1 Introduction

Virtually all cell types in the human body contain exactly the same DNA. In spite of this, human
cells exhibit extraordinary functional, morphological and molecular diversity. This diversity is
particularly evident in the human immune system: B-cells specialise in producing antibodies
while macrophages in different tissues are able to phagocytose and kill invading bacteria, to just
illustrate two of the many cell types. In addition to each cell type exhibiting specific phenotype
and function, they must also be plastic enough to respond to various changes in their
environment. This is particularly important for immune cells that must repel invading viruses and
bacteria while minimising damage to the host. For example, tissue macrophages must produce
inflammatory cytokines and reactive oxygen species only when they detect bacteria but
intestinal macrophages have to limit these responses to avoid reacting to commensal bacteria
with excessive inflammation (Krause et al., 2015). Underlying these cell type specific functional
differences are unique gene expression profiles that are precisely regulated in response to

changes in the environment.

Most human traits and complex diseases have a heritable component (Visscher et al., 2008)
and genome-wide association studies (GWAS) have identified thousands of genetic loci
associated with those traits. Since over 90% of these loci are in the non-coding regions of the
genome and highly enriched for chromatin marks specific to gene regulatory elements (Maurano
et al., 2012), an emerging consensus is that they likely influence disease risk by regulating gene
expression levels in one or more cell types and conditions. This observation in turn has led to a
surge in studies to identify genetic variants that are associated with gene expression levels.
While gene expression quantitative trait loci (eQTL) mapping experiments have identified
thousands of regulatory variants, they have, to date, explained only a small fraction of GWAS
associations and have also highlighted that considerable proportion of eQTLs are cell type and
context specific. Thus, to create a complete catalogue of gene regulatory variation in humans,
we need to measure gene expression levels in larger numbers of individuals, cell types and

conditions.
However, constructing a comprehensive catalogue of human regulatory variation has been

limited by the relative inaccessibility of most cell types and the large number of environmental

stimuli potentially relevant for each cell type (Xue et al., 2014). However, scalable cell culture
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systems based on human induced pluripotent stem cells (iPSCs) have the potential to overcome
these limitations and identify functional regulatory variants in many more cell types and cell
states. In this thesis, | will establish an iPSC-derived macrophage model to study the genetics of
context specific gene expression and apply it to understand how genetics shapes gene
expression in human macrophages in response to interferon-gamma stimulation and Salmonella

infection.

In this introductory chapter, | will give an overview of our current understanding of the principles
and mechanisms that regulate cell type and context specific gene expression by focussing on
key studies performed in macrophages and B-cells. | will describe how macrophages sense and
respond to changes in their environment and introduce experimental and computational
techniques that are widely used to measure gene expression and chromatin state. Next, | will
introduce iPSC-derived macrophages as a scalable system to study context specific gene
expression. Finally, | will give an overview of how genetic variation influences gene regulation

and how these studies can be used to interpret disease associations.

1.1 Regulation of cell type and condition specific gene

expression

One of the first examples of gene expression controlled by environmental signals is the lac
operon in Escherichia coli that contains three genes required for lactose import and metabolism
(Jacob and Monod, 1961). The /ac operon has two regulatory mechanisms. First, in the absence
of lactose, lactose repressor protein strongly binds to a short DNA sequence downstream of the
promoter and prevents the transcription of the operon. The second control mechanism is the
catabolite activator protein that, in the absence of glucose, binds to a specific 16 base pair (bp)
sequence upstream of the lac promoter and assists RNA polymerase binding to the DNA. Thus,
the expression of the lac operon is highest when lactose is present in the environment and there
is no glucose. This seminal study highlighted how sequence specific factors regulated by

external signals can regulate gene expression.

The basic principle of sequence specific transcription factors (TFs) binding to DNA and thereby
activating or repressing gene expression is also conserved in eukaryotes and many of the
sequence motifs have already been identified (Weirauch et al., 2014). However, an extra layer

of complexity is that, in contrast to prokaryotes, eukaryotic DNA is located in the nucleus and
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tightly packed around the nucleosomes. This adds two additional levels of regulation. First,
since protein synthesis happens in the cytoplasm, the localisation of TFs can be regulated as
well. For example, the NF-kB complex is normally sequestered to the cytoplasm and is only
localised to the nucleus after the repressor proteins have been degraded (Verma et al., 1995).
Secondly, because nucleosomes have much stronger affinity for DNA than single TFs do, a
single instance of a TF motif is usually not sufficient for a TF to bind (Polach and Widom, 1996).
Recent studies have highlighted the importance of collaborative interactions between TFs in
competing with nucleosomes and establishing active regulatory elements (Deplancke et al.,
2016; Heinz et al., 2010).

1.1.1 Principles of cell type specific TF binding

Since gene expression is regulated by TFs, to understand cell type specific gene expression we
first need to understand the principles of cell type specific TF binding. Genome-wide profiling of
TF binding has led to three key observations: (1) different factors in the same cell type often
bind to the same locations (MacArthur et al., 2009), (2) the same factor in different cell types
can often have different binding sites (Odom et al., 2004) and (3) the same biological processes
(such as self-renewal) can be regulated by distinct set of regulatory elements in different cell
types (Soucie et al., 2016). To illustrate possible mechanisms behind these observations, | will
now focus on PU.1 - a key TF required for both B-cell and macrophage differentiation in vivo,
that shares approximately half of its binding sites between the two cell types (Heinz et al.,
2010).

(Heinz et al., 2010) sought to identify what underlies the cell-type specific binding pattern of
PU.1. They found that macrophage specific PU.1 binding sites were co-enriched for AP-1 and
C/EBPf motifs, two additional factors that are required for macrophage development and
function (Friedman, 2007). Conversely, B-cell specific PU.1 binding sites were enriched for
motifs of E2A, EBF1 and OCT2 - three factors that are known to play important roles in B-cell
development and function (Medina and Singh, 2005). Furthermore, they showed that knock-out
of E2A leads to loss of PU.1 in B-cells at sites where the E2A motif is present and that can be
rescued by inducible expression of E2A in knock-out cells. Similarly, PU.1 knock-out in
macrophages led to reduced binding of C/EBP at loci where both of the binding sites were
present. Together, this evidence indicates that cell type specific enhancers are established by
collaborative binding of a small number of cell type specific pioneer TFs that are able to

compete with the nucleosomes.
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The second line of evidence to support this model of collaborative binding of cell type specific
pioneer TFs comes from a follow-up study of macrophage enhancers in two genetically distinct
inbred mouse strains (Heinz et al., 2013). They found that PU.1 motif mutations in one strain
resulting in strain-specific loss of PU.1 binding were frequently associated with corresponding
loss of C/EBPa binding. Conversely, they also found that mutations in the C/EBP motif leading

to the loss of C/EBPa binding were similarly associated with the loss of PU.1 binding.

1.1.2 Signal dependent TFs bind to established enhancers

A second key observation is that although different cell types often respond to the same
extracellular signal by activating the same signalling pathways and TFs, the binding sites that
these TFs occupy are often cell type specific. One proposed mechanism that could explain this
observation is that TFs activated by external signals may largely bind to enhancers that have
been previously established by cell type specific pioneer TFs. Some of the evidence for this
comes from an early study which found that 34% of the oxysterol-responsive nuclear receptor
Liver X Receptor beta (LXRp) binding sites colocalised with PU.1 binding sites in macrophages
and LXRp binding was reduced at these sites in PU.1 deficient cells (Heinz et al., 2010). On the
other hand, PU.1 binding at these sites was not affected by LXR[ knock-out, indicating that

LXR} is not directly involved in establishing cell type specific enhancers.

In a follow up study, Heinz et al (Heinz et al., 2013) used two genetically distinct inbred mouse
strains to study the strain specific binding of NF-kB after TLR4 activation. They found that 61%
of NF-kB binding sites in the activated cells were already bound by either PU.1 and/or C/EBPa
in the naive condition. Furthermore, most strain-specific NF-kB binding sites were bound by
PU.1 or C/EBPa only in the strain that showed NF-kB binding. Finally, they were able to
attribute 34% of strain-specific NF-kB binding events to mutations in AP-1, PU.1 or C/EBPa
binding motifs and only 9% to mutations in NF-kB binding motifs. These observations suggest
that the landscape of NF-kB binding sites after TLR4 activation are largely predetermined by
enhancers occupied by PU.1, AP-1 or C/EBPa TFs in the naive state where no active NF-kB is

present in the nucleus.

In summary, these studies highlight a hierarchy between cell type specific pioneer factors that

establish enhancers in closed chromatin regions and TFs activated by external signals that
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predominantly bind to pre-established enhancers. Similar results have also been described for
TGFB (Mullen et al., 2011), BMP and Wnt pathways (Trompouki et al., 2011).

1.1.3 Role of signal dependent TFs in establishing new enhancers

While most signal-dependent TF binding occurs at pre-established enhancers, Ostuni et al
showed that up to 15% of the enhancers activated by LPS were undetected in the unstimulated
cells (no PU.1 binding or H3K4me1 histone modification signal) (Ostuni et al., 2013). They
referred to these elements as latent enhancers and they found that different stimuli each
activated a distinct set of latent enhancers. To mechanistically study the latent enhancers they
focussed on IFNy stimulation. They found that, although STAT1 was phosphorylated within 10
minutes after IFNy stimulation, latent enhancers were only established hours after stimulation,
suggesting that nucleosomes might act as a barrier inhibiting TF binding. They observed that
although many latent enhancers contained PU.1 binding motifs and displayed PU.1 binding after
stimulation, there was no PU.1 binding in the naive state. Furthermore, they found that PU.1
motifs in the latent enhancers had considerably lower binding affinities than motifs in constitutive
enhancers, indicating that PU.1 binding at these sites depended on stimulus-specific cofactors.
Thus, while the hierarchical enhancer activation model is conceptually useful, signal dependent
TFs can also facilitate the eviction of nucleosomes and the binding of cell type specific TFs. One
apparent distinction between these different modes of regulation, as illustrated by the IFNy
example, is that pre-existing enhancers can facilitate cellular responses on the order of minutes

while remodelling nucleosomes can take hours.

1.1.4 Long range interactions between cell type specific and signal

dependent TFs

The evidence presented so far has relied on two different types of experimental approaches.
The first relied either on deleting or ectopically expressing specific TFs and looking at the effects
of these changes on the binding profiles of other TFs. The second approach relied on subtler
perturbations caused by segregating variants disrupting TF binding sites between different
mouse strains. However, because both of these approaches resulted in changes to thousands
of TF binding events, they were limited to looking at average genome-wide effects on
overlapping regulatory elements and were not able to reliably identify if TF binding at any one

specific locus affected TF binding at other regulatory elements further away. Detecting these
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individual effects can be achieved by QTL mapping approaches or directly disrupting single TF

binding sites by precise genome editing.

Evidence that cell type specific TFs can influence the binding of signal-induced TFs at
neighbouring enhancers comes from an elegant study of an enhancer cluster upstream of the
WAP gene in mouse mammary tissue (Shin et al., 2016). The enhancer cluster consists of three
elements E1, E2 and E3 and the 1000-fold induction of the WAP gene during mouse pregnancy
depends on all of them. The E1 enhancer has binding sites for three TFs: ELF1, NFIB and
STATS5A. STAT5A binding can be observed at E1 during early pregnancy prior to transcriptional
activation of the WAP gene. However, WAP transcription is induced only after STAT5A is also
bound at the E2 and E3 enhancers. Intriguingly, the authors found that jointly disrupting ELF1,
NFIB and STAT5A binding sites in the E1 enhancer not only abolishes the enhancer, but also
prevents the E2 and E3 enhancers from being established later during pregnancy and, in turn,
the gene from being transcriptionally activated. Thus, the E1 enhancer contains binding sites for
tissue-specific TFs ELF1 and NFIB and acts as a ‘seed’ enhancer for the neighbouring E2 and

E3 enhancers that only contain binding sites for STAT5A.

In summary, the DNA in eukaryotic cells is tightly wrapped around the nucleosomes and
collaborative interactions between multiple TFs are often needed to evict nucleosomes and
establish accessible chromatin. Overlapping sets of TFs are often expressed in multiple cell
types (such as PU.1 in B-cells and macrophages) and cell type specific binding is achieved by
regulating the expression level of individual TFs as well as the pool of available cofactors.
Transcription factors activated by multiple signalling pathways (IFNy, TLR4, TGF@, Wnt, etc.)
predominantly bind to regulatory elements pre-established by cell type specific factors, although
over prolonged periods of time they might also contribute to establishing new enhancers. The
extent of this is likely to depend on the exact TFs being activated and their intrinsic ability to
compete with nucleosomes (Romanoski et al., 2015). Finally, as the example of the WAP gene
suggests, TF binding at one locus can also facilitate the binding of TFs at other regulatory
elements multiple kilobases (kb) away. The mechanisms by which this happens have not yet

been elucidated.
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1.2 Macrophage biology in the context of immune response

Macrophages are key phagocytic cells associated with innate immunity, pathogen containment
and modulation of the immune response (Murray and Wynn, 2011; Wynn et al., 2013).
Macrophages have multiple receptors to recognise pathogen-associated molecular patterns
such as toll-like receptors (TLRs), nod-like receptors (NLRs) and RIG-i like receptors
(Mogensen, 2009). Macrophages also respond to regulatory signals produced by other cells
such as interferon-gamma (IFNy), interferon-beta (IFN), interleukin-4 (IL-4), interleukin-10 (IL-
10), tumour necrosis factor (TNF) and many others (Xue et al., 2014). In the following section |
will give a more thorough overview of macrophage response to bacterial lipopolysaccharide,
IFNy and Salmonella infection, because these three stimuli are the main focus of the rest of the

thesis.

1.2.1 Signalling pathways activated by lipopolysaccharide and interferon-
gamma

Lipopolysaccharides (LPS) are a component of the outer membrane of gram-negative bacteria.
Macrophages recognise LPS via the TLR4 receptor on their cell surface (Medzhitov and Horng,
2009). Ligand binding to TLR4 leads to the activation of the Myd88 dependent pathway that
culminates with the activation of NF-kB and AP-1 transcription factors that recognise specific
sequence motifs in the nucleus (Takeuchi and Akira, 2010) (Figure 1.1). This pathway is also
shared with other toll-like receptors such as TLR2, TLR3 and TLR9. In addition, TLR3/4
activation also leads to the activation of Myd88-independent pathway culminating with the
activation of interferon response factors 3 and 7 (IRF3/7) transcription factors that recognise the

canonical interferon-response element (ISRE) motif (Doyle et al., 2002).

One of the genes activated by IRF3/7 is IFNB1 that codes for IFNf protein (Doyle et al., 2002).
IFNB is secreted by the cells where it is then recognised by interferon-alpha receptor (IFNAR).
Activation of IFNAR predominantly leads to activation of the ISGF3 complex composing of
STAT1, STAT2 and IRF9 that recognises the same ISRE motif (Ivashkiv and Donlin, 2014).

Interferon-gamma (IFNYy) is an inflammatory cytokine produced by T-cells and natural killer (NK)
cells (Schroder et al., 2004). IFNy binding to the IFNy receptor leads to the phosphorylation of

STAT1 and formation of STAT1 homodimers that bind to the gamma-activated sequence (GAS)
motif (Platanias, 2005). One of the immediate targets of STAT1 is IRF1 transcription factor that
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is involved in the cooperative regulation of gene expression of many target genes (Ramsauer et
al., 2007) including the master regulator of major histocompatibility complex (MHC) class Il
genes CIITA (Reith et al., 2005).
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Figure 1.1: Main signalling pathways activated in macrophages after SaImonella infection
and IFNy stimulation. Macrophages recognise LPS on the Salmonella cell wall via the TLR4
receptor (Medzhitov and Horng, 2009). Ligand binding to multiple TLRs such as TLR2, TLR3,
TLR4 and TLR9 leads to downstream activation of NF-kB and AP-1 transcription factors
(Takeuchi and Akira, 2010). However, TLR3/4 activation also leads to specific activation of the
IRF3 transcription factor and downstream antiviral response genes (Doyle et al., 2002). IFNy, on
the other hand, activates signal transducer and activator of transcription 1 (STAT1) and IRF1
TFs.

Thus, different environmental signals lead to the activation of distinct signalling pathways and
downstream TFs that are responsible for specific changes in gene expression (Xue et al., 2014).
Furthermore, simultaneous activation of multiple signalling pathways can have synergistic
effects on gene expression, leading to activation of genes that are not activated by either of the

stimuli alone (Qiao et al., 2013).
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1.2.2 Macrophage response to Salmonella infection

Macrophages recognise many different components of Salmonella including LPS (TLR4),
flagella (TLR5), fimbrae/pili, peptidoglycan (TLR1/2, NOD2), bacterial DNA (TLR9) and type Il
secretion systems (T3SS) (NLRC4) (de Jong et al., 2012). In addition, Salmonella can also
directly modulate macrophage immune response by releasing effector molecules encoded via
the type Il secretion systems that can promote bacterial uptake and intracellular survival
(Haraga et al., 2008).

Salmonella infection and LPS stimulation induce similar transcriptional response in mouse
macrophages (Rosenberger et al., 2000), suggesting that LPS plays an important role in early
response to bacterial infection (4 hours). Similarities between Salmonella and LPS response
have also been observed in human macrophages where the core transcriptional response was
conserved between many different species of bacteria and bacterial components (such as LPS)
and this response was predominantly mediated by TLR4 and TLR2 signalling (Nau et al., 2002).
This is not to say that differences in response between live bacterial infections and LPS
stimulation do not exist. For example, Mycobacterium tuberculosis is able to actively suppress
interleukin-12 (IL12) production (Nau et al., 2002). Rather, it suggests that in common
experimental designs of bulk infections (resulting in only 20-30% of macrophages being
infected) early response (the first few hours) is dominated by TLR signalling and other signalling
mechanisms have either weaker effects or influence smaller proportion of cells. Single cell RNA-

seq is a promising approach to address this question.

1.3 Tissue culture models of macrophage biology

Commonly used model systems to study macrophage biology have included macrophage-like
leukemic cell lines such as THP-1 (Tsuchiya et al., 1982), primary macrophages derived from
model organisms and primary human macrophages differentiated from blood monocytes.
Although these cells have provided important insights into macrophage-associated biology, they
have some limitations. Immortalised cell lines often have accumulated multiple genetic
aberrations and can exhibit functional defects compared to primary cells such as impaired
cytokine production upon LPS stimulation (Adati et al., 2009; Schildberger et al., 2013), while
multiple functional differences exist between macrophages from different species (Schroder et

al., 2012). Additionally, human monocyte derived macrophages (MDMs) can be difficult to
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obtain in sufficient numbers for repeated experimental assays and it is currently challenging to

introduce targeted mutations into their genomes, limiting their utility in genetic studies.

1.3.1 Differentiating macrophages from human induced pluripotent stem

cells

A promising alternative approach is to differentiate macrophages directly from human induced
pluripotent stems cells (iPSCs). The key advantage of the iPSC-based system is that it is
possible to produce large numbers of cells from almost any genetic background (both natural
and engineered), provided that the genetic background does not interfere with macrophage
differentiation itself. The simpler protocol that we have used throughout this thesis relies on
spontaneous formation of embryoid bodies (EBs) followed by directed differentiation in the
presence of interleukin-3 (IL-3) and macrophage colony stimulating factor (M-CSF) (Karlsson et
al., 2008; Lachmann et al., 2015; van Wilgenburg et al., 2013). Alternative approaches avoid the
EB formation step and directly differentiate macrophages from pluripotent stem cells using a
combination of multiple factors (BMP4, VEGF, SCF, TPO, FIt3, bFGF, M-CSF) (Yanagimachi et
al., 2013; Zhang et al., 2015).

Early studies established that macrophages differentiated from induced pluripotent stem cells
(IPSDMs) recapitulated many aspects of primary macrophage biology. They exhibited a
transcriptomic signature specific to myeloid cells and expressed many macrophage specific cell
surface markers including CD14, CD16, CD206 and CD68 (Karlsson et al., 2008; van
Wilgenburg et al., 2013). In addition, IPSDMs were able to endocytose low-density lipoprotein
(LDL), phagocytose opsonised yeast particles, produce specific cytokines in response to LPS
stimulation and respond differentially to IFNy and IL-4 stimulation (Karlsson et al., 2008; van
Wilgenburg et al., 2013). Patient-derived IPSDMs have successfully been used to model many
monogenic disorders such as chronic granulomatous disease (Jiang et al., 2012) and Tangier
disease (Zhang et al., 2015). However, at the outset of this work it was not yet clear how similar

were IPSDMs to MDMs on the transcriptome level.
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1.4 Genome-wide profiling of gene expression and chromatin

accessibility

1.4.1 RNA sequencing

RNA sequencing (RNA-seq) is a widely used method to measure genome-wide gene
expression profiles (Marioni et al., 2008). Since the majority of the RNA in most cells is
ribosomal, either ribosomal RNA (rRNA) depletion or poly-A pulldown is often used to enrich for
messenger RNA, after which the RNA is fragmented, reverse transcribed, PCR-amplified and
sequenced using short read technologies. Each step in the workflow can introduce its own set of
biases, some of which have been quite well characterised. For example, rRNA depletion can
lead to large variation in read coverage across gene bodies while poly-A pulldown tends to
introduce 3’ bias (Lahens et al., 2014). On the other hand, PCR often preferentially amplifies
sequences with higher GC content in a manner that varies from sample to sample (Benjamini
and Speed, 2012). Finally, RNA fragmentation process can lead to preferential sequencing of
fragments with specific start and end positions (Roberts et al., 2011a) i.e. fragment start and
end positions are not uniformly distributed across exons. While 3’ bias can often be minimised
experimentally by ensuring that the RNA is intact before sequencing, multiple computational
approaches have been developed to estimate and correct for GC-content and fragment biases
(Benjamini and Speed, 2012; Hansen et al., 2012; Roberts et al., 2011a).

Quantifying gene expression levels

The first step in RNA-seq analysis is the quantification of gene expression levels. This has
traditionally been done by first aligning reads to the reference genome using a splice-aware
short read aligner that is able to also align reads across known and novel splice junctions. One
of the first splice-aware aligners was TopHat (Trapnell et al., 2009), but it has since been
surpassed both in speed and accuracy by newer aligners such as STAR (Dobin et al., 2013)
and HISAT (Kim et al., 2015). After alignment, reads overlapping known gene annotations from
databases such as GENCODE (Harrow et al., 2012) can be counted using multiple available
tools such as featureCounts (Liao et al., 2014) or HTSeq (Anders et al., 2015). Reference

genome alignments are also useful for visualising read coverage across the gene body.
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Quantifying alternative transcription

Many human genes express multiple alternative transcripts that can differ from each other in
terms of function, stability or subcellular localisation of the protein product (Carpenter et al.,
2014; Wang et al., 2008). Considering expression only at a whole gene level can hide some of
these important differences. Alternative transcription includes alternative promoter usage,
alternative splicing, where middle exons are selectively included or excluded, and alternative
polyadenylation. Two complementary approaches are often used to quantify changes in
alternative transcription. One approach is to estimate the relative expression levels of all known
transcripts of the gene that can best explain the observed RNA-seq read patterns across the
gene body. The first methods that adopted this strategy were Flux Capacitor (Montgomery et al.,
2010), MISO (Katz et al., 2010) and cufflinks (Roberts et al., 2011b; Trapnell et al., 2013).
These were later improved upon by more accurate methods such as mmseq (Turro et al., 2011)
and BitSeq (Glaus et al., 2012) that outperformed their predecessor on independent benchmark
datasets (Kanitz et al., 2015). A major limitation of these methods has been their computational
complexity that can prevent them from being applied to studies with large numbers of samples.
Newer quantification methods such as Sailfish (Patro et al., 2014), kallisto (Bray et al., 2016)
and Salmon (Patro et al., 2016) omit the explicit reference genome alignment step and quantify
gene expression levels directly using transcriptome sequences. This has been shown to

dramatically reduce the time required for quantification.

Even though the computational requirements have largely been resolved, important biological
challenges still remain. First, genes often have multiple annotated transcripts that only differ
from each other by a small amount of sequence, making it challenging to accurately estimate
their expression from short read sequencing data. Secondly, many transcript annotations in the
most comprehensive Ensembl database (Yates et al., 2016) are still incomplete and have either
their 3’ or 5’ ends missing. Finally, many genes still have missing transcripts that have not been
annotated. For example, a long gene might have three alternative promoters, two alternatively
spliced exons and four alternative 3’ ends. If we make the assumption that most of these events
are regulated independently, then this gene should have 2*3*4 = 24 alternative transcripts, but
usually only a subset of these are present in the database. The assumption of independence is
not completely unrealistic, because for example promoter selection and alternative splicing are

regulated by independent molecular mechanisms (Barash et al., 2010).
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A commonly used alternative analysis is to ignore the full transcript annotations and try to
identify individual alternative transcription events independently. Two of the pioneers of this
approach were DEXSeq (Anders et al., 2012) and MISO (Katz et al., 2010). DEXSeq aims to
identify individual exons that are differentially expressed within a gene and as a result does not
require the alternative exons to be previously annotated. MISO estimates the relative
expression of alternative transcription events consisting of annotated alternative exons and their
neighbouring exons. As a result, it is limited to annotated alternative exons but it can also take
advantage of informative reads mapping to exon-exon junctions that are ignored by DEXSeq.
Finally, LeafCutter (Li et al., 2016b) detects and quantifies clusters of alternatively excised
introns directly from the read alignments by focussing on reads mapping to exon-exon junctions.
In principle, this can be done without using reference transcript annotations, although in practice
reference transcripts are usually still used during the read alignment phase to aid the detection

of exon-exon junctions.

Quantifying allele-specific expression

In addition to total gene expression level, RNA-seq data can also provide information about the
relative expression of the gene from the maternal and paternal chromosomes. This is possible
when an individual is heterozygous at sites within the gene body, making it possible to count the
number of RNA-seq reads that come from each allele. Allele-specific expression has been
shown to increase the power to detect gene expression quantitative trait loci (eQTLs) (van de
Geijn et al., 2015; Kumasaka et al., 2016). However, a major challenge is reference mapping
bias - reads containing the non-reference allele can be less likely to be mapped than reads
containing the reference allele. This is because read alignment algorithms penalise mismatches
and reads containing the alternative allele will have at least one mismatch by definition. The
simplest approach is to use a set of ad hoc rules to filter out variants that are likely to exhibit
strong reference bias (Castel et al., 2015). A second approach is to deal with the issue at the
time of read alignment either by using personalised reference genomes (Rozowsky et al., 2011)
or editing the reads (van de Geijn et al., 2015). Finally, it is possible to use computational
methods such as RASQUAL (Kumasaka et al., 2016) that explicitly model reference mapping

bias.

1.4.2 Chromatin state profiling

As highlighted above, gene expression is predominantly regulated by the binding of transcription

factors (TFs) to the promoters and distal regulatory elements. TF binding to a specific site often
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leads to increased chromatin accessibility at the site as well as to covalent modification of
nearby histones (Henikoff and Shilatifard, 2011). Hence, TF binding can be measured either
directly using ChlP-seq or indirectly by measuring the levels of histone modifications (ChIP-seq)
or chromatin accessibility (DNAse-seq (Furey, 2012), ATAC-seq (Buenrostro et al., 2013)) at the

locus.

ChlP-seq

Chromatin immunoprecipitation followed by sequencing is a technique to identify the binding
locations of specific proteins on the DNA (Furey, 2012). It is commonly used to detect the DNA
binding locations of either TFs or modified histones. In ChIP-seq, proteins are first crosslinked to
the DNA using formaldehyde, the DNA is then sheared and antibodies against a specific protein
are used to selectively enrich for fragments that are bound by the protein of interest. Finally, the

fragments are constructed into a library and sequenced.

Chromatin accessibility

The classical method to locate accessible chromatin regions has been DNAse | digestion
followed by sequencing (DNAse-seq) (Bell et al., 2011). However, a major limitation of DNAse-
seq has been its requirement for large numbers of cells and laborious and complicated
experimental protocols. Consequently, most existing DNAse data has been generated by large-
scale projects such as ENCODE (Neph et al., 2012) and Roadmap Epigenomics (Roadmap
Epigenomics Consortium et al., 2015) in a small number of labs. This has changed recently with
the introduction of ATAC-seq technique, which can be reliably performed even at the single cell
level, and takes only a single day to complete (Buenrostro et al., 2013, 2015). ATAC-seq relies
on Tn5 transposase that is used to insert lllumina sequencing adaptors into native chromatin.
When Tnb5 is used on intact nuclei this results in sequencing adaptors being preferentially

integrated into regions of accessible chromatin.

Data analysis

After the reads have been aligned to the reference genome, the first steps is identifying regions
(‘peaks’) that show either more protein binding or chromatin accessibility than the genome-wide
background. Many different peak calling algorithms exist, but one commonly used method is

MACS2 (Zhang et al., 2008b). Once the regions have been identified, we can quantify total and

allele-specific signal using the same approaches that are used for RNA-seq data.
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1.5 Genetics of molecular traits

Genome wide association studies (GWAS) have identified thousands of genetic variants
associated with various human traits and diseases. For example, as of 12 June 2016 the
NHGRI-EBI GWAS catalog contains 21,941 unique variant-trait associations from 2457 studies
(Welter et al., 2014). These variants lie predominantly in non-coding regions of the genome,
making it difficult to identify the gene that is being affected as well as the relevant tissue and cell
type for the disease (Maurano et al., 2012). However, GWAS variants are also enriched in gene
regulatory elements (Farh et al., 2014; Maurano et al., 2012; Trynka et al., 2013) with different
traits often showing enrichments in specific cell types and tissues, suggesting that many of the

GWAS variants act by regulating the expression level of some nearby genes.

Moreover, emerging evidence suggests that the gene closest to the GWAS variant is not
necessarily regulated by it. For example, a variant in the first intron of the FTO gene that has
been associated with body mass index was only recently found to regulate the expression of
IRX3 and IRX5 genes that are up to 1 Mb away from the variant (Claussnitzer et al., 2015).
These long-range interactions can be quite common, as illustrated by a recent joint analysis of
GWAS summary statistics for multiple traits and blood eQTL data from 5,311 individuals (Zhu et
al., 2016). They identified 126 genes where the GWAS signal and eQTL signal where consistent
with a shared causal variant, and found that in ~60% of the cases the regulated gene was not
the one closest to the lead GWAS variant. Hence, for variants that are further away from genes,
distance might not be reliable, and additional information is necessary to identify the most likely
target genes. One promising approach for linking GWAS hits to their target genes has been
eQTL mapping studies. Intuitively, if the same genetic variant is associated with both the
expression level of gene A and the risk of disease B then this can provide a hypothesis that the

genetic variant might influence disease B via gene A.

1.5.1 Genetics of gene expression

Large-scale eQTL mapping studies have revealed that common variants regulating gene
expression are ubiquitous. One of the largest human studies involving whole blood RNA-seq
data 922 individuals identified at least one eQTL for 79% of the genes with quantifiable
expression level (Battle et al., 2014). However, it remains unclear why most of these variants do
not seem to have deleterious effects on organismal fitness. One possibility is that many of the

eQTLs are buffered at the protein level. In support of this theory, shared eQTLs and protein
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QTLs (pQTLs) identified in human lymphoblastoid cell lines (LCLs) tend to have smaller effect
sizes on the protein level (Battle et al., 2015). Similar buffering effects have also been observed
for pQTLs identified in Arabidopsis (Fu et al., 2009) and mouse (Chick et al., 2016; Ghazalpour
et al., 2011). Alternatively, high variability in the expression levels of some genes might be

tolerated without significant effect on the organismal fitness (Keren et al., 2016).

Early on, it was identified that genetic variation influences gene expression in a cell type specific
manner. Gene expression QTL mapping in three human tissues (adipose tissue, skin and LCLs)
showed that on average 29% of the local eQTL were tissue-specific with substantial variation of
sharing between different tissues (Nica et al., 2011). This has led to multiple individual eQTL
mapping studies in various human cell types (monocytes (Fairfax et al., 2012), neutrophils
(Naranbhai et al., 2015), B-cells (Fairfax et al., 2012), T-cells, to name a few) as well as large-
scale consortium efforts such as the Genotype-Tissue Expression (GTEx) (The GTEx
Consortium, 2015) project that aims to perform RNA and genome sequencing on 44 tissues
collected from up to 500 post-mortem donors. The relatively high cell type specificity of eQTLs is
perhaps unsurprising given that patterns of TF binding that regulate gene expressions are highly
cell type specific as highlighted above and even the same biological processes can be regulated

by distinct sets of regulatory elements in different cell types (Soucie et al., 2016).

However, an aspect that has gotten relatively less attention is that genetic effects can also be
modulated by the environment that the cells are in. Early on, Smith and Kruglyak showed that
many eQTLs in yeast were specific to the environment that the cells were grown in (ethanol
versus glucose) (Smith and Kruglyak, 2008). Similar condition-specific genetic effects were later
observed in mouse macrophages stimulated with either LPS or oxidized phospholipids (Orozco
et al., 2012). The first human studies were performed on LCLs stimulated with glucocorticoids
(N=114) (Maranville et al., 2011) and primary dendritic cells (N=65) infected with Mycobacterium
tuberculosis (Barreiro et al., 2012). These have been followed by several studies involving

different immune cells and additional stimuli (Table 1).

Table 1: Selection of eQTL studies looking at gene-environment interactions in

stimulated human cells.

Study Cell type Stimulations Sample size
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(Maranville et al.,
2011)

Lymphoblastoid cell
lines (LCLs)

Glucocorticoids

114 individuals

(Barreiro et al.,
2012)

Dendritic cells

Mycobacterium

tuberculosis

65 individuals

(Fairfax et al.,
2014)

Monocytes

LPS (2h), LPS (24h),
IFNy (24h)

261-414 individuals

(Lee et al., 2014)

Dendritic cells

LPS (5h), influenza
(10h), IFNB (6.5h)

534 individuals

(Kim et al., 2014)

monocytes

LPS (1.5h)

137 individuals

(Caliskan et al.,

Peripheral blood

Rhinovirus infection

98 individuals

2015) mononuclear cells

(PBMCs)

This area is still relatively underexplored given that for each human cell type there could be tens
of relevant individual stimuli or combinations of stimuli that can modulate the effects of genetic
variants on gene expression. Furthermore, the effect of a single stimulus can depend on the
time when it was measured (Fairfax et al., 2014), thus increasing the number of relevant
experimental conditions even further. With that many experimental conditions, obtaining enough
cells from controlled genetic backgrounds becomes a major challenge. However, if efficient
differentiation protocols are available, then iPSCs can be used to produce large numbers of

differentiated cells from any cell type.

1.5.2 Genetics of chromatin states

A major limitation of eQTL mapping studies is that due to linkage disequilibrium we are mostly
unable to identify the single most likely causal variant. This can severely hamper our ability to
understand the principles of gene regulation and, as a consequence, means that even if we
have a strong evidence of co-localisation between GWAS hit and an eQTL we might still not

understand the molecular mechanism that gives rise to both of the traits.
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A promising approach is to use the same QTL mapping approach to search for genetic variants
that are associated with the activity of regulatory elements (i.e. regulatory QTLs). An advantage
of regulatory QTLs is that they often reside within the same regulatory element, making it easier
to predict the most likely causal variant (Degner et al., 2012; Ding et al., 2014). The activity of
regulatory elements can be characterised by either measuring the levels transcription factor
(TF) binding, histone modifications (both measured by ChiP-seq) or chromatin accessibility
(measured by DNase-seq or ATAC-seq). Until recently, all of these approaches were limited by
either complicated experimental protocols and/or the requirement of large number of cells,
making it feasible to perform regulatory QTL mapping experiments only in LCL and in relatively
small number of individuals. This has changed with the introduction of ATAC-seq technique that
can be reliably performed on as few as 5,000 cells and takes only a single day to complete
(Buenrostro et al., 2013).

TF binding as measured by ChlIP-seq is the most specific measurement, but this also means a
separate experiment needs to be performed for each TF of interest. In addition, not all TFs have
reliable ChlP-seq antibodies available and generally a large number of cells are required for a
successful experiment (>10 million). Profiling the levels of histone modifications hides the
identity of specific TFs, but can still reveal if the regulatory element is in a repressed, poised or
active state. Finally, DNase-seq or ATAC-seq only reveal which regions of the chromatin are
open or closed, but require only a single experiment, and in the case of ATAC-seq work on a
very small number of cells and generally have higher resolution than histone ChIP-seq

experiments. A selection of recent chromatin QTL studies is presented in Table 1.2.
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Table 1.2: summary of recent chromatin QTL mapping studies.

H3K4me1, H3K4me3,
H3K27ac

Study Cell type | Phenotype Sample size
(Kasowski et al., 2010) | LCL NF-kB ChiIP-seq 10 individuals
RBP2 (Pol Il) ChlP-seq
(Degner et al., 2012) YRI LCL DNAse-seq 70 individuals
(Kasowski et al., 2013) | LCL H3K27ac, H3K4me1, 19 individuals
H3K4me3, H3K36me3, and
H3K27me3
CTCF
SA1 (cohesin subunit)
(Kilpinen et al., 2013) LCL Histones: H3K4me1, 2 trios + 8 individuals
H3K4me3, H3K27ac, (subset of assays)
H3K27me3
TFs: TFIIB, PU.1, and MYC
RPB2 (Pol II)
(McVicker et al., 2013) | YRI LCL H3K4me1, H3K4me3, 10 individuals
H3K27ac, and H3K27me3
Pol Il
(Ding et al., 2014) CEU LCL [ CTCF ChIP-seq 51 individuals
(Kumasaka et al., 2016) | CEU LCL | ATAC-seq 24 individuals
(Grubert et al., 2015) YRILCL | H3K4me1, H3K4me3, 75 individuals
H3K27ac
(Waszak et al., 2015) CEU LCL | PU.1, RBP2 (Pol I1) 47 individuals
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1.5.3 Using eQTLs to interpret GWAS associations

If the same genetic variant is associated both with expression level of gene A and increased risk
of disease B then this can provide a mechanistic hypothesis that the expression level of gene A
influences the risk of disease B. However as highlighted above, eQTLs are extremely common
and because of strong LD between variants there is often a large number of variants that are
significantly associated with either gene expression level and/or disease risk. As a result, it is
easy to get random overlaps between eQTLs and GWAS hits where the two associations are

driven by different causal variants.

To overcome this limitation, different approaches have been developed that compare the
association patterns of two traits across many variants and try to identify if they are likely to be
driven by the same causal variant. Although the amount of molecular QTL studies has been
steadily increasing, the number GWAS hits that can be readily explained by eQTLs has still
remained relatively small. A study of 49 type 1 diabetes loci and monocyte eQTLs from 1,370
individuals identified 21 cases where the data was consistent with a shared causal variant
driving both traits (Wallace et al., 2012). However, when a newer Bayesian colocalisation test
(Giambartolomei et al., 2014) was applied to ten immune-mediated diseases and gene
expression data from multiple immune cell types, it was able to identify only six confident
colocalised associations (Guo et al., 2015). This is an active area of research and newer
methods are continuously being developed and applied to ever larger data sets (Chun et al.,
2016; Hormozdiari et al., 2016; Zhu et al., 2016).

Multiple factors might be responsible for the limited success of using eQTLs to interpret GWAS
hits. One possible reason is that the disease relevant eQTLs might be active in very specific cell
types and conditions and the limited eQTL studies that have been performed thus far have been
unable to uncover them. Another reason is that if there are many variants that are in high LD
with the causal variant, then even if the two traits have almost identical association profiles it is
statistically impossible to distinguish if they are likely to be driven by the same causal variant or
two different causal variants (Zhu et al., 2016). Finally, the disease-associated variants might
affect other aspects of gene expression such as splicing, that are not captured by current eQTL

mapping studies (Li et al., 2016c¢).
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1.6 Outline of the thesis

The second chapter of the thesis focusses on establishing human iPSC-derived macrophages
as a model system to study innate immune responses. To this end, | compared the
transcriptomes of human monocyte-derived and iPSC-derived macrophages (IPSDMs) before
and after stimulation with LPS. | showed that IPSDMs are broadly similar to MDMs and exhibit a
conserved response to LPS. | also analysed alternative promoter usage and 3'UTR shortening
in LPS response both in MDMs and IPSDMs.

The aim of the third chapter was to establish IPSDMs as a suitable model to study and discover
the functions of common genetic variants. | first characterised the reliability and reproducibility of
our macrophage differentiation protocol by analysing results from 138 macrophage
differentiations from 123 different iPSC lines. Secondly, | characterised the sources of variation
that have a strong effect on macrophage gene expression level so that they could be controlled
for more effectively in future genomic studies. Finally, because flow cytometry is often used as a
quality control step in cellular differentiation assays, | focussed on the factors that are
responsible for variability in the expression of cell surface markers in IPSC-derived

macrophages.

In the fourth chapter, | used IPSDMs to study the genetics of gene expression in macrophage
immune response. We performed RNA-seq on macrophage differentiated from 84 donors in four
experimental conditions: naive, IFNy stimulation (18 hours), Salmonella infection (5 hours) and
IFNy stimulation followed by Salmonella infection. | used this data to answer three main
questions: How condition-specific are the genetic effects on gene expression in the four
conditions and what proportion of associations remain undetected when studying the naive cells
alone? How does common genetic variation affect other aspects of transcription such as
alternative promoter usage, alternative splicing and alternative polyadenylation? What are the
complex traits whose genetic risk variants are most enriched among macrophage eQTLs and

alternative transcription QTLs?

Finally, in the fifth chapter we used ATAC-seq to measure chromatin accessibility in up to 42
individuals in the same four experimental conditions used in chapter 4. | then identified
chromatin accessibility QTLs (caQTLs) and compared them to eQTLs from chapter 4 to explore,

how condition-specific are genetic effect on chromatin accessibility compared to gene
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expression. | also studied, how genetic effects propagate from chromatin accessibility to gene
expression between experimental stimulations. Finally, | tested if caQTLs could be used to fine

map causal variants underlying eQTLs and GWAS associations.
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2 Comparison of monocyte-derived and

IPSC-derived macrophages

Collaboration note

The work described in this chapter has been published as “Transcriptional profiling of
macrophages derived from monocytes and iPS cells identifies a conserved response to LPS
and novel alternative transcription” (Alasoo et al., 2015). | performed the iPSC-derived
macrophage experiments and analysed the data. Fernando O. Martinez from the University of
Oxford performed the monocyte-derived macrophage experiments. Subhankar Mukhopadhyay
and Gordon Dougan were involved in designing and optimising the experiments and interpreting
the results. RNA-seq library construction and sequencing was done by DNA Pipelines core
facility at Sanger. | thank Kosuke Yusa and Mariya Chhatriwala for fruitful discussions on

troubleshooting iPSC culture.

2.1 Introduction

Macrophages are key cells associated with innate immunity, pathogen containment and
modulation of the immune response (Murray and Wynn, 2011; Wynn et al., 2013). Commonly
used model systems for studying macrophage biology have included macrophage-like leukemic
cell lines, primary macrophages derived from model organisms and primary human
macrophages differentiated from blood monocytes. Although these cells have provided
important insights into macrophage-associated biology, they have some limitations.
Immortalised cell lines often have accumulated multiple genetic aberrations and can exhibit
functional defects compared to primary cells such as impaired cytokine production upon
inflammatory stimulation (Adati et al., 2009; Schildberger et al., 2013), while multiple functional
differences exist between macrophages from different species (Schroder et al., 2012).
Additionally, human monocyte derived macrophages (MDMs) can be difficult to obtain in
sufficient numbers for repeated experimental assays and it is currently challenging to introduce
targeted mutations into their genomes, limiting their utility in genetic studies. For example,
introduction of foreign nucleic acid into the cytosol induces a robust antiviral response that may

make it difficult to interpret experimental data (Muruve et al., 2008).
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Recently, methods have been developed to differentiate macrophage-like cells from human
induced pluripotent stem cells (IPSCs) that have the potential to complement current
approaches and overcome some of their limitations (Karlsson et al., 2008; van Wilgenburg et
al., 2013). This approach is scalable and large numbers of highly pure iPSC-derived
macrophages (IPSDMs) can be routinely obtained from any human donor following
establishment of an iPSC line. IPSDMs also share striking phenotypic and functional similarities
with primary human macrophages (Karlsson et al., 2008; van Wilgenburg et al., 2013). Since
human iPSCs are amenable to genetic manipulation, this approach can provide large numbers
of genetically modified human macrophages (van Wilgenburg et al., 2013). Previous studies
have successfully used IPSDMs to model rare monogenic defects that severely impact
macrophage function (Jiang et al., 2012). However, it remains unclear how closely IPSDMs
resemble primary human monocyte-derived macrophages (MDMs) at the transcriptome level

and to what extent they can be used as an alternative model for functional assays.

Here, we provide an in-depth comparison of the global transcriptional profiles of naive and
lipopolysaccharide (LPS) stimulated IPSDMs with MDMs using RNA-seq. We found that their
transcriptional profiles were broadly similar in both naive and LPS-stimulated conditions.
However, certain chemokine genes as well as genes involved in antigen presentation and tissue
remodelling were differentially regulated between MDMs and IPSDMs. Additionally, we

identified novel changes in alternative transcript usage following LPS stimulation suggesting that
alternative transcription may represent an important component of the macrophage immune

response.

2.2 Methods

2.2.1 Samples

Human blood for monocyte-derived macrophages was obtained from NHS Blood and
Transplant, UK and all experiments were performed according to guidelines of the University of
Oxford ethics review committee. All IPSDMs were differentiated from four iPSC lines: CRL1,
S7RE, FSPS10C and FSPS11B. CRL1 iPSC line was originally derived from a commercially
available human fibroblast cell line and has been described before (Vallier et al., 2009). S7TRE

iPSC line was derived as part of an earlier study from our lab (Rouhani et al., 2014). FSPS10C
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and FSPS11B iPSC lines were derived as part of the Human Induced Pluripotent Stem Cell
Initiative (Kilpinen et al., 2016). All iPSC work was carried out in accordance to UK research
ethics committee approvals (REC No. 09/H306/73 & REC No. 09/H0304/77).

2.2.2 Cell culture and reagents

IPSCs were grown on Mitomycin C-inactivated mouse embryonic fibroblast (MEF) feeder cells
in Advanced DMEM F12 (Gibco) supplemented with 20% KnockOut Serum Replacement
(Gibco, cat no 10828-028), 2mM L-glutamine, 50 IU/ml penicillin, 50 IU/ml streptomycin and 50
MM 2-mercaptoethanol (Sigma M6250) on 10 cm tissue-culture treated dishes (Corning). The
medium was supplemented with 4 ng/ml rhFGF basic (R&D) and changed daily (10 ml per dish).
Prior to passage, the cells were detached from the dish with 1:1 solution of 1 mg/ml collagenase
and 1mg/ml dispase (both Gibco). Human macrophage colony stimulating factor (M-CSF)
producing cell line CRL-10154 was obtained from ATCC. The cells were grown in T150 tissue
culture flasks containing 40 ml of medium (90% alpha minimum essential medium (Sigma), 10%
FBS, 2mM L-glutamine, 50 IU/ml penicillin, 50 IU/ml streptomycin). On day 9 the supernatant

was sterile-filtered and stored at -80°C.
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Figure 2.1. Biological reproducibility of IPSDM differentiation. Two biological replicates of

FSPS10C-derived IPSDMs differentiated with either supernatant (SUP_1 and SUP_2) or
recombinant M-CSF (MCSF_1 and MCSF_2). Above diagonal: pairwise scatterplots of

expressed genes (transcripts per million (TPM) > 1) between all four samples. Below diagonal:

pairwise Spearman’s correlation of gene expression between all four samples.

IPSCs were differentiated into macrophages following a previously published protocol consisting

of three steps: i) embryoid body (EB) formation, ii) production of myeloid progenitors from the

EBs and iii) terminal differentiation of myeloid progenitors into mature macrophages (van
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Wilgenburg et al., 2013). For EB formation, intact iPSC colonies were separated from MEFs
using collagenase-dispase solution, transferred to 10 cm low-adherence bacteriological dishes
(Sterilin) and cultured in 25 ml iPSC medium without rhFGF for 3 days. Mature EBs were
resuspended in myeloid progenitor differentiation medium (90% X-VIVO 15 (Lonza), 10% FBS,
2mM L-glutamine, 50 IU/ml penicillin, 50 [U/ml streptomycin and 50 uM 2-mercaptoethanol
(Sigma M6250), 50 ng/ml hM-CSF (R&D), 25 ng/ml hIL-3 (R&D)) and plated on 10 cm
gelatinised tissue-culture treated dishes. Medium was changed every 4-7 days. After 3-4 weeks,
floating progenitor cells were isolated from the adherent EBs, filtered using a 40 pym cell strainer
(Falcon) and resuspended in macrophage differentiation medium (90 % RPMI 1640, 10% FBS,
50 1U/ml penicillin and 50 1U/ml streptomycin) supplemented with 20% supernatant from CRL-
10154 cell line. Approximately 7x10° cells in 15 ml of media were plated on a 10 cm tissue-
culture treated dish and cultured for 7 days until final differentiation. We observed that using
supernatant instead of 100 ng/ml M-CSF as specified in the original protocol (van Wilgenburg et
al., 2013) did not alter macrophage gene expression profile. The variation between cells
differentiated with supernatant or M-CSF was comparable to the variation between two

biological replicates of macrophages differentiated with M-CSF (Figure 2.1).

Human monocytes (90-95% purity) were obtained from healthy donor leukocyte cones
(corresponding to 450 ml of total blood) by 2-step gradient centrifugation (Martinez, 2012;
Martinez et al., 2006). The monocyte fraction in this type of preparation is on average 98%
CD14", 13% CD16" by single staining. The isolated monocytes were cultured for 7 days in the
same macrophage differentiation medium as IPSDMs. The same seeding density and tissue-
culture treated plastic was used as for IPSDMs. Non-adherent contaminating cells were

removed by vigorous washing before cell lysis at day 7.

On day 7 of macrophage differentiation, medium was replaced with either 10 ml of fresh
macrophage medium (without M-CSF) or medium supplemented with 2.5 ng/ml LPS (E. coli).
After 6 hours, cells were lifted from the plate using lidocaine solution (6 mg/ml lidocaine, PBS,
0.0002% EDTA), counted with haemocytometer (C-Chip) and lysed in 600 ul RLT buffer

(Qiagen). All cells from a dish were used for lysis and subsequent RNA extraction.

2.2.3 Flow cytometry

Flow cytometry was used to characterise the IPSDM cell populations used in the experiments.

Approximately 1x10° cells were resuspended in flow cytometry buffer (D-PBS, 2% BSA, 0.001%

39



EDTA) supplemented with Human TruStain FcX (Biolegend) and incubated for 45 minutes on
ice to block the Fc receptors. Next, cells were washed once and resuspended in buffer
containing one of the antibodies or isotype control. After 1 hour, cells were washed three times
with flow cytometry buffer and immediately measured on BD LSRFortessa cell analyser. The
following antibodies (BD) were used (cat no): CD14-Pacific Blue (558121), CD32-FITC
(552883), CD163-PE (556018), CD4-PE (561844), CD206-APC (550889) and PE isotype
control (655749). The data were analysed using FlowJo. The raw data are available on figshare
(doi: 10.6084/m9.figshare.1119735).

2.2.4 RNA extraction and sequencing

RNA was extracted with RNeasy Mini Kit (Qiagen) according to the manufacturer’s protocol.
After extraction, the sample was incubated with Turbo DNase at 37°C for 30 minutes and
subsequently re-purified using RNeasy clean-up protocol. Standard lllumina unstranded poly-A
enriched libraries were prepared and then sequenced 5-plex on lllumina HiSeq 2500 generating
20-50 million 75bp paired-end reads per sample. RNA-seq data from six iPSC samples was
taken from a previous study (Rouhani et al., 2014). Sample information together with the total

number of aligned fragments are detailed in Table 2.1.

Table 2.1: General information about the RNA-seq samples. Library size column contains

the total number of aligned fragments per sample.

Sample Donor Cell type | Treatment Library size
S7_RE15 S7RE IPSC control 83280070
S7_RE11 S7RE IPSC control 72411619
S4_SF5 SASF IPSC control 72167859
S4_SF3 S4SF IPSC control 72427265
S5_SF1 S5SF IPSC control 90998616
S5_SF3 S5SF IPSC control 83746320
CRL1_ctrl CRL1 IPSDM control 47052432
S7RE_ctrl S7RE IPSDM control 25322078
FSPS10C_ctrl | FSPS10C IPSDM control 23443481
FSPS11B_ctrl | FSPS11B IPSDM control 19933949
CRL1_LPS CRL1 IPSDM LPS 33985920
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S7RE_LPS S7RE IPSDM LPS 24349911
FSPS10C_LPS | FSPS10C IPSDM LPS 24570506
FSPS11B_LPS | FSPS11B IPSDM LPS 24394255
B1_ctrl B1 MDM control 23381545
B4 _ctrl B4 MDM control 47790764
B5_ctrl B5 MDM control 26056124
B2_ctrl B2 MDM control 20901894
B3_ctrl B3 MDM control 26059134
B1_LPS Bl MDM LPS 20748290
B4_LPS B4 MDM LPS 25538994
B5_LPS B5 MDM LPS 56227352
B2_LPS B2 MDM LPS 24456569
B3_LPS B3 MDM LPS 24075743

2.2.5 RNA-seq data analysis

Differential expression

Sequencing reads were aligned to GRCh37 reference genome with Ensembl 74 annotations
using TopHat v2.0.8b (Kim et al., 2013). Reads overlapping gene annotations were counted
using featureCounts (Liao et al., 2014) and DESeq2 (Love et al., 2014) was used to identify
differentially expressed genes. Genes with FDR < 0.01 and fold-change > 2 were identified as
differentially expressed. We used g:Profiler to perform Gene Ontology and pathway enrichment
analysis (Reimand et al., 2011). For conditional enrichment analysis of the genes differentially
regulated in LPS response we used all LPS-responsive genes as the background set. All
analysis was performed on genes classified as expressed in at least one condition (TPM > 2)
except where noted otherwise. The bedtools (Quinlan and Hall, 2010) suite was used to
construct BigWig files with genome-wide read coverage. All downstream analysis was carried

out in R and ggplot2 was used for figures.

Effect of genetic differences on differential expression analysis

To estimate the contribution that genetic differences between IPSDMs and MDMs might have

on the differential expression analysis, | obtained gene level RNA-seq read counts from
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lymphoblastoid cell lines (LCLs) from 84 British individuals from a previously published study
(Lappalainen et al., 2013). To mimic our experimental design, | repeatedly (100 times) sampled
9 individuals from the pool of 84, assigned them randomly into two groups (four and five
individuals) and used DESeq2 to estimate the number of differentially expressed genes
between the groups that satisfied the same thresholds that | used in the main analysis (FDR <
0.01, fold change > 2).

Alternative transcript usage

To quantify alternative transcript usage, reads were aligned to Ensembl 74 transcriptome using
bowtie v1.0.0 (Langmead et al., 2009). Next, | used mmseq and mmdiff to quantify transcript
expression and identify transcripts whose proportions had significantly changed (Turro et al.,
2011, 2014). For each transcript | estimated the posterior probability of five models (i) no
difference in isoform proportion (null model), (ii) difference between LPS treatment and control
(LPS effect), (iii) difference between IPSDMs and MDMs (macrophage type effect), (iv)
independent treatment and cell type effects (both effects), (v) LPS response different between
MDMs and IPSDMs (interaction effect). | specified the prior probabilities as (0.6, 0.1, 0.1, 0.1,
0.1) reflecting the prior belief that most transcripts were not likely to be differentially expressed.
Transcripts with posterior probability of the null model < 0.05 were considered significantly

changed.
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Figure 2.2. Constructing alternative transcription events from annotated transcripts. (A)
Hypothetical RNA-seq read coverage over a gene indicating that there is switch from proximal
to distal promoter between conditions 1 and 2. (B) True transcript annotations generating the
read coverage observed on panel A. (C) Hypothetical reference transcripts detected to be
differentially expressed between conditions 1 and 2. Note that the true transcript 2A from which
the reads were generated was not present in the annotated transcripts. Consequently, different
transcript 2B was detected to be differentially expressed that also had a skipped exon 4 and
shorter 3' UTR. Comparing transcript 1 to transcript 2B gives the wrong impression that exon 4
and the 3' UTR are also differentially expressed although their read coverage has not changed

between the conditions. (D) Three alternative transcription events constructed from transcripts 1
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and 2B using the reviseAnnotations package. Estimating the differential expression of these
alternative events separately correctly identifies that only the promoter usage changes between

conditions.

Next, | used a two-step process to identify the exact alternative transcription events (alternative
promoter usage, alternative splicing or alternative 3' end usage) that were responsible for the
observed changes in transcript proportions. First, to identify all potential alternative transcription
events in each gene, | compared the transcript whose proportion changed the most between the
two conditions to the most highly expressed transcript of the gene (Figure 2.2). This analysis
revealed that for 93% of the genes the two selected transcripts differed from each other in more
than one location, for example both the promoters and alternative 3' ends were different
between the two transcripts. However, visual inspection of the read coverage plots suggested
that in majority of these cases there was only one change between the two transcripts and the
other changes were false positives caused by missing or incomplete transcript annotations. To
identify which one of the changes was responsible for the alternative transcription signal, |
developed the reviseAnnotations R package (https://github.com/kauralasoo/reviseAnnotations)
to split the two identified transcripts into individual alternative transcription events (Figure 2.2).
Next, | reanalysed the RNA-seq data using exactly the same strategy as described above
(bowtie + mmseq + mmdiff) but substituted Ensembl 74 annotations with the identified
transcription events. Finally, | required events to change at least 10% in proportion between the
two conditions to be considered for downstream analysis. This analysis revealed that instead of
the 93% suggested by the transcript level analysis, only 4% of the genes had more than one
event whose proportion changed at least 10%, indicating that transcript level analysis leads to a
large number of false positives. Our event-based approach is similar to the one used by the
Mixture of Isoforms (MISO) model (Katz et al., 2010).

Visualising alternative transcript usage

| developed the wiggleplotr R package (https://github.com/kauralasoo/wiggleplotr) to aid the
visualisation of RNA-seq read coverage across alternative transcription events. A key feature of
the software is that it allows introns to be shortened to constant width thus making it easier to

see differences in read coverage between neighbouring exons in genes with long introns.
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2.3 Gene expression variation between iPSCs, IPSDMs and
MDMs

2.3.1 Global patterns of gene expression

RNA-seq was used to profile the transcriptomes of MDMs derived from five and IPSDMs
derived from four different individuals (Methods). Identical preparation, sequencing and
analytical methodologies were used for all samples. Initially, | used Principal Component
Analysis (PCA) to generate a genome-wide overview of the similarities and differences between
naive and LPS-stimulated IPSDMs and MDMs as well as undifferentiated iPSCs. The first
principal component (PC1) explained 50% of the variance and clearly separated iPSCs from all
macrophage samples (Figure 2.3A) illustrating that IPSDMs are transcriptionally much more
similar to MDMs compared to undifferentiated iPSCs. This was further confirmed by high
expression of macrophage specific markers and low expression of pluripotency factors in
IPSDMs (Figure 2.3B). The second PC separated naive cells from LPS-stimulated cells and
explained 16% of the variance, while the third PC, explaining 8% of the variance, separated
IPSDMs from MDMs. The principal component that separated IPSDMs from MDMs (PC3) was
different from that separating macrophages from iPSCs (PC1). Since principal components are
orthogonal to one another, this suggests that the differences between MDMs and IPSDMs are

beyond the simple explanation of incomplete gene activation or silencing compared to iPSCs.
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Figure 2.3. Gene expression variation between iPSCs, IPSDMs and MDMs. (A) Principal
Component Analysis of expressed genes (TPM > 2) in iPSCs, IPSDMs and MDMs. (B)

Heatmap showing the gene expression of selected iPSC-specific transcription factors (TFs),

macrophage specific TFs, pattern recognition receptors (PRRs) and canonical macrophage cell

surface markers. Rectangles correspond to measurements from independent biological

replicates.
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2.3.2 Differential expression analysis of IPSDMs vs MDMs

Table 2.2. Selection of enriched Gene Ontology terms and KEGG pathways for different

groups of differentially expressed genes.

Upregulated in LPS response

Term ID Domain Term name p-value
GO0:0045087 | BP innate immune response 7.31E-45
G0:0009617 | BP response to bacterium 2.42E-28
G0:0032496 | BP response to lipopolysaccharide 4.38E-28
KEGG:04668 | ke TNF signaling pathway 1.71E-20
KEGG:04064 | ke NF-kappa B signaling pathway 3.56E-14
Downregulated in LPS response

Term ID Domain Term name p-value
GO0:0005096 | MF GTPase activator activity 1.01E-09
GO0:0007264 | BP small GTPase mediated signal transduction | 3.14E-09

More highly expressed in MDMs compared to IPSDMs

Term ID Domain Term name p-value

G0:0050778 | BP positive regulation of immune response 1.97E-21
G0:0003823 | MF antigen binding 2.55E-18
GO0:0005764 | CC lysosome 1.42E-17
G0:0034341 | BP response to interferon-gamma 2.17E-16
GO0:0042611 | CC MHC protein complex 3.67E-16
KEGG:04612 | ke Antigen processing and presentation 3.47E-13
KEGG:04145 | ke Phagosome 2.46E-11

More highly expressed in IPSDMs compared to MDMs

Term ID Domain Term name p-value

GO0:0030198 | BP extracellular matrix organization 3.05E-45
G0:0016477 | BP cell migration 1.50E-40
GO:0001568 | BP blood vessel development 4.89E-36
G0:0016337 | BP cell-cell adhesion 6.27E-25
G0:0001525 | BP angiogenesis 1.34E-24

Although PCA provides a clear picture of global patterns and sources of transcriptional variation
across all genes in the genome, important signals at individual genes might be missed. To
better understand transcriptional changes at the gene level | used a two factor linear model
implemented in the DESeq2 package (Love et al., 2014). The model included an LPS effect,

capturing differences between unstimulated and stimulated macrophages and a macrophage
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type effect capturing differences between MDMs and IPSDMs. Our model also included an
interaction term that identified genes whose response to LPS differed between MDMs and
IPSDMs. | defined significantly differentially expressed genes as having a fold-change of >2
between two conditions using a p-value threshold set to control our false discovery rate (FDR)
to 0.01.

Using these thresholds, | identified 2977 genes that were differentially expressed between
unstimulated IPSDMs and MDMs. Among these genes, 2080 were more highly expressed in
IPSDMs and 897 were more highly expressed in MDMs (Figure 2.4A). Genes that were more
highly expressed in MDMs such as HLA-B, LYZ, MARCO and HLA-DRB1 (Figure 2.4C), were
significantly enriched for antigen binding, phagosome and lysosome pathways (Table 2.2). This
result is consistent with a previous report that MDMs have higher cell surface expression of
MHC-II compared to IPSDMs (Karlsson et al., 2008; van Wilgenburg et al., 2013). Genes that
were more highly expressed in IPSDMs, such as MMP2, VEGFC and TGFB2 (Figure 2.4C)
were significantly enriched for cell adhesion, extracellular matrix, angiogenesis, and multiple

developmental processes (Table 2).

In the LPS response | identified 2638 genes that were differentially expressed in both MDMs
and IPSDMs, of which 1525 genes were upregulated while 1113 were downregulated. As might
be expected, Gene Ontology and KEGG pathway analysis revealed large enrichment for terms
associated with innate immune and LPS response, NF-kB and TNF signalling (Table 2.2). | also
identified 569 genes whose response to LPS was significantly different between IPSDMs and
MDMs. The majority of these genes (365) responded in the same direction in both IPSDMs and
MDMs, but the magnitude of change was significantly different. The remaining 229 genes
showed a change in the opposite direction (8.7% of the LPS-responsive genes) (Figure 2.4B).
This set of 229 were much weaker responders to LPS overall (2.3-fold compared to 4.7-fold).
Additionally, | could not find convincing pathway or Gene Ontology enrichment signals in either
gene set (229 and 569 genes) compared to all LPS-responsive genes. Overall, | found that the
fold change of the genes that responded to LPS was highly correlated between MDMs and
IPSDMs (r = 0.82, Figure 2.4B) indicating that the LPS response in these two macrophage
types was broadly conserved. Interestingly, | also found that mean fold change was marginally
(10%) higher in MDMs (4.95) compared to IPSDMs (4.43). The behaviour of some canonical

LPS response genes is illustrated in Figure 2.4D.
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Figure 2.4. Differential expression analysis of IPSDMs vs MDMs. (A) Scatter plot of gene
expression levels between MDMs and IPSDMs. Genes that are significantly more highly
expressed in IPSDMs are shown in red and genes that are significantly more highly expressed

in MDMs are shown in blue. (B) Scatter plot of fold change in response to LPS between MDMs

49



(x-axis) and IPSDMs (y-axis). Only genes with significant LPS or interaction term in the linear
model are shown. Genes with LPS response fold change in the opposite direction between
MDMs and IPSDMs are highlighted in purple. (C) Heatmap of genes differentially expressed
between MDMs and IPSDMs. Representative genes from significantly overrepresented Gene
Ontology terms (Table 1) include antigen presentation (HLA genes), lysosome formation (LYZ),
angiogenesis (VEGFC, TGFB2), and extracellular matrix (SERPINE2, MMP2 COL4A5). The
same genes are also marked in panel A. (D) Heatmap of example genes upregulated in LPS

response.

Although genes with significantly different response to LPS between MDMs and IPSDMs were
not enriched for particular Gene Ontology terms or pathways, IL8 and CCL7 mRNAs were more
strongly upregulated in IPSDMs compared to MDMs (Figure 2.4B). Consequently, | looked at
the response of all canonical chemokines in an unbiased manner. | observed relatively higher
induction of further CXC subfamily monocyte and neutrophil attracting chemokines in IPSDMs
(Figure 2.3). Moreover, five out of seven CXCR2 ligands (Zlotnik and Yoshie, 2012) were more
strongly induced in IPSDMs (FDR < 0.1, fold-change difference between MDMs and IPSDMs >
2) which is significantly more than is expected by chance (Fisher’s exact test p = 4.5x10°°)
(Figure 2.5). These genes were also expressed at substantial levels (TPM > 100), with IL8
being one of the most highly expressed gene in IPSDMs after LPS stimulation. On the other
hand, MDMs displayed relatively higher induction of three chemokines involved in attracting B-
cells, T-cells and dendritic cells (CCL18, CCL19, CXCL13) (Figure 2.5).
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Figure 2.5. Chemokine genes that were particularly upregulated in either IPSDMs or
MDMs in LPS response. Their annotated receptors and target cell types were taken from the
literature (Soehnlein and Lindbom, 2010; Zlotnik and Yoshie, 2012).

2.3.3 Mechanisms underlying differences between MDMs and IPSDMs

To understand the mechanisms that might underlie the gene expression differences between
MDMs and IPSDMs, | focussed on three hypotheses: (1) a minority contaminating cell
population in IPSDM samples that is absent in MDMs, (2) genetic differences between donors
from which the IPSDMs and MDMs were derived, and (3) incomplete differentiation from iPSCs
resulting in developmentally immature macrophages that might exhibit some properties of the
iPSCs. The high purity of our IPSDM samples (92-98%) (Table 2.3) and MDM samples
(routinely 90-95% pure) suggested that there was no obvious contaminating cell type present
that did not express the canonical macrophage markers. Furthermore, even the 99% pure
IPSDM samples retained most of the differential expression with MDMs (Figure 2.6A)

suggesting contamination is not a major source of IPSDM-MDM differences.
Table 2.3. Purity of iPSC-derived macrophages. We used flow cytometry to estimate the
percentage of cells expressing five cell surface markers in IPSDMs differentiated from three

IPSC lines.
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Marker / Cell line FSPS10C | FSPS11B | S7RE
CD14 98.6 90.4 91.2
CD206 99.5 85.1

CD4 99.5 92.8 92.9
CD32 94.8 87.6
CD163 74.1 92 85.6

Alternatively, IPSDMs could be incompletely differentiated from iPSCs. Under this model, genes
that are expressed in iPSCs but repressed in mature macrophages would be more highly
expressed in IPSDMs compared to MDMs. Consistent with this hypothesis, genes that were
more highly expressed in IPSDMs were often also expressed in iPSCs (Figure 2.4C, Figure
2.6A). Furthermore, while the majority of the genes that were more highly expressed in MDMs
had mean expression > 2 TPM in both cell types, a large proportion of the genes that were more
highly expressed in IPSDMs had mean expression < 1 TPM across both cell types (Figure
2.6B), suggesting that their expression level in IPSDMs might be too low to be functional.
Moreover, the promoters of the upregulated genes were highly enriched for repressive
H3K27me3 histone marks in CD14+ monocytes (The ENCODE Project Consortium, 2012)
(Figure 2.6C), suggesting that these genes normally become silenced prior to monocyte-

macrophage differentiation in vivo and may not have been completely silenced in IPSDMs.

Finally, it is possible that some of the differences between IPSDMs and MDMs could be
confounded with genetic differences between the donors. For example, by chance, the different
individuals from which the IPSDMs and MDMs were derived could be fixed for alternate alleles
of a cis-regulatory variant that changes the expression of a given gene, which would appear to
be differentially expressed between the two cell types. However, since all our IPSDM and MDM
donors were randomly sampled from the same population, strong clustering of IPSDM and
MDM samples in the PCA analysis (Figure 2.3A) suggests that genetics is not a major source of
differences between these cell types. To address this quantitatively, | reanalysed an
independent RNA-seq data from 84 British individuals (Lappalainen et al., 2013). | found only a

median of three differentially expressed genes between any two random samples of 4 and 5
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individuals (Figure 2.6D). This suggests that only a small fraction of the differences between
MDMs and IPSDMs are likely to be due to genetics.
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Figure 2.6: Mechanisms underlying differential expression between MDMs and IPSDMs.
(A) Expression levels of genes that were more highly expressed in IPSDMs compared to MDMs
(TPM > 2). Purple violin plots show the mean expression of these genes in MDMs and orange in
IPS cells. Red asterisks mark IPSDM samples (FSPS10C) that stained > 99% positive for
CD14, CD206 and CD4 while STRE and FSPS11B samples were ~91% positive. (B) MA-plot of
differentially expressed genes between MDMs and IPSDMs (without TPM cut-off). On the y-axis
is the DESeqg2 estimate of fold-change between MDMs and IPSDMs. Red line denotes the 2
TPM cut-off used in most analyses. (C) Fraction of gene promoters overlapping H3K27Me3

peaks in ENCODE CD14+ monocyte samples stratified by the percentile of gene expression
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level. Up - genes upregulated in IPSDMs; Down - downregulated in IPSDMs; None - not
differentially expressed between MDMs and IPSDMs. (D) Histogram of the number of

differentially expressed genes between two groups of randomly selected individuals.

2.4 Global variation in alternative transcript usage

Many human genes express multiple transcripts that can differ from each other in terms of
function, stability or subcellular localisation of the protein product (Carpenter et al., 2014; Wang
et al., 2008). Considering expression only at a whole gene level can hide some of these
important differences. Therefore, we sought to quantify how similar were naive and stimulated
IPSDMs and MDMs at the individual transcript expression level. Here, we first used mmseq
(Turro et al., 2011) to estimate the most likely expression level of each annotated transcript that
would best fit the observed pattern of RNA-seq reads across the gene. Next, we calculated the
proportion of total expression accounted for by each transcript by dividing transcript expression
by the overall expression level of the gene, only including genes that were expressed over two
transcripts per million (TPM) (Wagner et al., 2012) in all experimental conditions (8284 genes).
Since the proportions of all transcripts of a gene sum to one and most genes express one
dominant transcript (Gonzalez-Porta et al., 2013), | used the proportion of the most highly
expressed transcript as a proxy to capture variation in transcript proportions within a gene. In
this context and similarly to gene level analysis, the first PC explained 31% of the variance and
clearly separated IPSCs from macrophages (Figure 2.7A). However, the second PC (11% of
variance) not only separated unstimulated cells from stimulated cells but also IPSDMs from
MDMs. One interpretation of this result is that the changes in transcript proportions between
IPSDMs and MDMs, to some extent, also resemble those induced in the LPS response. Further
analysis (below) highlighted that much of this variation can be explained by changes in 3’

untranslated region (UTR) usage.
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Figure 2.7. Alternative transcription in IPSDMs and MDMs. (A) PCA of relative transcript

proportions in iPSCs, IPSDMs and MDMs. Only genes with mean TPM > 2 in all conditions were

55



included. (B) Alternative transcription events detected in LPS response. Each point corresponds
to an alternative transcription event and shows the absolute change in the proportion of the
most highly expressed transcript (across all samples) in LPS response in MDMs (x-axis) and
IPSDMs (y-axis). (C) All detected alternative transcription events were divided into three groups
based on whether they affected alternative promoter, alternative splicing or alternative 3’ end of
the transcript. For each event, we plotted its change in proportion in LPS response (x-axis)
against its change between macrophage types (y-axis). The events are coloured by the most
parsimonious model of change selected by mmseq: LPS effect (difference between naive and
LPS-stimulated cells only); macrophage (MF) type (difference between IPSDMs and MDMs
only); both (data support both MF type and LPS effects). (D) Number of alternative transcription
events form panel C grouped by position in the gene (alternative promoter, alternative splicing,
alternative 3' end) and most parsimonious model selected by mmseq. (e€) Relative expression of
long alternative 3' UTRs in genes showing a change between IPSDM and MDMs (MF type),
between naive and LPS-stimulated cells (LPS effect) and for genes showing both types of

change.

2.4 .1 ldentification and characterisation of alternative transcription events

Alternative transcription can manifest in many forms, including alternative promoter usage,
alternative splicing and alternative 3' end choice, each likely to be regulated by independent
biological pathways. Thus, | sought to characterise and quantify how these different classes of
alternative transcription events were regulated in the LPS response, and between MDMs and
IPSDMs. Using a linear model implemented in the mmdiff (Turro et al., 2014) package followed
by a series of downstream filtering steps (Methods) we identified 504 alternative transcription
events (ATEs) in 485 genes. Out of those, 145 events changed between unstimulated IPSDMs
and MDMs (macrophage (MF) type effect) while 156 events changed between naive and LPS
stimulated cells across macrophage types (LPS effect). Further 197 events had different
baseline expression between macrophage types, but also changed in the same direction after
LPS stimulation (Both effects). Finally, only 6 events change in the opposite direction after LPS
stimulation between MDMs and IPSDMs (Figure 2.7B). Next, | focussed on the 359 events that
changed in the LPS response in at least one macrophage type (156 + 197 events with LPS
response in the same direction and 6 events with LPS response in the opposite direction). |
found that the LPS-induced change in the proportion of the most highly expressed transcript
was highly correlated between MDMs and IPSDMs (Pearson r = 0.83) (Figure 2.7B), further

confirming that the LPS response in both macrophage types is conserved.
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Perhaps surprisingly, although the transcriptional response to LPS at the whole gene level is
relatively well understood, the effect of LPS on transcript usage has remained largely
unexplored. Therefore, | decided to investigate the types of alternative transcription events
identified in LPS response as well as between MDMs and IPSDMs (See Methods for details).
Most protein coding changes in LPS response were generated by alternative promoter usage
(Figure 2.7C-D). In total, | identified 180 alternative promoter events, 51 of which changed the
coding sequence by more than 100 bp in LPS response. Strikingly, alternative promoter events
displayed larger change in proportion than other events so that often the most highly expressed
transcript of the gene changed between cell types and conditions (Figure 2.7C). Alternative

promoter usage for three example genes is illustrated on Figure 2.8.
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genes.

| also observed widespread alternative 3' end usage both in the LPS response as well as
between MDMs and IPSDMs (Figure 2.7C-D). In contrast to alternative promoters, most of the
3' end events only changed the length of the 3' UTR and not the coding sequence (Figure 2.7D).

Changes in 3' UTR usage were strongly asymmetric, with longer 3° UTRs being more highly
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expressed in IPSDMs relative to MDMs, and in unstimulated cells relative to stimulated cells
(Figure 2.7E, Figure 2.9A). Notably, | also observed that the decrease in 3' UTR length
correlated with the second principal component of relative transcript expression (Figure 2.7A).
Consistent with this observation, | found that genes with 3' UTR events were enriched for high
absolute weights in PC2 (p < 2.2x10™®, chi-square goodness-of-fit test), (Figure 2.9B) indicating
that part of the transcriptional variation captured by PC2 manifests as changes in 3' UTR usage.
| found no convincing pathway or Gene Ontology enrichment signal in genes with alternative 3'
UTR events.
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Figure 2.9. 3' UTR shortening in LPS response. (A) Examples of 3' UTR shortening in LPS
response. The plot shows normalised read depth across the gene body in IPSDMs (green) and
MDMs (purple) with gene structure in the panel beneath the plot. Introns have been compressed
relative to exons to facilitate visualisation. (B) All genes were ranked based on their weights in
PC2 (Figure 2.7A) and the relative ranks of the 162 genes with 3’UTR events are displayed on
the histogram. The ranks of a randomly sampled set of genes should be uniformly distributed
whereas genes that contribute strongly to the PC should be enriched for high and low relative

ranks (corresponding to large positive and negative weights on the PC).

Finally, | detected only a small number of alternative splicing events influencing middle exons,
most of which occurred between MDMs and IPSDMs rather than in the LPS response (Figure
2.7C-D). Three of the events with largest changes in proportion affected cassette exons in
UAP1, CTTN and CLSTN1 genes (Figure 2.10A-C). The inclusion of these exons has previously
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been shown to be regulated by RNA-binding protein RBFOX2 that was also significantly more
highly expressed in IPSDMs (Figure 2.10D) (Lambert et al., 2014; Venables et al., 2013).
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2.5 Discussion

In this study, we used high-depth RNA-seq to investigate transcriptional similarities and
differences between human monocyte and iPSC-derived macrophages. Our principal findings
are that, relative to differences between MDMs and iPSCs, the transcriptomes of naive and LPS
stimulated MDMs and IPSDMs are broadly similar both at the whole gene and individual
transcript levels. Concurrently with our study, another paper using a different macrophages
differentiation protocol came to the same broad conclusion (Zhang et al., 2015). Although we
have only examined steady-state mRNA levels, conservation of transcriptional response to LPS
implies that the major components of regulatory network that coordinate LPS response on the
protein level are likely to also be similarly conserved. We did, however, also observe intriguing
differences in expression in specific sets of genes, including those involved in tissue
remodelling, antigen presentation and neutrophil recruitment, suggesting that IPSDMs might
possess some phenotypic differences from MDMs. Our analysis also revealed a rich diversity of
alternative transcription changes suggesting widespread fine-tuning of regulation in macrophage

LPS response.

We also looked at the mechanisms that might be underlying the observed differences between
MDMs and IPSDMs. We were able to rule out genetic differences between MDMs and IPSDMs
or contamination by some other cell type not expressing macrophage specific cell surface
markers as a major source of these differences. However, we did find some evidence that
IPSDMs might be developmentally less mature than MDMs. This was illustrated by the fact that
IPSDMs expressed residual amounts of genes what were substantially more highly expressed
in iPSCs and almost completely silenced in MDMs. Furthermore, we found that promoters of
these genes were usually actively silenced by H3K27Me3 histone modifications in CD14+

monocytes suggesting that this silencing might be incomplete in IPSDMs.

Alternatively, IPSDMs might share some features with tissue resident macrophages that are
developmentally and phenotypically distinct from MDMs (Gautier et al., 2012; Ginhoux et al.,
2010; Gosselin et al., 2014; Lavin et al., 2014). In support of that, higher expression of tissue
remodelling and neutrophil recruitment genes has previously been associated with tissue and
tumour associated macrophages (Cailhier et al., 2005; Mantovani et al., 2013; Schmieder et al.,
2012; Soehnlein and Lindbom, 2010). On the other hand, higher expression of antigen

presentation genes in MDMs is consistent with the specialised role of monocyte-derived cells in
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immune regulation and antigen presentation (Gundra et al., 2014; Jakubzick et al., 2013;
Soehnlein and Lindbom, 2010). This is consistent with a previous study suggesting a shared
developmental pathway between IPSDMs and foetal macrophages (Klimchenko et al., 2011).
Nevertheless, it is likely that the exact characteristics of IPSDMs can be shaped by the addition
of cytokines and other factors during differentiation and this could be an important area for

further exploration.

In addition to showing that LPS response was broadly conserved between MDMs and IPSDMs
both on gene and transcript level, we also identified hundreds of individual alternative
transcription events, highlighting an important, but potentially overlooked, regulatory mechanism
in innate immune response. A small number of the events have known functional
consequences. For example, the LPS-induced short isoform of the NCOA?7 (Figure 2.8A) gene
is known to be regulated by Interferon p-1b and it is suggested to protect against inflammation-
mediated oxidative stress (Yu et al., 2014) whereas the long isoform is a constitutively
expressed coactivator of oestrogen receptor (Shao et al., 2002). Similarly, the two isoforms of
the OSBPL1A gene (Figure 2.8C) have distinct intracellular localisation and function (Johansson
et al., 2003) while the LPS-induced short transcript of the OSBPL9 gene (Figure 2.8B) codes for
an inhibitory isoform of the protein (Ngo and Ridgway, 2009). Thus, alternative promoter usage
has the potential to significantly alter gene function in LPS response and these changes can be

missed in gene level analysis.

Widespread shortening of 3' UTRs has previously been observed in proliferating cells and
cancer as well as activated T-cells and monocytes (Mayr and Bartel, 2009; Sandberg et al.,
2008). The functional consequences of 3' UTR shortening are unclear, but extended 3' UTRs
are often enriched for binding sites for miRNAs or RNA-binding proteins that can regulate
mMRNA stability and translation efficiency (Gupta et al., 2014; Sandberg et al., 2008). The role of
miRNAs in fine-tuning immune response is well established (O’Neill et al., 2011). Furthermore,
interactions between alternative 3' UTRs and miRNAs have recently been implicated in the brain
(Miura et al., 2013; Wehrspaun et al., 2014). Therefore, it might be interesting to explore how 3’

UTR shortening affects miRNA-dependent regulation in LPS response.
In summary, we have performed an in depth comparison of an iPSC-derived immune cell with

its primary counterpart. Our study suggests that iPSC-derived macrophages are potentially

valuable alternative models for the study of innate immune stimuli in a genetically manipulable,

62



stable cell culture system. The ability to readily derive and store iPSCs potentially enables in-
depth future studies of the innate immune response in both healthy and diseased individuals. A
key advantage of this model will be the ability to study the impact of human genetic variation,

both natural and engineered, in innate immunity.

63



64



