chromatin accessibility based on
integration of Tn5 transposase into native chromatin, known as ATAC-seq, has come into
widespread use due to the simpler protocol and the ability to perform it with fewer cells
(Buenrostro et al. 2013). Genetic variants influencing chromatin accessibility (caQTLs) can
be identified with very modest sample sizes (< 100 individuals). While caQTLs do not directly
indicate a target gene, the majority of caQTLs appear to be due to variants within the
chromatin accessibility peak that they regulate (Degner et al. 2012). This suggests that
overlap between eQTLs and caQTLs can be a powerful method to localise causal eQTL

variants.

1.2.5 Chromosomal conformation

Techniques such as Hi-C, which capture information about chromosomal interactions
genome-wide, have shown that the genome is organized into topologically associating
domains (TADs) of around 100 kb - 1 Mb, with the regulation of genes in different TADs
insulated from each other (Dixon et al. 2012; Rao et al. 2014). One of the key factors
determining chromosomal conformation is CTCF, a transcription factor with a particularly
clear binding motif, which is found at TAD boundaries. Whereas TAD boundaries are largely
conserved across cell types and across species, DNA contacts within TADs, such as
enhancer-promoter loops, are more dynamic and vary between cell types. Hi-C therefore
has the potential to help in identifying causal regulatory variants by indicating the regulatory

regions in contact with specific gene promoters.
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Because Hi-C attempts to assay all pairwise interactions between DNA segments, achieving
resolution of better than 25 kb requires a very large number of cells and deep sequencing
(Rao et al. 2014). These requirements are reduced in promoter capture Hi-C, where an
oligonucleotide pulldown enriches the Hi-C library for promoter-interacting regions before
sequencing. Promoter capture Hi-C in 17 blood cell types by the BLUEPRINT consortium
was used to prioritize 2,604 candidate genes for association with 31 GWAS traits (Javierre et
al. 2016), although at each locus there were often a number of genes prioritized. Even when
high resolution (<= 5 kb) is possible, it is difficult to detect significant interactions between
DNA regions less than 25 kb apart, because nearby regions have a high rate of random
collisions that are captured by the cross-linking used for Hi-C. However, it is clear from eQTL
studies that the majority of causal regulatory variants are nearer than 25 kb from gene

TSSes. This limitation reduces the utility of Hi-C data in localising causal regulatory variants.

1.3 IPSC-derived cellular models

While molecular traits can be measured in many cell types, technical limitations often make
this difficult. Most assays require millions of cells, which are not always available from
primary tissues, and this is particularly limiting for rare cell types. As a result, many of these
assays have been performed on LCLs or cancer cell lines, even though these immortalized
cells may not be good models for the relevant cell type. The use of induced pluripotent stem
cells (iPSCs) provides a potential solution to both limiting cell numbers and poor cell type
models. iPSCs can be expanded in vitro to the required number of cells, and then
differentiated in to specific cell types. Because iPSC technology is still quite new, it is

important to understand the current state of the art.

1.3.1 Reprogramming somatic cells to pluripotency

In 2006, Takahashi and Yamanaka reported that somatic cells can be reprogrammed to
pluripotency by the ectopic expression of just four transcription factors (Takahashi and
Yamanaka 2006). This led to great excitement about the potential uses of these iPSCs for
regenerative medicine, and in particular their advantages over embryonic stem cells (ESCs).
IPSCs derived from a patient’s own cells could provide an unlimited supply of stem cells,
which could be differentiated into desired cell types for cell-replacement therapies, and
would be unlikely to face immune rejection. An early demonstration of the potential for this
was provided by the Jaenisch research group, who derived dopaminergic neurons from
reprogrammed mouse fibroblasts, and showed that implanting these into the brains of rat
models of Parkinson’s disease led to functional integration and improved disease symptoms

(Wernig et al. 2008). The development of such therapies for humans, however, depends
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upon a thorough assessment of the safety and reliability of iPSC-based cells for specific

applications, as well as the development of efficient protocols to derive specific cell types.

ESCs can differentiate into any cell type in the body; to be considered pluripotent, the same
should be true of iPSCs. Although a number of reprogramming methods have now been
developed, reprogramming is inefficient, and typically only up to 1% of somatic cells appear
to attain pluripotency (Robinton and Daley 2012). As a result, iPS cell lines are grown from
single-cell clones, and pluripotency is usually assessed by looking for molecular hallmarks,
such as expression of genes OCT4, SOX2, and NANOG at levels comparable to ESCs.
More robust validation of pluripotency can be obtained by showing that the cells can
differentiate into the three embryonic germ layers in vitro. Even though iPSCs seem to be
capable of differentiating into any cell type, a number of groups reported that individual cell
lines showed more efficient differentiation to specific lineages (Kim et al. 2010). In particular,
a concern is that iPSCs retain an epigenetic memory of the cell type they originated from,
implying that reprogramming to pluripotency is generally incomplete (Bar-Nur et al. 2011;
Polo et al. 2010). A problem with these comparisons was that the cell lines used were
derived from different donors, and thereby had different genetic backgrounds. When Bock
and colleagues used a quantitative differentiation assay as well as measuring DNA
methylation in 20 ESC and 12 iPSC lines, they found substantial variation among ESCs as
well as iPSCs (Bock et al. 2011). In addition, global differences in gene expression are more
significant in earlier passages of iPSCs, suggesting that pluripotency is gradually established

over time (Polo et al. 2010).

More recently, cell banks of hundreds of human iPSC lines have been generated in a
consistent manner by the NextGen consortium (Warren, Jaquish, and Cowan 2017) and the
HIPSCI initiative (Kilpinen et al. 2017). These have revealed that donor genetic background
contributes substantially to molecular variation in iPSCs. As well, improved protocols and
characterisation of cell lines may help to overcome challenges related to the pluripotency
and heterogeneity of iPSCs (D’Antonio et al. 2017; Panopoulos et al. 2017). For example,
although it was was previously necessary to culture iPSCs on a “feeder” layer of mouse
embryonic fibroblasts, new media with specific growth factors have enabled maintaining

iPSCs without feeders, simplifying cell culture protocols.

A growing use of iPSCs is to differentiate them into specific cell types to model disease
phenotypes in vitro. This is particularly valuable for rare and inaccessible cell types, which
otherwise would be difficult to study. iPSC-derived cells can be used to discover cell type-

specific molecular QTLs, to screen drugs for effects on cellular phenotypes, and to identify
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causal variants via gene editing with CRISPR-Cas9. These capabilities provide the
motivation for the experiments described in Chapter 2. We differentiated iPSC lines from
different donors in the HIPSCI project to pain-sensing sensory neurons, a cell type that
would be difficult to study in vivo. By collecting multiple molecular phenotypes across a large
panel of cell lines, the aim was to link common genetic variation with both molecular traits
and electrophysiological traits of sensory neurons. In parallel with this experiment, a GWAS
was conducted comparing more than 18,000 individuals with chronic pain to controls. The
hope was that molecular QTLs from our study would inform interpretation of any GWAS loci
associated with pain. Unfortunately, no genome-wide significant loci for pain were found.
Despite this limitation, we found a number of QTL-GWAS overlaps that likely reflect neuronal
functions more broadly. In addition, during the course of our work we came across a
challenge that has been noted in previous iPSC work, but which was particularly acute given

the large number of differentiations in our study.

1.3.2 Heterogeneity and limited maturity of iPSC-derived cells

Differentiating iPSCs into defined cell types is a process that generally involves the addition
of combinations of specific growth factors and media over a period of weeks, attempting to
mimic endogenous developmental signals. A key challenge in using these as models is that
although the resulting cells display characteristics of the desired cell type, they usually
appear immature; this immaturity has been reported for multiple cell types, including neurons
(Handel et al. 2016), hepatocytes (Dianat et al. 2013), cardiomyocytes (Veerman et al.
2015), and hematopoietic cell types (Smith et al. 2013). This may reflect in part the trade-off
between experimental throughput and the time allowed for differentiation; however, it could
also indicate that full maturation of cells requires a multicellular tissue environment that is

absent in most culture systems (Passier, Orlova, and Mummery 2016).

A related but distinct challenge for iPSC-derived cell models is that differentiation tends to
produce a mixture of cells, only a fraction of which express the expected marker genes.
These differentiation outcomes can be highly variable between cell lines, and even across
cultures of the same cell line. The nature of these “contaminating” cells is not generally
known, but single-cell characterisation of cultures at multiple time points during
differentiation is beginning to shed light on factors that lead to this variability. Reconstructing
the differentiation course of cells undergoing MyoD-mediated reprogramming to contractile
myotubes suggested that cells can take alternative branches, with those that select incorrect
branches ending in aberrant cell states (Cacchiarelli et al. 2017). For some cell types and

applications, it is possible to sort differentiated cells to enrich for the desired outcome.
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Another approach was described recently for neurons, where single cells were measured
with patch clamp electrophysiology, followed by sequencing of the same single cells (Bardy
et al. 2016). This approach enabled the researchers to link molecular cell states directly with

functional features of the same cells.

Despite heterogeneity in iPSC differentiation, it has been possible to observe disease-
relevant phenotypes for Mendelian diseases in iPSC-derived cells. For example, iPSC-
derived sensory neurons from patients with inherited erythromelalgia, which is due to
mutations in the sodium channel Nav1.7, showed greater spontaneous firing than those from
control individuals, and this was reverted to normal with the addition of a Nav1.7-blocking
drug (Cao et al. 2016). Similarly, iPSC-derived cardiomyocytes from individuals with long-QT
syndrome showed prolonged action potentials, and this could be modulated by existing

drugs used for long-QT syndrome (ltzhaki et al. 2011).

Heterogeneity is likely to be a greater problem when attempting to model the effects of
complex trait-associated variants in vitro, due to their smaller effect sizes. Studies reported
as part of the NextGen consortium have taken the first steps in this effort. Warren et al.
recruited individuals homozygous for the major or minor genotypes (17 each) at the LDL-C
associated variant rs12740374. They differentiated 68 iPSC lines from these individuals into
hepatocytes and adipocytes, demonstrating that rs12740374 influenced SORT1 expression
primarily in hepatocytes (Warren et al. 2017). Pashos et al. differentiated iPSCs from 91
healthy donors to hepatocyte-like cells, and used RNA-sequencing to map eQTLs. For four
eQTLs that colocalized with GWAS associations for lipid traits, they used a massively
parallel reporter assay to identify putative causal SNPs, followed by CRISPR/Cas9 genome
editing to validate the candidate SNPs (Pashos et al. 2017). These impressive studies
showed that using iPSC-derived cells to model complex trait associations is possible, but

also revealed that doing so requires large samples sizes and very considerable effort.

1.4 Predicting variant functionality

Identifying causal variants for Mendelian or complex traits requires experimental validation.
However, investigating the molecular effects of individual genetic variants is a laborious
process that can usually only be done for a handful of variants at most. Computational
approaches to prioritize variants to investigate are thus essential. The enormous growth in
number and types of genomic data has fueled a growth in methods using these data to
predict variant functionality and to fine-map GWAS associations. Predicting the functional

effects of genetic variants is also of more general interest, since it may shed light on the
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basic regulatory grammar that determines genome function. It is important to first clearly

define what is meant by “functional”.

A widely held assumption, supported by evolutionary theory, is that most genetic variants are
neutral, meaning that they have little effect on organismal fitness. This is consistent with the
observation that a relatively small fraction of the genome (4-7%) has significant sequence
conservation across mammals (Siepel et al. 2005; Davydov et al. 2010). Moreover, since
selection depletes deleterious variants, the fraction of common variants with fitness effects is
likely to be even lower. However, conservation differs from function. First, transcription factor
binding sites generally have low conservation across species, despite having clear functional
effects if disrupted (Doniger and Fay 2007). Second, variants may have “functional”
molecular effects without having organismal effects. Third, a functional variant may have a
deleterious effect only late in life, and therefore have little effect on fithess and sequence
conservation, even though it affects a trait. In this thesis, a functional variant is one with a
molecular effect, regardless of whether that effect propagates to any other phenotype. Still,
since neutral variants are unlikely to have effects on complex traits, functional variants are

more likely to be causally related to complex traits.

1.4.1 Variant annotation

One way to stratify variants into classes that are more or less likely to have functional effects
is to annotate them with available genomic features. A researcher can then manually assess
the evidence for a given variant’s function using prior knowledge. Early annotation tools
focused on identifying the effects of variants on protein-coding genes (Cingolani et al. 2012;
McLaren et al. 2016). This is more technically challenging than it appears at first glance, and
different tools often produce discordant annotations (D. J. McCarthy et al. 2014). Reasons
for this include differences in gene annotations across reference databases, as well as the
difficulty in determining the effects of variants on splicing. While these are essential tools,

other annotations are important for predicting non-coding variant function.

The tool HaploReg (Ward and Kellis 2012) integrates a large number of genomic datasets,
and reports a variant’s overlap with genes, enhancer and promoter marks, DNase
hypersensitive sites, protein binding sites, known eQTLs, and TF binding motifs. A useful
feature is that it uses LD information to also annotate variants with r* > 0.8 with the query
variant. Interpreting the large number of overlaps is challenging, however. For GWAS
associations it is typical to have dozens of variants in LD, a majority of which overlap some

potentially relevant feature. RegulomeDB provides a heuristic solution to interpreting
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overlapping annotations (Boyle et al. 2012): a variant is assigned to one of 14 handmade
categories based on prior beliefs about the informativeness of each annotation. For
example, a variant would receive a very high score if it alters a TF motif in a known TFBS,
within a DNase hypersensitivity peak, and is also a known eQTL. A variant with fewer

overlaps would receive a lower score depending on which annotations were absent.

1.4.2 Integrative approaches to score variant functionality

A general problem in predicting the functions of genetic variants is that informative
annotations are correlated with each other. For example, while histone modifications
H3K4me3 and H3K27ac are both enriched for eQTL variants, they frequently colocalise at
gene promoters and transcribed enhancers, and so combining their independent
enrichments would overly prioritise variants where these annotations overlap. Methods have

been developed which address this problem to predict variant functionality more rigorously.

Polyphen (Adzhubei et al. 2010) and SIFT (Kumar, Henikoff, and Ng 2009) are widely-used
methods to predict the likelihood that a nonsynonymous protein-coding variant is deleterious.
Both methods rely on the frequency of amino acid substitutions in homologous proteins, and
Polyphen also considers protein structural features such as transmembrane domains and
ligand-interacting regions. These methods are sometimes used as input to “meta-prediction”

tools, which evaluate both protein-coding and non-coding variants genome-wide.

CADD applied machine learning to integrate many annotation sources, assigning a
“deleteriousness” score to coding and non-coding variants (Kircher et al. 2014). Its inputs
include Polyphen and SIFT, as well sequence conservation, and annotations from ENCODE
such as DNase hypersensitivity, TFBS, and genome segmentations. CADD’s score is based
on a support vector machine trained to distinguish common variants and human derived
alleles from simulated variants, which are not present in the genome and so are presumed to
have been depleted by selection. CADD has been widely used to prioritize variants in
studies of Mendelian disease. A particular strength is that it scores both coding and non-
coding variants on the same scale, which enables evaluating both of these types of variation
in relation to disease. However, CADD’s prediction performance is likely to be different for
coding and non-coding variants, and CADD has been criticized for performing poorly on

identifying functional variants in eQTL datasets (Gulko et al. 2015).

A number of methods focus exclusively on non-coding variation, such as GWAVA (Ritchie et
al. 2014), LINSIGHT (Y.-F. Huang, Gulko, and Siepel 2017), DeepSEA (J. Zhou and
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Troyanskaya 2015), and Basset (Kelley, Snoek, and Rinn 2016), and these are discussed in
more detail in Chapter 3. Both the models implemented by these methods and the
annotations used as input differ, which makes it difficult to disentangle the factors influencing
their relative performance. The general lack of a gold standard set of functional non-coding
variants means that prediction performance can only be assessed relative to proxies, such
as results from reporter assays. Although these scores of variant deleteriousness or
functionality are clearly useful in some contexts, it is not clear how a variant’s score relates
to its probability of influencing a particular trait. For complex traits, there is a need for

methods that can be applied in a rigorous way to help in identifying causal variants.

1.5 Fine-mapping GWAS associations

Identifying causal variants at a GWAS locus is a key step towards deciphering the molecular
mechanism behind the association. The first step towards this is fine-mapping - reducing the
set of candidate variants from all those at the locus to a smaller set that is highly likely to
contain the causal variant. Although most GWAS have used sparse genotyping to tag causal
variants, a key assumption of fine-mapping is that the causal variant is among the variants
considered. Therefore, samples within the study must either have whole genome
sequencing (the ideal case) or must have genotypes imputed using a reference panel from a
genetically similar population of individuals. The set of candidate causal variants is often
referred to as a credible set, which can be defined to have a specified probability of
containing the causal variant(s), given that particular assumptions are met. Commonly, 95%
or 99% credible sets are reported. Approaches to fine-mapping can be roughly divided into
those which are purely statistical, those which leverage additional data such as epigenomics

and gene annotations, and experimental approaches.

1.5.1 Experimental evaluation of variants

The gold standard evidence to indicate that a specific variant has a causal effect is to
experimentally replace the allele in a native cellular context. Following allelic replacement,
cellular phenotypes such as gene expression can be assayed to determine whether the
alleles differ in their activity on the same genetic background, with the assumption that
alleles showing a molecular effect are likely to also causally influence the complex trait.
Only recently have “genome editing” molecular tools such as CRISPR/Cas9 made this
feasible, and the number of GWAS loci validated in this way remains small. Performing even
a single such “knock-in” currently takes months at a minimum, and is difficult to perform in
some cell types. A slightly lower standard of evidence is to use CRISPR/Cas9 to create

small deletions overlapping a variant, which can show that the region covering the variant is
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functional. When applying these approaches, it is critical to be highly confident that the

causal variant is among the small number that can feasibly be tested.

A higher-throughput experimental alternative to genome editing is to use a reporter assay.
Here, putative regulatory sequences, such as sequences surrounding highly ranked variants
in an association study, are synthesized as oligonucleotides and inserted upstream of a
reporter gene (e.g. green fluorescent protein (GFP) or luciferase) and transfected into cells.
Sequences that regulate expression of the reporter gene will alter the measured level of
GFP or luciferase. Reporter assays can also be done at scale. Tewhey and Sabetti used a
massively parallel reporter assay (MPRA) to test 32,373 variants from 3,642 cis-eQTL loci
for differential effect between alleles (Tewhey et al. 2016). Although this study focused on
eQTLs rather than GWAS, the same approach could be used to test credible set variants
from GWAS in cases where altered gene expression is the most likely mechanism. Even
among eQTLs, MRPA only detected an expression-modulating effect of a genetic variant for
~9% of eQTLs tested, some of which will be false positives (Tewhey et al. 2016). It should
be kept in mind that MPRA will only detect an effect for variants that alter gene transcription
levels, i.e. enhancer or promoter variants, and not mechanisms that alter splicing or post-
transcriptional regulation. Also, the effect that a variant has in a native cellular context may
be unobservable or have a different direction of effect when tested in a reporter construct
(Inoue et al. 2016). As a result, MPRA can be a useful complement to other fine-mapping

approaches but does not obviate them.

1.5.2 Statistical fine-mapping

Early approaches to statistical fine-mapping, such as that used in the Wellcome Trust Case
Control Consortium (Wellcome Trust Case Control Consortium et al. 2012), assumed that a
single causal variant was present at an associated locus. A concern with this assumption is
that when multiple causal variants do exist, the most strongly associated variants may be
non-causal, due to being in LD with more than one causal variant. Leading methods
developed more recently, such as CaviarBF (Chen et al. 2015), GUESSFM (Wallace et al.
2015), and FINEMAP (Benner et al. 2016), account for the possibility that multiple causal
variants may explain the association signal. These approaches require testing different
combinations of putatively causal variants, a task which quickly becomes computationally
infeasible as more causal variants are allowed. GUESSFM and FINEMAP search a
subspace of potential causal variant configurations that approximates the results obtained
from examining all configurations. CaviarBF and FINEMAP require only summary statistics

from the association study, which extends their utility to the many cases where sample
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genotypes are not available. To accomplish this, they depend upon an external reference
panel of pairwise LD between variants, such as the 1000 genomes project or the Haplotype
Reference Consortium. Importantly, the reference panel population’s ethnicity must be well-
matched with that of the GWAS, otherwise the statistical fine-mapping may give spurious
results. An additional drawback of purely statistical approaches is that when there are

multiple variants in very high LD, they are nearly statistically indistinguishable.

1.5.3 Functional fine-mapping

Another set of methods incorporates functional genomic information to prioritize variants that
have similar association statistics. This approach is supported by simulations showing that
the size of the credible set can be reduced while retaining an equal probability of containing
the causal variant (van de Bunt et al. 2015). Relevant annotations include overlap with gene
bodies and proximity to gene TSSes, as well as the epigenetic traits discussed previously,
such as chromatin accessibility, histone modifications, DNA methylation, and genome
segmentation. Large-scale international consortia, such as ENCODE, Roadmap
Epigenomics (Roadmap Epigenomics Consortium et al. 2015), and FANTOM (FANTOM
Consortium and the RIKEN PMI and CLST (DGT) et al. 2014), have collected epigenomic

data across many cell lines and tissues.

The vast scale of epigenomic datasets makes their use for variant interpretation especially
challenging because most variants overlap some molecular annotation. Furthermore, in the
context of GWAS it is unclear how much weight to place on the statistical association for a
given variant versus the annotations the variant overlaps. There has been rapid progress in
computational methods that attempt to solve these two problems simultaneously. Fgwas (J.
Pickrell 2013) learns each annotation's overall enrichment for statistically associated variants
directly from GWAS summary statistics, controlling for LD between variants. In a Bayesian
framework, each variant's prior probability of causality then depends on its annotations, and
this is combined with its association statistic to determine a posterior probability that the
variant causes the association in a region. Fgwas assumes that a single variant in each
region causes the association. PAINTOR (Kichaev et al. 2014) uses a similar Bayesian
approach, but allows for multiple causal variants, at the cost of running time that increases
exponentially with the number of potential causal variants allowed. Because these
approaches rely on the signal from GWAS summary statistics, they are only likely to work
well for highly powered GWAS where many associations contribute to the estimated
annotation enrichments. RIVIERA-MT (Y. Li and Kellis 2016) and fastPAINTOR (Kichaev et
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al. 2017) improve upon this by analyzing many GWAS jointly, while also allowing multiple

causal variants at a locus.

In general, these approaches are flexible in that the user can select any relevant annotations
to use in the model. However, this imposes the considerable burden of identifying the

most relevant annotations. Prior knowledge of a trait can often be used to select a relevant
cell type, but the number of available cell type-specific annotations is still large. Including too
many annotations in fine-mapping raises the risk of overfitting, which can worsen
performance. This therefore leads to the related problem of identifying the most relevant cell

types for a given trait.

1.5.4 Identifying causal genes

In many respects, it is more important to identify causal genes than causal variants, since
the proteins encoded by genes are the targets for drug development. Identifying the causal
variant for a GWAS association can sometimes implicate a particular gene as causal, such
as when it is located at a promoter or in a gene’s transcript or splice sites. For other
regulatory variants, because long-distance gene regulation is prevalent, the location of a
causal variant is only weak evidence that nearby genes are involved. Hi-C and promoter-
capture Hi-C can suggest causal genes that are distal from a GWAS association peak,
although most datasets are limited in resolution to blocks ~25 kb or larger. These data also
have not yet been generated across the broad array of cell types for which other regulatory

annotations are available.

A unique approach to GWAS can discover associations directly tied to specific genes, and
has been developed recently by several groups (Gamazon et al. 2015; Gusev et al. 2016;
Zhu et al. 2016; Barbeira et al. 2017). These methods use reference eQTL data to predict
gene expression levels in a GWAS cohort, and then test for association between the
predicted expression and a trait. The latest of these methods can operate directly from
GWAS summary statistics. In addition to defining the associated gene, they indicate the
direction of effect between gene expression and the trait. Statistical power is dependent on
the quality of eQTL reference dataset, as well as the match in LD patterns between the
eQTL and GWAS cohorts. Just as many GWAS associations do not overlap with known
eQTLs, not all associations discovered by traditional GWAS will be identified by GWAS for

predicted gene expression.
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1.6 Outline of the thesis

In this thesis, | used two approaches to leverage molecular QTL data to understand genetic

associations with human phenotypes.

In Chapter 2, | describe mapping QTLs for gene expression and chromatin accessibility in
123 cell lines differentiated from iPSCs to sensory neurons. A key observation in this effort
was that the differentiated cells contained a mixture of neurons and contaminating fibroblast-
like cells that was highly variable from one differentiation to the next. Using single-cell RNA-
seq from one cell line, | generated reference gene expression profiles for the neurons and
contaminating cells, and used these to estimate purity for each of the bulk samples. | found
that sensory neuronal purity was influenced by whether the iPSCs they were derived from
had been cultured on feeder cells or in feeder-free medium. Although this contributed to
increased gene expression variability in the sensory neurons, by leveraging additional
information from allele specific expression | found QTLs which were in high LD with with

GWAS catalog associations, providing links to putative causal genes.

In Chapters 3 and 4, | used public eQTL data to develop a model that uses functional
genomic data to predict non-coding variant functionality, and subsequently applied this to
fine-map GWAS associations from summary statistics. In Chapter 3, | evaluated a number of
hypotheses on how genomic annotations could optimally be used to generate a model
predicting the locations of causal eQTL variants. The resulting model enables the
computation of genome-wide “PRF” scores, which reflect the cell type-specific probability of
regulatory function, in any of 119 cell types profiled by the Roadmap Epigenomics project. In
Chapter 4, | applied PRF scores to address two problems in post-GWAS analysis: (i)
identifying relevant cell types, for individual loci and genome-wide, and (ii) fine-mapping to

identify candidate causal variants.

The work in this thesis illustrates how both iPSC-based cellular models and large-scale data

integration can link human genetic variation to complex trait phenotypes.
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