3 PRF scores: predicting cell type-specific
regulatory function of genetic variants

Collaboration note

Natsuhiko Kumasaka provided eQTL summary statistics for Geuvadis samples used in this

chapter. All other work described here is my own, with advisory input from Daniel Gaffney.

3.1 Introduction

Prioritizing genetic variants likely to be functional is a general problem that is relevant to both
Mendelian disease and complex traits. Because experimentally demonstrating the molecular
effects of individual variants is laborious, computational approaches to prioritize variants to
investigate can be extremely useful. Early approaches to variant effect prediction, such as
PolyPhen (Adzhubei et al. 2010) and SIFT (Kumar, Henikoff, and Ng 2009), focused on the
effects of nonsynonymous protein-coding variants, but these comprise fewer than 1% of all
common variants. Effective methods to distinguish functional non-coding variants are
essential: at least 85% of complex trait associations appear to be non-coding, and it is
suspected that non-coding changes may be involved in Mendelian disease cases for which

exome sequencing has failed to identify coding variants.

The enormous growth of functional genomic data has led to a corresponding growth in
methods using these data to predict non-coding variant functionality. The simplest
approaches, such as HaploReg (Ward and Kellis 2012) and RegulomeDB (Boyle et al.
2012), annotate variants based on their overlap with multiple datasets, but leave
interpretation up to the user. This interpretation is particularly difficult because a large
fraction of genetic variants overlap at least one functional genomic feature, and these
features are also correlated amongst each other. More recently, methods have been
developed that use statistical learning to integrate these diverse data inputs into a single
score for each variant’s likelihood of having a functional effect. These can be broadly divided
into two categories: i) those which attempt to distinguish benign from deleterious variants
(such as CADD (Kircher et al. 2014), GWAVA (Ritchie et al. 2014), FATHMM-MKL (Shihab
et al. 2015), and LINSIGHT (Y.-F. Huang, Gulko, and Siepel 2017)), and ii) those which
learn DNA sequences that affect cell type-specific molecular phenotypes (such as deltaSVM
(D. Lee et al. 2015), DeepSEA (J. Zhou and Troyanskaya 2015), and Basset (Kelley, Snoek,
and Rinn 2016)). A key difference is that methods in the first category produce cell type-
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agnostic scores, whereas those in the second category are linked to the cell type-specific

annotations used.

The interpretation of these scores, and their utility for different purposes, depend upon both
the supervised training data and the functional genomic annotations used as input. For
example, CADD trained a support vector machine to distinguish common variants and
human derived alleles from simulated variants, which are not present in the genome and so
are presumed to have been depleted by selection. CADD therefore measures
deleteriousness relevant to fitness, and is likely to be biased towards treating common
variants as benign, even though common variants can have functional effects. GWAVA and
FATHMM-MKL were trained to distinguish pathogenic variants in the human gene mutation
database (HGMD) from common variants. However, the known examples of pathogenic non-
coding mutations likely have a massive ascertainment bias, as 75% are within 2 kb of an
annotated TSS (Ritchie et al. 2014). The performance of these scores in predicting distal
functional regulatory sites, as seems to be more common for GWAS associations, is
unknown. In addition, all of these methods produce scores that are opaque, and it is difficult
to know why one variant scored more highly than another, which limits mechanistic

interpretation of the variants’ functions.

Methods that predict the effect of variants on molecular phenotypes are in general tied to a
particular cell type-specific dataset. Basset and deltaSVM predict the effect of a variant on
DNase hypersensitivity from a given assay, but do not incorporate additional informative
annotations, such as distance to TSS, TFBS and histone modifications. DeepSEA provides
scores across many cell type-specific assays, including TFBS from ChIP-seq, but does not

integrate these scores together, making their interpretation difficult.

In this chapter, we describe PRF scores, which integrate a large set of functional genomic
annotations to produce scores that reflect the cell type-specific probability of regulatory
function for common, non-coding variants. PRF scores are transparent, as a variant’s score
can be broken down into the contributions from individual annotations. Our primary
annotation sources are the uniform epigenomic annotations in 119 cell types from the
Roadmap epigenomics project, along with FANTOM TSS information, conservation, and
gene annotations. Our model is trained using eQTL data, which makes our predictions
particularly relevant to common regulatory variants, such as those hypothesized to underlie
many GWAS associations. Although eQTL maps are being produced in many cell types by
the GTEx consortium (GTEx Consortium 2013), these have limited sample size for many

tissues, and cannot hope to cover the full range of human cell types and cellular
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contexts/conditions. EQTL studies also provide no information at genomic positions where
no variants are observed in the population studied, and are not well powered for low-frequency
variants or those with small effect sizes. There thus remains a need for genome-wide

predictions of variant regulatory effects across a broad range of cell types and conditions.

In developing PRF scores, we explored alternative ways of using specific epigenomic
annotations. We found that using the quantitative level of histone modification and DNase
hypersensitivity signals can improve prediction performance. We also found that imputed
signal tracks from Roadmap Epigenomics are more predictive of eQTLs than the measured
data. We show that, compared with CADD and GWAVA, PRF scores are dramatically better
at prioritizing likely causal eQTL variants when distance to the regulated gene is included,

but only slightly superior when the relevant gene is not known.

Unlike other variant scoring methods, PRF scores can be converted into relative probabilities
that each variant regulates gene expression. When applied to fine-map eQTLs from GTEXx,

PRF scores reduced the size of the set of credibly causal variants for 67% of loci.

3.2 Model development

3.2.1 Overview

The PRF score model uses eQTLs from the Geuvadis RNA-seq study of lymphoblastoid cell
lines (LCLs) (Lappalainen et al. 2013) to learn enrichments for multiple annotations
considered together. We used the negative binomial model implemented in RASQUAL
(Kumasaka, Knights, and Gaffney 2016) to associate gene expression with single nucleotide
polymorphisms (SNPs) in a 2 Mb window centered on each gene’s transcription start site
(TSS) for 343 European donors in Geuvadis. We selected the 6,340 protein-coding genes
with eQTL p < 10°® for the lead variant, and passed association statistics for all tested SNPs
as input to fgwas (J. Pickrell 2013). Fgwas implements a Bayesian hierarchical model in
which the prior probability for a SNP to be causal is a function of the overall enrichment of
each annotation it appears in, and is efficient enough to learn enrichments for hundreds of
annotations across thousands of eQTLs. A summary of the fgwas model is provided in

Appendix A.

Building a predictive model relies upon having informative data as input. We sought to
identify genomic annotations that are broadly available and predictive of the cell type-specific
effects of genetic variants. The ENCODE Consortium has performed over 9,000 assays on

human tissues and cell lines, including measuring histone modifications, DNase-seq, and
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transcription factor ChlP-seq (ENCODE Project Consortium 2012). However, these
experiments are distributed unevenly across tissues, and there is no core set of assays that
is ubiquitous across a large set of tissues. This would make it difficult to develop a model in
one cell type that could be easily translated to other cell types. We therefore focused on data
from the NIH Roadmap Epigenomics Mapping Consortium, which performed multiple
epigenomic assays across 111 body tissues and 16 cell lines (Roadmap Epigenomics
Consortium et al. 2015). Five core assays were measured across all samples, namely, ChlP-
seq for the histone modifications H3K4me1, H3K4me3, H3K9me3, H3K27me3, and
H3K36me3; a large fraction of samples also had assays for H3K27ac, H3K9ac, DNA
methylation, and DNase hypersensitivity. Importantly, a sophisticated imputation algorithm
was used to fill in missing data for samples lacking specific assays, by leveraging

correlations across assays and samples (Ernst and Kellis 2015).

We began by investigating hypotheses about how the predictive value of annotations could
be optimized. Since distance to the TSS of a gene is a highly informative feature for gene
regulation, we empirically determined an optimal set of distance annotations. We also
hypothesized that the quantitative value of annotations would be more informative than
binary assignment of variants as in/out of annotation peaks. We extended fgwas to enable
this, and compared quantitative versus binary versions of the same annotations. Next, we
compared the predictive value of imputed vs. measured annotation data from Roadmap
Epigenomics. Throughout these investigations, we used cross-validation likelihood to assess
the different models. In cross-validation, a fraction of the data (the training set) is used to
estimate model parameters, and the remaining fraction is used to obtain the likelihood of the
model given those parameters. This estimated likelihood is thus not influenced by overfitting
on the training set. We used ten-fold cross-validation, so that in each of ten iterations a
different 10% of the gene eQTLs were used as validation and the remaining 90% were used

to train the model.

3.2.2 Optimising gene distance annotations

Both GWAS associations and eQTLs are highly enriched near the TSSes of genes. For
eQTLs, SNP distance to TSS is more predictive of association than any other individual
annotation, including DNase | hypersensitivity. Despite this, many cases are known of
variants regulating genes from considerable distances (Spitz 2016). It is therefore important

to effectively model distance to gene to predict regulatory variants.
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3.2.2.1 FANTOM TSSes are more predictive than Ensembl TSSes

Ensembl provides annotation of gene transcripts, including the locations of exons, and by
implication the location of TSSes. Many genes in Ensembl have multiple transcript isoforms,
making it unclear how to assign a specific TSS distance to each SNP. However, most genes
express a single dominant transcript across tissues (Gonzalez-Porta et al. 2013), suggesting
that some Ensembl TSSes are less relevant than others. An alternative annotation of TSSes
comes from the FANTOM consortium, which used cap analysis of gene expression (CAGE)
to generate quantitative maps of TSS usage for many tissues (FANTOM Consortium and the
RIKEN PMI and CLST (DGT) et al. 2014). The FANTOM annotation thus distinguishes

highly used TSSes from those which are weakly used or unused.

We used fgwas to compute the enrichment of causal eQTL SNPs in different distance bins
for three different TSS distance annotations:

1. distance to the nearest Ensembl TSS

2. distance to the mean position of all Ensembl TSSes for a given gene

3. distance to the nearest of the top 3 FANTOM TSSes in LCLs
Using the minimum distance allows SNPs near a strongly used TSS to receive maximal
enrichment, but requires that SNPs near weakly used TSSes also receive high enrichment,
which could reduce prediction performance. Using distance to an average TSS position
avoids labeling SNPs with a small TSS distance near different weakly used TSSes, but may

fail to correctly label SNPs in the nearest bins for the highly used TSS.

For all TSS-proximal distance bins, enrichment was highest when FANTOM TSSes were
used (Figure 1), and this was reflected in a much higher cross-validation likelihood. This
indicates that FANTOM TSSes are more informative in localising causal eQTL SNPs than
are Ensembl TSSes, and so we used this method of TSS annotation in all subsequent

models.
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Figure 1: Enrichment of causal SNPs in fixed distance bins for the three TSS distance definitions

described in the main text.

3.2.2.2 An optimal spacing of distance bins

When modeling distance to TSS, it is common to define bins at different distances so that
each SNP can be assigned to a single bin. A drawback of such a definition is that
neighbouring SNPs may fall in different bins and thus receive different enrichments, whereas
SNPs many kilobases away but in the same bin receive the same enrichment. Binning is one
of many possible smoothing functions, and the fit is less smooth than alternatives such as
natural splines. However, splines are difficult to integrate into the iterative approach to model
optimisation used in fgwas, since they need to be computed across all (x, y) points
simultaneously (here, TSS distance and enrichment). As a binary annotation for each SNP,
distance bin enrichments are also rapid to compute, which is essential for optimising the

large, multi-annotation models that we evaluate later.

Many previous models have used only coarse bins of TSS distance (e.g. 2 bins (Kindt et al.
2013; J. Pickrell 2013), 3 bins (Ryan et al. 2014), or 4 bins (Schork et al. 2013)). We sought
to systematically identify an optimal spacing TSS distance bins. To do this we first

determined the distribution of TSS distance for lead eQTL SNPs (Figure 2a), using for each
SNP the distance to the nearest of the top 3 FANTOM TSSes for the respective eQTL gene.
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Figure 2: (a) TSS distance of lead eQTL SNPs to the gene they regulate. (b) Cross-validation data
log-likelihood when SNPs are divided into distance bins with different granularity. (¢) Distance bins
used in a 12-bin model which has nearly maximal cross-validation likelihood. Each SNP is assigned to

one bin based on its TSS distance.

We created a set of distance annotations with differing numbers of bins, with bin boundaries
chosen from the quantiles of the lead SNP TSS distance distribution to contain an
approximately equal number of SNPs. When these annotations were used with our eQTL
training dataset, the cross-validation likelihood peaked with 25 distance bins (Figure 2b),
indicating that distance models more fine-grained than this might be overfit. A model with
only 12 distance bins was nearly equivalent and is much faster to fit with fgwas; thus, we

chose to use 12 bins going forward. The bin definitions are shown in Figure 2c.

3.2.3 Quantitative annotations improve prediction performance

3.2.3.1 Quantitative annotation model

A standard workflow for using data from a ChlP-seq or DNase-seq experiment begins by
calling peaks - that is, genomic regions with read counts that rise above the background
observed genome-wide. The boundaries of called peaks can depend on the particular peak
calling software used and on the parameters provided. Subsequently, a significance cutoff is

used to retain only high-quality peak calls, typically at a specified false discovery rate. A
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number of previous works have evaluated the enrichment of genomic annotations for causal
eQTL or GWAS variants (Kindt et al. 2013; Gagliano et al. 2014; Schork et al. 2013; Gaffney
et al. 2012), while others have incorporated multiple annotations for fine-mapping GWAS loci
(Lu et al. 2016; Ryan et al. 2014; J. Pickrell 2013; Kichaev et al. 2014). All of these methods
have relied assigning SNPs a binary 1 or 0 for an annotation depending on whether or not
they are located within a called peak. Yet, peak calling parameters are often arbitrary, and
this includes the threshold below which peaks are considered low quality and are discarded.
It is unknown to what extent the quantitative information in the ChlP-seq or DNase-seq
signal, such as the height of the peak or the signal value outside of peaks, is useful for

identifying causal variants.

To use the quantitative signal value of annotations, we implemented an extension to fgwas

(called gfgwas, available at https://github.com/js29/gfgwas) that models enrichment as a

logistic function of the annotation’s quantitative value at a SNP. The logistic function has two
desirable features in this context: first, outliers in the distribution of annotation values will not
substantially skew the model fit; second, the function can be most sensitive to input values
over a specific range. This second property could be useful, for example, for chromatin
accessibility data, where above a certain value the DNA is “open” and larger values
contribute no more information. Figure 3 depicts how the two parameters of the logistic

function relate the input value to an output.
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Figure 3: A standard logistic function enables controlling the slope parameter 34 (a) which determines
how quickly an annotation becomes informative, as well as the translation parameter (¢ (b) which

determines at what absolute value the annotation begins to be informative.
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In the hierarchical model implemented in fgwas (see Appendix A), the prior probability of a

given SNP to be associated, ik, is allowed to depend on individual annotation enrichments,

A1, according the following equations:

exi
T = < (Equation 2)
ZjESke J
L,
Xi = }lllil (Equation 3)

where i and k denote the i" SNP in the k™ locus, Sy is the set of SNPs in locus k, L,is the
number of annotations in the model, /; is the effect of SNP annotation I, and | is 1 if the
SNP falls in annotation | or 0 otherwise. The annotation contribution to the prior probability

for a given SNP is thus either A or zero, depending on whether the SNP falls in the

annotation or not. We can interpret A as the log odds ratio for a causal SNP to appear in the

annotation versus outside the annotation. The model is optimized by maximizing the
likelihood of the data across all loci, with SNP annotation enrichments shared across loci.
The combined enrichment for a given SNP across annotations, x;, is the quantity that we
refer to as a “PRF score”, since it reflects the log of the probability for this SNP to be

causally associated with gene expression, relative to other SNPs considered.

To exploit quantitative annotations we add to equation 3, replacing the indicator l; with the

logistic function that depends on the annotation value, z:

1
1+ e —B1(z—Bo)

(Equation 4)

Iy =

Each quantitative annotation thus contributes three parameters to the model, A, Bo and B+.
Since |j takes on values from 0 to 1 depending on the annotation’s quantitative value, a

SNP’s enrichment relating to a particular annotation, A l; , varies between zero and i|. The
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enrichment parameter, A, then has largely the same interpretation as previously - it reflects

the enrichment of causal SNPs in sites with the highest quantitative value, relative to the
lowest value. By controls the value at which the annotation has half-maximal enrichment,

while B¢ influences the slope of the transition from uninformative to informative based on the
annotation’s quantitative value.

3.2.3.2 Model comparison

We selected three annotations from Roadmap Epigenomics LCLs to use in assessing the
usefulness of quantitative annotation values: DNase hypersensitivity, histone H3K27ac
ChlIP-seq, and histone H3K4me3 ChIP-seq. As input we used imputed annotation values
(Ernst and Kellis 2015) and applied a quantile normal transform. For each annotation we

compared the cross-validation likelihood of four models (Figure 4):

1. standard fgwas + binary annotation (peak calls)

2. standard fgwas + 3 binary annotation levels (top/mid/bot third of values within peaks

only)

standard fgwas + 3 binary annotation levels (top/mid/bot third of all annotation values)

guantitative fgwas + quantitative annotation

H3K4me3 H3K27ac DNase

239800 -

239700 -

239600 -

Log likelihood

239500 -

Figure 4: Cross-validation likelihood of quantitative and binary annotation models applied to three

different annotations. 12-bin distance annotations were included in all models.
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Models 2-4 each have three parameters, whereas model 1 has a single parameter. Model 2
is most similar to model 1 as it assigns an enrichment to SNPs within peaks only; however,
SNPs in the top, middle, or bottom tertile of annotation values within peaks can receive
different enrichments. Model 3 assigns an enrichment to every SNP based on its presence in
the top, middle, or bottom tertile of all annotation values, regardless of peak calls. Thus,
model 3 can indicate whether annotation values outside of peaks are informative. The
logistic function in model 4 can be seen as a smoothed intermediate between models 2 and
3. By comparing model 4 with the other three-parameter models, we can assess whether its

performance justifies the added complexity.

For all annotations tested, the quantitative model (4) was superior. Interestingly, for the two
ChlP-seq annotations, the global 3-level binary annotation model (3) was better than the
peaks-only 3-level model (2); however, for DNase hypersensitivity, the peaks-only model
was better than the global model. By examining the parameters of the quantitative model we

can get a hint as to why this might be.

H3K4me3 H3K27ac DNase

=~ 37 3- 3
2
&)
2
(1]
+ 2- 2- 2-
= 1.533
=
I 1,059
S 1- 0.851 1- 14
£ 1.636
S 1,048 0896
C
Wo- 0- 0-

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

Normal quantile Z score

Figure 5: Parameters of the quantitative annotation model for 3 annotations. The x axis represents
the normal quantile Z score across all SNPs; e.g. 95% of SNPs have annotation values between of +/-

1.96. The y axis represents the enrichment of SNPs with the highest scores relative to the lowest.

For DNase hypersensitivity, half-maximal enrichment is seen at a Z score of 1.636, which
corresponds to the 95th percentile of all DNase values (Figure 5). In contrast, the half-
maximal enrichments for H3K4me3 and H3K27ac occur at Z scores of 1.048 and 0.896,
respectively, corresponding to the 85th and 82nd percentiles. In other words, only a small
fraction of the top SNPs by DNase value are substantially enriched for causal eQTL variants,
whereas enrichment of causal SNPs in H3K4me3 and H3K27ac annotations is distributed

somewhat more broadly across the range of quantitative annotation values. A relevant factor
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may be that DNase peaks are narrower and more numerous than both H3K27ac and
H3K4me3 histone peaks. This also relates to the fraction of signal within peaks for these
three annotations: whereas only 31% of DNase signal occurs within called peaks, the
fraction is larger for H3K27ac (55%) and for H3K4me3 (61%). Since the global 3-level binary
annotations were split into top/middle/bottom tertiles, for DNase this effectively allocated two
enrichment parameters to values outside of peaks, and a single enrichment parameter within
peaks (the top tertile). In contrast, for the histone modifications the split was closer to two

parameters for values within peaks, and one parameter for values outside of peaks.

It is also worth noting that the 3-level within-peak annotations for H3K4me3 and H3K27ac
were no better than a single binary peak annotation in terms of cross-validation model
likelihood. Yet, the 3-level global annotations for the same ChIP-seq marks were
considerably better. This indicates that substantial information about the location of causal

variants is present in the level of these quantitative annotations outside of peak calls.

3.2.4 Imputed Roadmap data is more predictive for eQTLs than
measured data

Two types of annotation data are provided in Roadmap Epigenomics: signal tracks from
experimental assays, such as ChIP-seq and DNase-seq, and imputed signal tracks. An
imputed signal track does not use any experimental data for the given tissue and assay, but
instead predicts the signal based on (a) other assays in the same tissue, and (b) the same
assay in different tissues. This prediction thus leverages correlations between assays in a

given tissue, and between tissues for a given assay (Ernst and Kellis 2015).

LCLs were one of the cell types extensively profiled, i.e. with experimental assays and not
only imputed assays. Since our eQTL training data was from LCLs, this enabled us to
compare the performance of imputed and measured annotations for many assays. In most
cases the imputed quantitative annotation achieved a higher model likelihood than the
measured annotation for the same assay (Figure 6a), indicating that it was more informative
for identifying likely causal eQTL variants. These improved likelihoods were accompanied by
generally higher enrichments for the imputed annotations (Figure 6b). For the DNase
hypersensitivity annotation, imputed and measured data performed similarly, while for the
repressive histone marks H3K27me3 and H3K9me3, measured data performed slightly
better than imputed data. This could indicate that whereas there is some redundancy in
“activating” marks that can be used for imputation, repressive marks are imputed less

effectively.
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Figure 6: Imputed quantitative annotations from Roadmap Epigenomics outperform measured
annotations. (a) Model log likelihoods, and (b) logistic curves defined by the optimal parameters for
the same models; enrichments for imputed annotations are in red, measured annotations in blue. In
all cases a 12-bin distance annotation was included. Results were similar when no distance

annotation was used.
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Based on these findings we chose to exclusively use imputed annotations, even though they
may not be superior in every case. An important benefit is that imputed data are available for
every annotation in every cell type profiled by Roadmap Epigenomics, which enabled us to

extend our model to each of these cell types.

3.2.5 Interactions between annotations and gene distance

In the model implemented by fgwas, log-enrichments for SNPs are a linear combination of
the enrichments for each individual annotation in which a SNP appears. We questioned
whether an improvement could be made to this assumption for multi-annotation models. We
might expect that certain histone marks are not equally informative at all distances from the
gene TSS. For example, the histone mark H3K4me3 is enriched at active gene promoters,
and is enriched for causal eQTL variants. However, when considering a given gene’s
expression, a high level of H3K4me3 at a distant gene is less likely to causally influence this
gene than H3K4me3 at its own promoter. This represents an interaction between the histone

mark annotation and a TSS distance annotation.

We hypothesized that annotation interactions with TSS distance might be widespread. We
therefore created new annotations to model this interaction by splitting binary histone mark
annotations into 3 distance bins: near (0 - 6,420 bp), medium (6,421 - 33,040 bp), and far
(33,041 - 1 Mbp), corresponding with the first four, middle four, and last four bins of the 12-
bin distance model. For example, for the “near-TSS” H3K4me3 annotation, a SNP would be
assigned 1 if it is both near the TSS and in an H3K4me3 peak, and 0 otherwise. We first
tested models that included both standard distance bins and these distance-interacting
annotations for Roadmap binary segmentation annotations. In almost all cases, models with
the distance-interacting annotations were slightly superior by cross-validation LLK to models
with the binary annotation but no distance interaction (Figure 7a). The enrichment values
also differed across the annotation/TSS distance interaction bins, indicating that the
annotations have different levels of informativeness when they occur at different distances

from a gene (Figure 7b).
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improved model performance in cross-validation. Shown are (a) model LLKs, and (b) the annotation

enrichment in near/medium/far distance bins. A distance model is also included, so that the

annotation*distance interaction does not reflect the general enrichment of causal SNPs near to the

gene TSS.

We then included these distance-interacting annotations in the same model as quantitative

annotations for the same histone marks. The results were highly similar to what was
observed when only binary annotations were used, i.e. distance interaction annotations

enable a small but notable improvement to model performance in cross-validation (Figure

8a).
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Figure 8: (a) For quantitative annotations, modeling the interaction between annotations and distance
to gene TSS also slightly improves model performance in cross-validation. (b) Enrichments for causal
SNPs in peaks for the quantitative annotations in (a), but split into three different distance bins

(near/mid/far). A 12-bin distance model is also included.

The annotation enrichments across distance bins show some interesting patterns (Figure
7b). A group of the genome segmentation annotations show highest enrichment at medium
distances (TssA, PromU, PromD1, Tx3’, TxReg). In contrast, the enhancer segmentations
(except for EnhAF) show highest enrichment when far from the TSS. Note that because a
generic distance model was included, these are the enrichments observed over and above
the general enrichment of eQTL SNPs near the gene TSS. Considering the quantitative
annotations, H3K9me3 is the only assay that is not improved by considering a distance
interaction. The greatest improvement is for H3K36me3 (Figure 8b), where we also see
strong enrichment at medium distances, but no enrichment or mild depletion both near and

far from the TSS. Since H3K36me3 reflects transcribed genomic regions, this may suggest
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that causal SNPs for a focal gene’s expression are slightly depleted in the transcribed
regions of distal genes, and that causal SNPs are no more enriched in nearby transcribed
regions than would be expected based on distance alone. For many of the other

annotations, we also see a pattern of little to no enrichment in the farthest distance bin.

3.2.6 Building a multi-annotation model

3.2.6.1 Model building process

We used forward stepwise selection of annotations as outlined by (J. Pickrell 2013) to build a
model containing multiple annotations, as illustrated in Figure 9. The procedure was as
follows:
1. Begin with a model having 12 binary annotations for binned distance to gene.
2. Use fgwas to determine the likelihood of a with each annotation added individually.
3. Add to the model the single annotation the most improved upon the previous model’s
likelihood.

4. Repeat 2-4 until the model likelihood does not improve further.

At this point the model may be overfit, and so we switch to cross-validation:
5. Individually drop each annotation present in the model and determine the cross-
validation likelihood.
6. Remove from the model the annotation that most improves the cross-validation
likelihood when dropped (if any do).

7. Repeat 5-6 until the cross-validation likelihood does not improve further.

95



eQTL summary stats

— Model with
annotations

no annotations
N add best
test individual .
annotations <[terate> annotation to
model
current best
model
Mo new annotation
improves moadel likelihood
best model
(possibly overfit)
test model with each remove worst
annotation dropped < <iterate> annotation
current best
maodel
Mo annotation can be
removed to improve model
best cross-
validated model

Figure 9: Schematic of model building process: forward stepwise selection to add annotations,

followed by removal of annotations using cross-validation.

This model-building process is computationally intensive, as it evaluates hundreds models at

each iteration, each one across thousands of genes, with up to a few thousand SNPs in the

2 Mb cis-window of each gene. To improve efficiency, we used code profiling to identify

areas for optimisation in the fgwas code, and we added an additional stopping criterion that

detects when the model fit is no longer improving (see Methods). These two improvements

together reduced the average run-time to one third of what it was prior. Below, we describe

additional design choices, involving selecting annotations and limiting the set of SNPs used

in model training, that were essential to complete model-building in a reasonable time frame.
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3.2.6.2 Selecting annotations

Because forward stepwise selection was used, the amount of computation needed scaled
approximately linearly with the number of annotations. We therefore chose as input only

annotations we deemed likely to be informative.

First, we used Roadmap quantitative annotations for which physical assays were performed
in at least 30 samples (Table 2). Although imputed annotations are available for many more
assays, including a number of histone modifications measured in just a handful of samples,
we thought these less likely to generalise well across tissue types. Next, we selected specific
binary annotations to split into TSS distance-interaction bins. We only split those annotations
where an initial fgwas run with the single annotation showed an improved cross-validation
likelihood when the annotation was split vs. unsplit. We used the suffixes t1/t2/t3 to indicate

distance bins for annotations that are near/medium/far from the TSS (Table 3).

A group of annotations not yet described is the “centisnp” annotations, developed by the
Pique-Regi group (Moyerbrailean et al. 2016), which predict the impact of genetic variants
on transcription factor (TF) binding. These annotations are the only ones in our training set
with resolution below that of a nucleosome (~200 nt). They are not cell type-specific, and
apply only to variants present in the 1000 genomes project. However, this set of variants
includes the majority of GWAS-associated variants. Centisnp refers to SNPs predicted to
change a TF from bound to unbound as “switch SNPs”; those predicted to have a
quantitative effect on binding are “effect SNPs”; and those within TF footprints but not

predicted to affect binding are “footprint SNPs”.

To calculate the TSS distance annotation for a given variant and gene, we determined the
minimum distance of the variant to FANTOM TSSes of the gene with an expression level of
at least 2.0 transcripts per million (TPM). Some genes did not have any expressed FANTOM
TSS, yet had nonzero expression in the Geuvadis LCLs. In this case we used the minimum
distance to any Gencode TSS. The FANTOM consortium also reported that bidirectional
transcription is a hallmark of active enhancers, and they produced a compendium of such
enhancers in the same tissue types as their TSS definitions (Andersson et al. 2014). These
enhancers include quantitative information on the level of transcription, and we used them as

a quantitative annotation in our model.

We also included gene annotations from Gencode (Harrow et al. 2012), and evolutionary

conservation values from GERP (Davydov et al. 2010). To maximize the informativeness of
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gene annotations (UTR, coding, intron), we split these annotations depending on whether

they are for the gene under consideration for a given eQTL or not, leading to annotations

labeled e.g. “intron.samegene” and “intron.diffgene”. The full set of annotations used in

model training is provided in Tables 1, 2, and 3.

Table 1: Distance annotations used in model training

TSSDist 0-285
TSSDist 286-1410
TSSDist 1411-3690
TSSDist 3691-6420
TSSDist 6421-10338
TSSDist 10339-15106
TSSDist 15107-21855
TSSDist 21856-33040
TSSDist 33041-49943
TSSDist 49944-85174
TSSDist 85175-164469

Table 2: Quantitative annotations used in model training

DNase
H3K4me1
H3K4me3
H3K9ac
H3K9me3

H3K27ac
H3K27me3
H3K36me3

DNAMethylSBS-fraction
GerpRS-noncoding only

effect-snp-num_motifs
footprint-snp-num_motifs
switch-snp-num_motifs
Fantom enhancer TPM

Table 3: Binary annotations used in model training

Annotations beginning “Seg” are the 25-state Roadmap segmentation states.

Annotations ending t1/t2/t3 indicate that the annotation is only positive in the given distance bin from the TSS.

Gencode-antisense
Gencode-coding.diffgene
Gencode-coding.samegene
Gencode-intron.diffgene
Gencode-intron.samegene
Gencode-lincRNA
Gencode-miRNA
Gencode-rRNA
Gencode-sense_intronic
Gencode-sense_overlapping
Gencode-snoRNA
Gencode-snRNA
Gencode-UTR3.diffgene
Gencode-UTR3.samegene
Gencode-UTR5.diffgene
Gencode-UTR5.samegene
Seg-1.TssA

Seg-1.TssA.t1
Seg-1.TssA.t12

Seg-6.Tx.t2
Seg-6.Tx.t3
Seg-7.Tx3
Seg-7.Tx3.t1
Seg-7.Tx3.12
Seg-7.Tx3.t3
Seg-8.TxWk
Seg-8.TxWKk.t1
Seg-8.TxWKk.t2
Seg-8.TxWKk.t3
Seg-9.TxReg
Seg-9.TxReg.t1
Seg-9.TxReg.t2
Seg-9.TxReg.t3
Seg-10.TxEnh5
Seg-11.TxEnh3
Seg-12.TxEnhW
Seg-13.EnhA1
Seg-13.EnhA1.t1

Seg-15.EnhAF.t2
Seg-15.EnhAF.t3
Seg-16.EnhWA1
Seg-16.EnhW1.t1
Seg-16.EnhW1.12
Seg-16.EnhW1.13
Seg-17.EnhW2
Seg-17.EnhW2.11
Seg-17.EnhW2.12
Seg-17.EnhW2.t3
Seg-18.EnhAc
Seg-19.DNase
Seg-2.PromU
Seg-2.PromU.t1
Seg-2.PromU.t2
Seg-2.PromU.t3
Seg-20.ZNF_Rpts
Seg-21.Het
Seg-22.PromP

effect-snp.t3
footprint-snp
switch-snp
DNase.t1
DNase.t2
DNase.t3
H3K27ac.t1
H3K27ac.t2
H3K27ac.t3
H3K27me3.t1
H3K27me3.12
H3K27me3.t3
H3K36me3.t1
H3K36me3.12
H3K36me3.t3
H3K4me1.t1
H3K4me1.12
H3K4me1.t3
H3K4me3.t1
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Seg-1.TssA.t3 Seg-13.EnhA1.12 Seg-23.PromBiv H3K4me3.t2
Seg-3.PromD1 Seg-13.EnhA1.13 Seg-24.ReprPC H3K4me3.t3
Seg-3.PromD1.1 Seg-14.EnhA2 Seg-25.Quies H3K9ac.t1
Seg-3.PromD1.t12 Seg-14.EnhA2.11 Seg-25.Quies.t1 H3K9ac.t2
Seg-3.PromD1.t3 Seg-14.EnhA2.12 Seg-25.Quies.t2 H3K9ac.t3
Seg-4.PromD2 Seg-14.EnhA2.13 Seg-25.Quies.t3 H3K9me3.11
Seg-5.Tx5 Seg-15.EnhAF effect-snp.t1 H3K9me3.t2
Seg-6.Tx Seg-15.EnhAF.t1 effect-snp.t2 H3K9me3.t3
Seg-6.Tx.t1

3.2.6.3 Limiting training data to improve speed

For each of the 6,340 protein-coding genes used in model training, all SNPs in a 2 Mb
window were tested for association with the gene’s expression, a total of 39,566,693 tests.
Even with the optimisations described above, running the model-building process with fgwas
would take months to compute. While we could train the model on a small subset of genes,
the results would depend more strongly on the particular genes selected. Moreover this
would to a certain extent defeat the purpose of using eQTL data, where we have a large
number of associations. We instead explored training the model using all genes, but with a
subset of SNPs for which the association statistic was above a certain threshold. Because

most SNPs are not associated with expression, this could improve the runtime dramatically.

To assess whether filtering variants based on association statistic would change model-
building results, we selected 1,000 genes with a lead variant having p < 1x107'?. We then
determined the approximate Bayes factors (BFs) for variants, and created filtered datasets
having only variants with BF > 10, or with a BF > 100. For a p value of 1x10™"?, the
equivalent BF is ~4.7x10°, and so the variants filtered out are unlikely to be causal. Whereas
the full 1,000-gene dataset had 6,362,813 variant tests, there were just 582,975 variants with
BF > 10, and 383,442 variants with BF > 100. We applied the model-building process
described previously, separately for the full and filtered datasets, stopping after 10 iterations.

The annotations that were added to these three models are shown in Table 4.
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Full dataset Filtered dataset BF > 10 Filtered dataset BF > 100

Order in Order in
annotations added annotations added full data annotations added full data
1 DNase DNase 1 DNase 1
2 H3K36me3 H3K36me3 2 State.25.Quies 5
3 intron.diffgene intron.diffgene ) UTR3.samegene 6
4  H3K9me3 H3K9me3 4 coding.samegene 10
5 State.25.Quies Enh.Fantom 7 intron.diffgene &
6 UTR3.samegene UTR3.samegene 6 UTRS5.diffgene -
7  Enh.Fantom H3K27ac - H3K27ac -
8 effect-snp.nmotifs coding.samegene 10 H3K27me3 -
9 H3K9ac.t3 UTRS5.diffgene - State.1.TssA.t3
10 coding.samegene effect-snp.nmotifs 8 Enh.Fantom 7

Table 4: The order in which annotations are added when model-building with three different training
datasets. For annotations in the filtered datasets, we show the order in which the same annotation

was added in the full 1,000-gene dataset.

Although the annotations added during model-building were similar, they were not identical.
In addition, in the filtered datasets the enrichments reported are lower across all annotations
than in the full dataset. We evaluated the performance of the three models shown in Table 4
using cross-validation, applied to either the same 1,000 genes or to a separate set of 1,000
genes. In these validation comparisons no variants were filtered out, and the only difference
between models was which annotations were included. The models built using filtered data
did not perform as well in cross-validation on the 1,000 genes they were trained on as did
the model trained with all SNPs. However, for the independent set of genes, the model
trained on the BF > 10 filtered dataset actually performed better in cross-validation than the
model trained using all SNPs (Figure 10). Based on this, we believe that performing model-
building with low-BF SNPs filtered out is an effective optimisation that is likely to result in a
similar-performing model in external validation. We proceeded with building a full model on

the 6,340 eQTL genes, using only variants with BF > 10.
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Figure 10: Cross-validation LLK of models shown in Table 4, for either (a) the set of 1,000 genes
used in training, or (b) a separate 1,000 genes.

3.2.6.4 A final model with 38 annotations

Applying the model-building process described previously, we added annotations
sequentially to the model for 40 iterations, after which the model likelihood no longer

increased. Model LLKs plateaued once the 38th annotation was added (Figure 11).
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236400 -

Annotation added

Figure 11: Model LLK with each annotation that was added over 40 iterations. Each model includes

12 distance bins, as well as all the annotations added prior to it.

We selected the first 38 annotations, and switched to using cross-validation, testing models
with each annotation individually dropped. Surprisingly, none of the annotations could be
removed without worsening the cross-validation likelihood, as shown in Figure 12. We also
observed that when considering annotations to drop, the importance by cross-validation
likelihood was not the same as the order in which they were added. This reflects the fact that
annotations are correlated, and one annotation could be substituted by a combination of

other annotations, which may have been added later on in the model-building process.
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Figure 12: Model cross-validation LLK when each annotation is individually dropped. The full model
with no annotations dropped is on the left, and no annotation can be dropped without reducing the

LLK. For the x-axis labels, the number preceding each annotation name is the order in which it was
added to the model.

Since no annotations could be dropped, the full set of 38 annotations and their associated
enrichments is our most predictive model. Annotation enrichments are illustrated in Figure
13, and full details are reported in Appendix B. For some annotations, the confidence interval
for their enrichment overlaps zero. While this argues for dropping them from the model,
cross-validation supported keeping them in. We note that in a combined model with many
annotations, the enrichment for each individual annotation is compensated by adjustments to

other annotation enrichments.
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Parameter enrichments and confidence intervals
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Figure 13: Enrichments for (a) TSS distance annotations, and (b) the 38 other annotations included in
the final model. Confidence intervals were determined by individually adjusting annotation
enrichments until the model LLK is decreased by 2 units. Fgwas failed when computing confidence
intervals for some of the TSS distance annotations. In (b), four annotations are shown separately at

right with a different scale, due to large confidence intervals.
Given enrichments for our 38 annotations, we can compute the PRF score for any variant in

any of 119 Roadmap epigenomes. We next look at how PRF scores are defined based on

the model parameters, and how they vary across the genome.
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3.2.7 Distribution of PRF scores

The PRF score for a variant is the sum of enrichments for the variant’s annotations. This is

the value x; in the equations below, repeated here for convenience.

et
Tk = =—=—
= Zexa‘ (Equation 2)

je Sk
L,
Xi = E :l=IAIIﬂ (Equation 3)

The prior probability for a variant to be causally associated with gene expression, ik,

involves x; in the exponent, and thus the PRF score is proportional to the logarithm of the
probability that the variant is associated. A variant’s prior can only be computed relative to a
defined set of SNPs, S, in a region around a gene of interest. This prior probability depends
on the assumption that the causal variant is within the set of variants considered, and
moreover it will change if the set of variants considered changes. The same is not true for
the PRF score itself: although the PRF score for a variant depends on the gene being

considered, it does not depend on the other variants considered.

We demonstrate some of important features of this approach in Figure 14, which shows the
distribution of PRF scores in the vicinity of SMAD3. PRF scores tend to peak near the TSS
of genes, and are higher in annotation-dense regions such as enhancers. PRF scores also
tend to be higher within the body of the gene they are proposed to regulate. While SMAD3
has many alternative annotated TSSes, these were not expressed in FANTOM LCLs, and so
PRF scores are not elevated near these TSSes. This kind of information would be difficult to
glean by manually exploring annotations in a genome browser. Zooming in to a 5 kb region
upstream of SMADS3, shown in Figure 15, fine-grained variation in PRF scores is seen. The
scores vary according to quantitative differences in histone modification levels, even at low

values that might not be within called peaks.
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Figure 14: PRF scores for positions in a 400 kb window around SMAD3. Scores for two genes are

shown, but multiple other genes within 1 Mb also have scores in the region. PRF scores peak towards

the TSS of genes. Here, only two TSSes are used, which are visible in the FANTOM5 CAGE reads

tra
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Figure 15: PRF scores in a 5 kb region upstream of SMADS.

Each variant has a different PRF score for each gene within 1 Mb. This makes PRF scores

well-suited to fine-mapping likely causal eQTL variants, but complicates the application to

GWAS, where the relevant gene is not known at most associated loci. In the remainder of

this chapter we discuss applying PRF scores to eQTL studies, and in Chapter 4 we apply

PRF scores to GWAS.
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3.3 Validation with eQTL data

3.3.1 Comparing score distributions

We wanted to show that PRF scores can be used to predict which genetic variants causally
influence gene expression and, ideally, by extension influence complex traits. We refer to
two types of PRF scores — “gene PRF” scores, in which the PRF score specific to a given
gene is assigned to a variant, and “max PRF” scores, in which we assign to a variant the
maximum PRF score for any gene in its 1 Mb window. GenePRF scores are useful when the

relevant gene is known, but when it is unknown then maxPRF scores must be used.

We first compared the distribution of PRF scores for cis-eQTL variants with those of CADD
and GWAVA, two leading methods providing genome-wide scores for non-coding variants.
Since the PRF score model was trained on Geuvadis data, we used eQTL data from the
GTEX project, beginning with subcutaneous adipose tissue. We selected the 2,493 adipose
eGenes where the best variant had association p < 1x107™"2. For each eGene, we determined
the posterior probability of association (PPA) for all tested variants, using the method of
fgwas with statistical information only (i.e. no annotations). We used the adipose nuclei
epigenome (Roadmap E063) to compute genePRF and maxPRF scores, and examined
these scores for variants in different bins of posterior probability (Figure 16). PRF scores
were higher on average for variants with higher PPA (p < 1x10°%, Kruskal-Wallis test). This
was also true for CADD and GWAVA, although the distributions of each score differed.
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Figure 16: Scores for variants tested for association with gene expression in GTEx subcutaneous
adipose tissue, stratified by posterior probability of association, for 4 different scoring methods:
genePRF, maxPRF, CADD, and GWAVA.U. PRF scores were calculated using the E063 adipose
nuclei epigenome. The numbers of variants in each PPA category are N=11,297,373 (PPA<0.001),
N=41,574 (PPA 0.001-0.1), N=3,063 (PPA 0.1-0.5), and N=565 (PPA>0.5).

We next used more formal metrics to assess PRF score prediction performance. A brief

introduction to these methods is provided in Appendix C.

3.3.2 Classifying lead variants

The PRF score can be treated as a binary classifier, with variants above some threshold
score predicted as causal (“positive class”), and those below this score predicted as non-
causal (“negative class”). Ideally, to define true positive cases we would use an external set
of known expression-altering variants. However, there is no gold-standard set of genetic
variants known to causally influence gene expression in specific cell types. In its absence,

we must settle for a positive set that is enriched for causal variants. We therefore use lead
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eQTL variants as a proxy for causal variants, and ask how well PRF scores discriminate lead
variants from other variants. Many lead variants will not in fact be causal, and as a result we
will likely underestimate PRF score prediction performance. In taking lead variants as
causal, we also implicitly assume that there is a single causal variant per gene. Stepwise
conditional regression has revealed that at current sample sizes, a significant minority of
human genes are detectably regulated by multiple variants (Lappalainen et al. 2013). In such
a case, even if the lead variant is causal, the presence of additional causal variants not in

the positive ground truth set will lead to underestimation of prediction performance.

We compared genePRF and maxPRF scores with CADD and GWAVA using receiver-
operating characteristic (ROC) curves; here, an area under the curve (AUC) above 0.5
indicates prediction performance better than chance. GWAVA defined scores for three
classifiers, namely, GWAVA.TSS for a model that matched SNPs based on TSS distance,
GWAVA.U which did not match on TSS distance, and GWAVA.R which matched on TSS
distance and genomic region. For each of the scores we considered performance in
identifying lead variants for GTEx subcutaneous adipose eGenes (with p < 1x10™"%) from
among all variants within 1 Mb (Figure 17a). GenePRF scores (AUC=0.951) far
outperformed other scores in prioritising lead variants (AUC 0.565 - 0.765). Achieving an
AUC above 0.9 indicates very good classification performance, which may be surprising
given that we expect only a modest fraction of lead variants to be causal. There is a simple
explanation -- because PRF scores were trained using eQTLs, they heavily upweight
variants near the TSS of genes, and lead eGene variants also cluster near the genes they
regulate. Therefore, the problem of distinguishing lead variants is made easier because most
distal variants can be discounted. Consistent with this, GWAVA.U scores, which weight TSS

distance more heavily, performed better than the other GWAVA scores (Figure 17a).

An alternative performance measure considers precision (the fraction of cases predicted
positive which are true positives) as a function of recall (the fraction of all true positives
identified as such, also known as the true positive rate). Even with a high ROC AUC, the
precision-recall curve for genePRF scores showed a precision of only 1% at a PRF score
threshold where 25% of lead variants are identified (Figure 17b). The other scores similarly
had very poor precision in their predictions. We are thus a long way from being able to
precisely pinpoint causal variants from annotation data alone when considering a large

number of candidate SNPs in a window around a gene.
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Figure 17: (a) ROC curves, and (b) precision-recall curves for identifying lead variants (with p < 10'12)

for eGenes in GTEx subcutaneous adipose tissue from among all variants within 1 Mb.

Rather than considering all variants in a large window, a more relevant measure of
performance may be how well PRF scores discriminate lead variants from among candidate
causal variants for the association. To assess this, we considered eGenes with a “confident
causal” variant, defined as a single variant with PPA > 0.5 when using fgwas with no
annotations. We plotted ROC and precision-recall curves for distinguishing the lead variant
from the top 20 variants by statistical association for each eGene (Figure 18). Note that
although we could use a threshold on PPA rather than fixing the number of variants at 20,
we avoid this because the performance would be harder to interpret: some genes have

dozens of variants with PPA > 0.01, whereas others have a single variant.

In this “fine-mapping” scenario, the ROC AUC for PRF scores (0.678) was dramatically
worse than when all variants within 1 Mb are considered. The drop in performance is
unsurprising, since TSS distance is less likely to distinguish among variants at a single
association peak. Still, both gene-aware and gene-agnostic PRF scores performed slightly
better than competing methods CADD and GWAVA. Interestingly, in this scenario PRF score
precision improved to 17% when 25% of the lead variants were identified. This is because
the positive and negative classes were less imbalanced in this scenario -- 1 in 20 variants
was positive, compared with 1 in ~5000 when all variants in the 1 Mb cis-window of a gene

were considered.
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Figure 18: (a) ROC curves, and (b) precision-recall curves for identifying lead variants in GTEXx
subcutaneous adipose tissue for “confident eGenes” where the lead variant has a statistical PPA >

0.5. To represent a fine-mapping scenario, only the top 20 variants by statistical association are

considered for each eGene.

A final metric that we considered was lift, which indicates how enriched the variants at a
given prediction threshold are for true positives, relative to the same number of randomly
chosen variants. When considering all cis-window variants for GTEx subcutaneous adipose
eGenes, those in the top 1% of genePRF scores were 42-fold more likely than chance to be
lead variants, while variants in the top 10% were 9-fold more likely (Figure 19a). Both
genePRF and maxPRF scores considerably outperformed CADD (top 1% having lift 1.9) and
GWAVA (top 1% having lift 10.4 for the best GWAVA score). When only the top 20 variants
per gene were considered, those in the top 1% and 10% of genePRF scores were 7.3-fold
and 3.1-fold more likely than chance to be lead variants (Figure 19b). In this scenario,
maxPRF scores performed nearly as well as genePRF scores, since TSS distance was less
informative as a predictor. GWAVA.U also performed well (top 1% and 10% of scores having

lift of 5.0 and 2.7), but CADD performed poorly (top 1% and 10% of scores having lift of 2.5
and 2.0).
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Figure 19: Lift curves for identifying lead eQTL variants in GTEx subcutaneous adipose from among
(a) all variants in the 1 Mb cis-window or (b) the top 20 statistically associated variants. In panel (a)

the lift values are plotted on a logged axis because they vary over orders of magnitude.
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Figure 20: (a) ROC curves, and (b) precision-recall curves for genePRF scores in identifying lead
variants in GTEX tissues from among all variants within 1 Mb. PRF scores were computed for each
GTEX tissue using the most relevant epigenome. Performance on different GTEXx tissues is indicated

by color.
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Although we used GTEXx subcutaneous adipose tissue for these comparisons, the pattern
was very similar for four other GTEXx tissues which we investigated (Figure 20). These
investigations show that PRF scores provide a genome-wide summary of regulatory
information in specific cell types, which can be useful in predicting the locations of gene

regulatory variants.

3.3.3 Fine-mapping: reducing credible set size

A measure of the utility of PRF scores is their ability to assist in fine-mapping causal
variants. A common way to describe how finely an association signal has been localised is to
consider the size of the credible set - the set of variants expected to contain the causal
variant with a specified probability. The variants in the set can be determined by computing
the PPA for each variant in the region, and then adding variants to the set (beginning with
the most associated) until in sum they reach a specified probability of containing the causal
variant, commonly either 95% or 99%. The credible set at a locus can be defined using
statistical information alone, or with the inclusion of annotation information. When an
annotation is informative we expect that statistical and annotation evidence should coincide,
and thus incorporating annotations, summarised by PRF scores, should lead to smaller

credible sets.

The PRF score for a variant is related to the log odds of a variant with those annotations
causally influencing gene expression. As such, PRF scores for a set of eQTL variants can be
directly used in a Bayesian framework to determine posterior probabilities of association for

each variant (Equation 5).

TL'I'BFL'

PPA; = i
i ZkES T[kBFk (Equation 5)

This is identical to Equation 18 in Pickrell et al. (J. Pickrell 2013), except that here the PRF
score is used directly to compute 7, the prior probability of association for each SNP /, using

Eq. 2 defined earlier. In conjunction with the eQTL summary statistics, this naturally
integrates the statistical and annotation information to give posterior probabilities of
association. This could also be done directly for a given eQTL study by using fgwas with
individual annotations and the summary statistics. In developing PRF scores, we have
summarised the complicated process of annotation selection, normalisation, and model

optimisation.
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We used summary statistics from GTEx subcutaneous adipose tissue to determine the 95%
credible set of variants for each of the 2,493 eGenes with lead variant p < 10™%. We also
used genePRF scores to compute Bayesian priors for variants, and determined PRF score-
adjusted 95% credible sets. For the majority of eGenes (67%), the size of the credible set
was reduced when using PRF scores (Figure 21). For example, the number of variants in the
median eGene credible set was 9 when using statistical information only, and 6 when

incorporating PRF scores (Figure 21, top right panel).
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Credible set size distribution Quantiles of credible set size
&
. =
0.075- variable g)h 40+
E‘ EI Naive ; 30 -
B 0.050- =
PRF = oo
3 |:| B
0.025 - )]
o 10-
pe)
o.Om b T T T T T g 0 = T T T L)
0 25 50 75 100 0.00 0.25 0.50 0.75
Credible set size Quantile
Change in credible set size Change in credible set size
0.100 w
>
100 4
0.075- g
z 8
0.050 - B
[ =
— 10-
3 3
0.025 - o)
o
®
0.000 = = 1=
T T U T o

-50 -25 0 25 50
Change in credible set size

Figure 21: Sizes of 95% credible sets determined using either statistical information only, or
combining statistical information with PRF scores. Each of the plots presents a different view showing

that credible set sizes are reduced on average when PRF scores are incorporated.

3.4 Discussion

The human genome contains millions of common variants where alleles differ between
individuals. An unknown fraction of these influence human phenotypes. While GWAS studies

have identified thousands of associations linking variants with phenotypes, the subsequent
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step of identifying the causal variants and mechanisms for these associations has proven
extremely challenging. Methods that predict variant functionality using functional genomic
data can be highly informative for fine-mapping (Spain and Barrett 2015), for burden tests
with rare variants (S. Lee et al. 2014), and for identifying phenotype-relevant cell types
(Finucane et al. 2015; Trynka et al. 2013).

PRF scores are the first genome-wide scores of regulatory potential based on eQTL data,
which include thousands of associations where the regulated gene is known. Previous
methods scoring variant functionality have been trained on either simulated data or
Mendelian mutations, where the causal variants are known. To use eQTLs, we employed a
Bayesian model that accounts for uncertainty in the location of the causal variant. Our PRF
score model addresses a number of drawbacks of previous methods. First, whereas
functional genomic data have quantitative values, to our knowledge all previous methods for
prioritizing variants have exclusively used presence/absence annotations. By developing
gfgwas, an extension to the fgwas software, we found that quantitative annotation values
substantially improve model likelihoods for eQTL data, indicating that they provide improved
performance over binary annotations for localising causal eQTLs. Second, we found that
imputed data provided by the Roadmap Epigenomics project had greater predictive
performance for eQTLs than the measured data. This finding may benefit others basing their
work on Roadmap annotations, since the imputed data are available across all cell type
epigenomes, whereas measured data are more sparse. However, since we only examined
annotations assayed across more than 30 tissues, this result may not hold for annotations
with very sparse sampling. Third, many tools require the user to collect and validate the
utility of cell type-specific functional annotations. As a result, a relatively small set of
annotations is usually used. With PRF scores, we have used a rigorous framework to
integrate a wide range of annotations, producing cell type-specific scores of regulatory

function for a large set of human tissues.

PRF scores showed better performance in identifying lead eQTL variants than the widely
used methods CADD and GWAVA. However, all methods still showed relatively poor
performance in discriminating likely causal eQTL variants from those with weaker statistical
associations at the same loci. These evaluations are limited by the fact that we do not have
a set of known “true causal”’ gene regulatory variants, and so we instead used variants
where the statistical information alone provided good evidence of causality. Yet, even with
this diluted set of true positives, far better prediction performance should be possible. This
indicates that we still have a long way to go in deconstructing the grammar of gene

regulation.

116



A number of factors may limit the prediction performance of PRF scores. Some of these are
intrinsic to the method. The PRF score for a variant is a sum of log-odds annotation
enrichments that were determined globally during model training. However, there may be
many cases where a non-linear model would better capture the complexity of gene
regulation. For example, TSS distance may not be as informative for a variant in a 3' UTR as
for an intergenic variant; DNase hypersensitivity may not be as informative for a splice site
variant as for an enhancer variant. As additional genomic data is collected and used for
prediction, the need to model non-linear combinations of annotations may grow in
importance. In addition, since our model was trained using fgwas, we implicitly assumed that
each eQTL was due to a single causal variant. Although in principle this should not bias the
estimate of enrichments, it is unknown to what extent modelling multiple causal variants per

eGene could improve our enrichment estimates.

Another factor that may limit PRF score performance is the lack of nucleotide-resolution
features in our annotation data; most of the annotations used, such as histone modifications
and genome segmentations, are limited to 200 nucleotides in resolution. In contrast, there
are a growing number of examples of single nucleotide sequence changes that influence
transcription factor binding, gene expression, and complex traits. Based on this lack of
relevant input features, PRF scores are not allele-specific. This may pose a particular
problem for variants that introduce new transcription factor binding sites, thereby altering
chromatin accessibility and other epigenomic features. If such a variant is not present in the
individuals for whom the reference data was gathered, then no reference epigenomic

annotations will overlap the locus, leading to a low PRF score.

The PRF score model was trained on the Geuvadis eQTLs, and so it is possible that the
annotation enrichments are to a certain extent overfit on this dataset. The GTEx project now
has reasonably large sample sizes for many tissues, and so it would be worthwhile to
evaluate how well a model trained based on one tissue extends to the other tissues. It would
also be possible to use eQTLs from multiple tissues in model training, which could improve
the precision of parameter estimates while also focusing on those annotations that translate

well across tissues and datasets.

In principle, many additional features could be included in the PRF score model, which could
improve its predictive utility. For example, methods that predict changes to open chromatin,
such as Basset and deltaSVM, could used to produce inputs with nucleotide-level resolution

for PRF score model training. In addition, although the large volume of existing transcription
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factor ChlP-seq data is unevenly distributed across cell types, this is a rich data source that
can be integrated with binding motifs to provide more precise predictions of variant effects.
By using the centisnp annotation as input we have incorporated some measure of variant
effects on TFBS. However, this was available only for 1000 genomes SNPs, and was not
applied in a cell type-specific manner. Finally, as genome-wide datasets of chromosome
conformation capture (e.g. Hi-C) become available across more cell types, these may help to
identify distal regulatory regions. Linking regulatory regions with specific gene promoters
could also improve the ability of PRF scores to distinguish the relevant genes for a given
variant. Since distance to TSS is the primary annotation linking variants to genes in our PRF
score model, we are unable to identify cases where the regulated gene is not the nearest

gene.

The coupling of PRF scores with the Roadmap epigenomes is both a strength and a
weakness. Computing PRF scores is straightforward across 119 different epigenomes,
including a number of cell lines routinely used for molecular assays. However, the
dependence on these annotations means that the model is not easily extendable to
additional cell types. This precludes the use of PRF scores for specific cell types that are
thought to be relevant to some diseases, such as pancreatic islets for type 2 diabetes

(Thurner et al. 2017), or regulatory T cells for autoimmune diseases (Carbone et al. 2014).

In summary, our results indicate that a careful treatment of different types of annotations can
maximize how informative they are in predicting SNP regulatory potential, and PRF scores
integrate these annotations in a novel way across many cell types. As will be described in
Chapter 4, PRF scores can be used both for identifying cell types relevant to complex traits,
and fine-mapping individual associations. We believe that there remains considerable
potential for integrating additional annotations to increase PRF score predictive

performance.

3.5 Methods

URLs

Roadmap peaks:

http://egg2.wustl.edu/roadmap/data/byFile Type/peaks/consolidatedlmputed
Roadmap signal tracks:

http://egg2.wustl.edu/roadmap/data/byFile Type/signal/consolidatedimputed
FANTOM TSS: http://fantom.gsc.riken.jp/5/datafiles/phase1.0/extra/ CAGE_peaks/
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FANTOM Enhancers: http://fantom.gsc.riken.jp/5/datafiles/phase2.0/extra/Enhancers/
Gencode: https://www.gencodegenes.org/releases/19.html

GERRP: http://hgdownload.soe.ucsc.edu/gbdb/hg19/bbi/All_hg19_RS.bw

Centisnp: http://genome.grid.wayne.edu/centisnps/

CADD scores:
http://krishna.gs.washington.edu/download/CADD/v1.0/whole_genome_ SNVs.tsv.gz
GWAVA scores: (only available for 1000 genomes SNPs)

ftp.sanger.ac.uk/pub/resources/software/gwava/v1.0/VEP_plugin/gwava_scores.bed.gz

EQTL and annotation data for model building

We downloaded genotype data for GEUVADIS samples from the 1000 genomes phase 1
release (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/) and fastq files for RNA-seq on the same
samples from ENA (http://www.ebi.ac.uk/ena/, PRJEB3366). For the 343 samples of
European descent, we aligned RNA-seq reads to GRCh37 and the Ensembl 69

transcriptome using Bowtie 2 and TopHat, and used custom code to count reads which
overlapped the union of exons across transcripts for each gene. We used RASQUAL to
associate read counts with all SNPs (imputation INFO>0.7) within 1 Mb of the TSS for each
protein-coding gene in Gencode v19. We selected the 6,340 protein-coding genes for which
the lead eQTL SNP had p < 10, and used their association statistics (for 39,566,692 SNPs)

as input to fgwas (J. Pickrell 2013) in fine-mapping mode (option -fine).

We annotated each SNP with the distance to the nearest FANTOM TSS expressed at >=2
transcripts per million (TPM) in LCLs. For binary annotations we determined SNP overlap
using bedtools, while for quantitative annotations we used bigWigAverageOverBed to extract
the signal value at the SNP. Quantitative annotation values were transformed to normal
quantiles based on the distribution of values across all tested SNPs. To split binary
annotations into near/medium/far bins of TSS distance (either 0-6420, 6421-33040, or
>33040), we created new annotations with the same values as the original annotation, but

set to zero outside of the desired distance bin.

The centisnp annotations list the number of motifs which are altered by a given SNP. We

used the number of motifs as a quantitative annotation.

Quantitative annotation parameter regularization

A pitfall of using the logistic function for quantitative annotation enrichment is that the model
is not always identifiable; that is, different combinations of the logistic’s three parameters can

give equivalent model likelihoods because they define nearly identical curves over relevant
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subsets of the range. A solution to this optimisation problem is to apply a penalty to the
logistic coefficients that prevents them from becoming too large. This constrains the search
space to what we consider reasonable parameterisations. We use an L2 penalty on the
squared parameter value, similar to ridge regression. A penalty of 0.01 on the squared
logistic parameter values leads to a cost of ~0.1 units of log-likelihood (LLK) for a parameter
value of 3, but of ~1 unit LLK for a parameter value of 10. Experimentation with different
penalty values indicated that this level of penalty had a very modest effect on the model LLK
after optimisation, as well as on the parameter values for most quantitative annotations, but

dramatically improved convergence speed in specific cases.

Fgwas efficiency improvements

We implemented two changes to improve the computational efficiency of fgwas, which are
included in the gfgwas version available on Github. Normally fgwas stops the Nelder-Mead
optimisation procedure after the optimisation step size has reached a sufficiently small
(fixed) value such that further improvement to the model is unlikely, or alternatively after a
maximum number of iterations is reached. We noticed that in many cases the step size
never became sufficiently small to halt optimisation, and yet the model likelihood did not
improve over thousands of iterations. We did not wish to lower the maximum number of
iterations, as that might prematurely halt optimisation for models that could still be improved.
We thus implemented an additional stopping criterion: when the model LLK is not improved
by at least 0.2 units over 400 iterations. Examining many optimisation runs showed that the
final model was never significantly changed due to early stopping, yet compute time was

considerably reduced for many runs.

To further improve the runtime efficiency of fgwas, we applied code profiling to identify areas
for improvement. This highlighted a single function, which sums annotation enrichments for a
given SNP at each optimisation iteration, that consumed the majority of the compute time.
By precomputing the enrichments once for each iteration rather than for each SNP, we cut
the runtime of fgwas for multi-annotation models by approximately 50%. These two
improvements are revealed in the run time for models with increasing numbers of

parameters (Figure M1).
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Figure M1: Fgwas running time for models with different numbers of parameters after
addition of a new stopping criterion (Optim1) or code optimisations based on profiling as well

as the stopping criterion (Optim2).

Model building

To subset SNPs for model training, we first used the Wakefield approximation (Wakefield
2009) to derive approximate Bayes factors from SNP Z scores and MAF, and filtered to
retain only SNPs with BF > 10. For model building we used forward stepwise selection to
add annotations sequentially to the model, arriving at a 38-annotation model as described in
the main text. For cross-validation, we began by tuning the fgwas penalty parameter as
described by Pickrell (J. Pickrell 2013); this maximized the cross-validation likelihood with a
penalty parameter of 0.01. We then tested 38 models by cross-validation where each single

annotation was dropped, but none of these had higher likelihood than the full model.
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Computing PRF scores

PRFCalc: software to compute PRF scores
PRF scores are defined for any position in a window of +/- 1 Mb around each protein-coding
gene’s TSS, in each cell type from the Roadmap Epigenomics project. The number of PRF

scores that could potentially be computed is thus:

2 x 10° positions/gene * ~2 x 10* genes * 119 epigenomes = 4.76 x 10'® PRF scores

In addition, for a given position, we would like to be able to provide a breakdown of the PRF
score to reveal the individual annotations contributing. With TSS distance plus 38

annotations in the model, the number of values we need to access or compute is:

39*4.76 x 10" = 1.9 x 10" values

This is approximately 100 terabytes of data, an amount that is not feasible to store and
access quickly without considerable infrastructure. We therefore provide software that
calculates PRF scores from the required annotation data for each epigenome. This “prfcalc”

software is available at https://github.com/Jeremy37/prfcalc. PRFCalc solves the problem of

extending the annotation enrichments determined for LCLs to all of the Roadmap

epigenomes.

Matching FANTOM and Roadmap tissue types

We use FANTOM TSS and enhancer definitions, yet the FANTOM consortium did not assay
the same samples as Roadmap Epigenomics. To be able to compute PRF scores for the
Roadmap tissues, we mapped the tissues profiled by FANTOM onto equivalent Roadmap
epigenomes. A good match was available for all epigenomes, except for E018 to E022,
which are from induced pluripotent stem cell (iPSC) lines and iPSC-derived cell lines. With
no matching FANTOM cell types, PRF scores are not available for these epigenomes. When
more than one FANTOM tissue was a good match to a Roadmap epigenome, we combined
the FANTOM tissues by averaging the transcription levels for a given TSS or enhancer

across samples, weighted by the FANTOM sample read depth.

Cell type specificity of PRF scores is determined partly by the set of genes expressed in a
cell type, used for TSS distance calculation, and partly by cell type-specific annotations. To
focus on genes active in a cell type, we include only those with FANTOM expression of at
least 2.0 TPM for TSS distance calculations.
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Mapping annotation values to fixed normal quantiles

When training the PRF scores model, annotation values for the set of variants used in
training were first transformed with a quantile normal transformation. Because these were
broadly distributed across the genome, they reflected the genome-wide distribution of
relevant annotation values. However, when computing PRF scores, we may want the score
for a single variant. The transformed annotation value for this variant should reflect its
quantile among the annotation values used during model training, not its quantile among the
variants whose PRF scores are computed at a given time. To do this we created a table, for
each annotation, that discretizes the mapping from annotation value to normal quantile into
20,000 bins. When computing the PRF score for a variant, we first retrieve its raw annotation

values from Roadmap epigenome files, and transform the values by lookup in these tables.

Determining credible sets

To compute the 95% credible set for an eQTL, we used SNP BFs computed with the
Wakefield method. For naive credible sets, we used a flat prior across variants to determine
PPAs using Equation 5, i.e. with all z; set to 1, and assuming a single causal variant among
those tested for association. For functionally fine-mapped credible sets, z; was set to the
genePRF or maxPRF score for each variant. We sorted variants by their PPA, and defined

the credible set as the minimal number of top variants whose PPA sums to at least 0.95.

3.6 Appendix A - Fgwas equations

We briefly describe the model likelihood computed in fgwas. We assume a standard linear
regression between y, a vector of quantitative phenotypes (e.g. a gene’s expression), and g,
genotypes for the same individuals. The evidence against the null hypothesis that there is no
association between genotype and phenotype can be represented by the Bayes factor; since
we use summary statistics here, we compute the approximate Bayes factor as described by
Wakefield (Wakefield 2009). The model likelihood is:

K Ny
L(y|0)= l_[ Z T BF (Equation A1)
k=1 =1
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where the product is over each of K genes, and the sum is over each of Ny variants tested
for a given gene, and 6 contains all the parameters of the model, i.e. annotation
enrichments. The implicit assumption is that each gene has one causal variant influencing its
expression. Here, i and k denote the " SNP tested for the the k™ gene, and the SNP prior

probability to be associated was defined in the main text as:

e*i
ik = o (Equation 2)
' ZjESk ex}
L,
X; = {—1/111” (Equation 3)

where Sy is the set of SNPs tested for gene k, L, is the number of annotations in the model, /1|
is the effect of SNP annotation I. For a binary annotation, ljjis 1 if the SNP falls in annotation

| or 0 otherwise. For a quantitative annotation, L depends on the annotation value z, and

contributes parameters o and 341 defining a logistic function:

I” = 1 (Equation 4)
1 + e~ PB1(z=Bo)

The likelihood in Equation A1 is maximized by a search across the parameter space using
the Nelder-Mead algorithm. When comparing models using cross-validation, we instead

maximize a penalized likelihood function:

In(L*(¥(6)) = In (1_[:=1 Zj:”ikBFik) —-D (Zil /112)
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3.7 Appendix B - model annotation enrichments

Show below are annotations enrichments and parameters from the full 38-annotation model

used to determine PRF scores.

TSS Distance A

0-285
286-1410
1411-3690
3691-6420
6421-10338
10339-15106
15107-21855
21856-33040
33041-49943
49944-85174

5.1363
4.5813
4.2803
3.9961
4.2492
3.9361
3.6071
3.3870
2.9527
2.5003

85175-164468 1.6573

Binary annotation A

intron.diffgene -0.5568
UTR3.samegene 1.8221
coding.samegene  1.3009
intron.samegene 0.7043
UTR5.samegene 0.8240
State_25.Quies.t2 -0.4929
State_25.Quies.t1 -0.3982

H3K4me3.t3 -0.9406
State_7.Tx3.t2 0.5172
State_7.Tx3.t1 1.3189
H3K4me1.t1 0.6831
H3K27me3.t1 0.2369
UTRS5.diffgene -0.3979

State_12.TxEnhW -0.4628
State_13.EnhA1 0.5350

H3K36me3.t1 -0.0245
State_6.Tx.t1 1.1575
H3K27me3.t2 -0.2999

State_4.PromD2  -0.6657
State_18.EnhAc -1.1001
State_1.TssA.t3 -1.6091

miRNA -0.3995
State_5.Tx5 -0.1243
State_24.ReprPC  -0.6603
H3K36me3.t2 0.4493

State_16.EnhW1.t2 0.4043

Quantitative
annotation

DNase

H3K36me3
Icl.Enh.Fantom.tpm
effect-snp.nmotifs
H3K27ac
GerpRS.noncoding
H3K9me3
H3K4me3
DNAMethyISBS.fm
H3K9ac

H3K4me1

switch-snp.nmotifs

A
2.3911
1.1160
1.7666
2.4137
0.9785
1.2420
-1.5800

0.5823
-2.7399
-2.3670
-1.5025
-0.1794

B0
2.0624
0.0392
0.6441
2.7872
0.4803
2.8310

-0.5448
0.6817
3.4404
3.9121
1.6209
4.3033

B1
2.0614
2.4245
0.5540
1.4456
3.8216
3.2616
0.7292
4.6988
0.7903
2.4937
0.7241

-2.0631
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3.8 Appendix C - Classifiers

The PRF score can be treated as a binary classifier, with variants above some threshold
score predicted as causal (“positive class”), and those below this score predicted as non-
causal (“negative class”). A variety of metrics can be used to assess the performance of
binary classifiers, with tradeoffs as to how informative they are in different circumstances. In
describing these metrics, it is useful to refer to the confusion matrix, which is a 2x2
contingency table describing the possible combinations of classifier prediction

(positive/negative) and ground truth (positive/negative) (Table A1).

Predicted condition

predicted positive predicted negative

condition positive true positive false negative
Ground (TP) (FN)
truth
condition negative | false positive true negative
(FP) (TN)

Table A1: Confusion matrix representing the possible classifier predictions and true conditions in

binary classification.

A simple metric is accuracy, which is the fraction of correctly classified cases, (TP + TN) /
Total cases. A major problem with using accuracy to evaluate classifiers is that when the
classes are unbalanced, then the accuracy can be very high even when the predictions are
not useful. For example, if 99% of cases are true negatives, then a classifier would have an
accuracy of 99% simply by predicting every case as a negative. However, the sensitivity of
this classifier, also known as the true positive rate, TP / (TP + FN), would be zero. This
scenario reflects the case with genetic variation, where only a small fraction of variants
influence molecular or organismal phenotypes. The accuracy of a classifier is thus

dependent on the prevalence of the two classes in the data.

In classification we are concerned with how well both positive and negative cases are
identified. A common way to relate these quantities to each other is to plot the true positive
rate (TPR) against the false positive rate (FPR = FP / (FP + TN)) as the classifier threshold
is varied. This is called the receiver operating characteristic (ROC) curve, examples of which

are shown in Figure A1 (left plot). A classifier that makes predictions randomly would
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produce a curve (line) along the diagonal and would have an area under the curve (AUC) of
0.5. A good classifier would have a curve bending towards the upper left, with 0.5 < AUC <=
1, indicating a higher true positive rate than false positive rate. Unlike accuracy, the TPR and
FPR are theoretically independent of the prevalence of the two classes in the data, as their

values depend only on the fraction of negative or positive cases correctly identified.
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Figure A1: Performance metrics for three classifiers based on simulated data, which are labeled as
good (red line), mediocre (green line), or random (blue line). The random classifier has random
prediction with respect to the true classification. Shown are (a) ROC curves, (b) precision-recall
curves, and (c) lift curves. AUCs for the ROC curves in (a) are 0.95, 0.77, and 0.50 for the good,

mediocre, and random classifiers.

While the ROC curve informs on how much better the classifier performs than chance, it fails
to reveal how confident we should be in the classification at a given score threshold. The
precision, TP / (TP + FP), tells us the fraction of cases predicted as positive which are true
positives. A high ROC curve AUC can be achieved even when the precision is low across
most of the score range. The TPR, also known as recall, tells us the fraction of all positives
that are identified. Precision is often plotted against recall across the range of classifier
scores, producing a precision-recall curve (Figure A1, middle panel). A good classifier would
produce a curve traveling through the upper right part of the plot, indicating that a large

fraction of positive cases can be identified without sacrificing precision.
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A final measure of classification performance is lift, which indicates how much better than
random the classification performs at different score thresholds. For example, a lift value of
10 at a score threshold where 5% of of the data is predicted true would indicate that among
the top 5% of scores there are ten times as many true positives as expected by picking
cases randomly. Plotting lift versus the fraction of the dataset above the threshold can reveal
over what range of scores the classifier is particularly informative. Lift values always trend
towards 1, since large fractions of the dataset can by definition not be highly enriched for

positives.

128



