4 Genetics of gene expression in

macrophage immune response

Collaboration note

The macrophage differentiation work in this chapter was performed in collaboration with Julia
Rodrigues who was a research assistant in Daniel Gaffney’s lab at the time. | designed the
experiments, performed Salmonella infection and IFNy stimulation assays, took care of sample
logistics and performed all of the data analysis. Julia was mainly responsible for tissue culture
required for macrophage differentiation and preparing cells for stimulation experiments.
Subhankar Mukhopadhyay and Gordon Dougan provided valuable feedback in designing and

optimising Salmonella infection and IFNy stimulation conditions.

4.1 Introduction

Genetic differences between individuals can have a major impact on how immune cells respond
to environmental stimuli, such as the amount of cytokines they produce after infection (Li et al.,
2016a). A number of studies have looked at the impact of genetic variation on cellular
responses to different (immunological) environmental stimuli via the regulation of gene
expression. Most studies have used either primary monocytes purified from peripheral blood
(Fairfax et al., 2014; Kim et al., 2014) or monocyte-derived dendritic cells (Barreiro et al., 2012;
Lee et al., 2014). While powerful, one limitation of primary cells is that the amount of material
that can be obtained from a single individual is limited. This in turn limits both the number of
assays that can be performed on cells from a single individual as well as the number of stimuli
that can be studied. This is especially important because for any given cell type there can be
tens of different relevant stimuli or combinations of stimuli, each one potentially revealing a

different set regulatory variants that are otherwise hidden in the unstimulated state.

A major advantage of cell lines is that the number of cells is essentially unlimited meaning

different phenotypes can be collected from the same set of individuals over time. In this respect,
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human lymphoblastoid cell lines (LCLs) have been very powerful. For example, over the years
LCLs from the Yoruban population have been profiled on many different levels including RNA
sequencing (Pickrell et al., 2010), ribosome profiling (Battle et al., 2015), proteomics (Battle et
al., 2015), DNase-seq (Degner et al., 2012) and ChIP-seq (Grubert et al., 2015; McVicker et al.,
2013) and in multiple cases integrating old data sets with new ones has provided new biological
insight (Li et al., 2016c). However, since LCLs are immortalised by infection with Epstein-Barr

virus they are not a suitable model to study the response to different immunological stimuli.

A promising approach to overcome the limitations of LCLs are human induced pluripotent stem
cells (iPSC) that have recently been derived from large collection of unrelated individuals
(Kilpinen et al., 2016). In Chapter 3, we showed that iPSCs can be reliably differentiated into
macrophages on a scale necessary for QTL mapping studies. The aim of this chapter is to first
characterise how well iPSC-derived macrophage are able to recapitulate known aspects of
macrophage response to Salmonella infection and IFNy stimulation. Subsequently, | want to
identify common genetic variant that influence gene expression and mRNA processing
(promoters, splicing, poly-adenylation) in each of the four conditions and assess how condition

specific they are.

We obtained RNA-seq data from 84 iPSC-derived macrophage lines in four immunological
conditions: (1) naive, (2) 18-hour IFNy stimulation, (3) 5-hour Salmonella infection (4) 18-hour
IFNy stimulation followed by 5-hour Salmonella infection. We chose these stimuli, because they
are known to activate distinct downstream signalling pathways. Lipopolysaccharide (LPS) and
other components on the surface of Salmonella cell wall are recognised by macrophage Toll-like
receptors (TLRs) that lead to activation of NF-kB and AP-1 signalling pathways (Takeuchi and
Akira, 2010). TLR4 activation by LPS also leads to specific activation of the interferon response
factor 3 (IRF) transcription factor and downstream antiviral response genes (Doyle et al., 2002).
IFNy, on the other hand, is specifically recognised by the IFNy receptor that leads to
phosphorylation and activation of the STAT1 transcription factor (Platanias, 2005). Moreover,
pre-stimulating macrophages with IFNy prior to bacterial infection leads to enhanced microbial
killing and stronger activation of inflammatory response by Toll-like receptors (TLRs) (Hu and
Ivashkiv, 2009; Qiao et al., 2013; Su et al., 2015). There are at least two potential mechanisms
that could be responsible for the enhanced response: (1) IFNy pre-stimulation can prime certain
enhancers so that they can now be bound by Salmonella-activated TFs (Qiao et al., 2013), (2)

IFNy priming can change the pool of active TFs available in the cell, this can facilitate new types
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of collaborative binding between Salmonella-activated TFs and IFNy-activated TFs similarly to
PU.1 binding to latent enhancers in mouse macrophages activated by IFNy stimulation (Ostuni
et al., 2013).

With 84 samples, we were also highly powered to detect differential expression between the
four conditions. By comparing the differentially expressed genes to the literature, | was able to
show that iPSC-derived macrophages predominantly activated expected genes and pathways in
response to the three stimuli, indicating that they are a suitable model to study human
macrophage immune response. The main aim of the chapter was to uncover genetic variants
that regulate gene expression on gene and transcript level. | used two complementary models
to identify gene expression quantitative trait loci (eQTLs) and assess their condition specificity. |
also developed a novel approach to pre-process transcript annotations prior to transcript ratio
QTL (trQTL) mapping that increased interpretability of trQTLs and allowed me to detect more
independent trQTLs per gene than established methods. | identified thousands of eQTLs and
trQTLs across conditions and estimated that ~25% of them were condition specific.
Consequently, a large proportion of the condition-specific QTLs were ‘hidden’ in the naive state,
highlighting the importance of studying many different stimuli to uncover potential QTLs
underlying disease associations. Although | was able to detect similar numbers of eQTLs and
trQTLs across conditions, | found that eQTLs and trQTLs for the same genes were largely
independent from each other, indicating that ignoring transcript-level variation can miss many
genetic effects. Finally, | uncovered considerable heterogeneity in the QTLs discovered by
different computational approaches. This was especially true for trQTLs because alternative
transcripts are still poorly annotated. | was able to show that both macrophage eQTLs and
trQTLs were enriched for GWAS hits for Alzheimer’s disease, lipid traits and multiple
autoimmune disorders. Together, these results highlight that iPSC-derived macrophages are a

promising cell culture-based system to study condition-specific regulatory variation.

4.2 Methods

4.2.1 Gene expression analysis

Full details of the macrophage differentiation protocol, stimulation assays, RNA-seq
experimental procedures, read alignment and gene expression quantification are presented in

Chapter 3. | used the quantile normalised gene expression values from the cqn (Hansen et al.,
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2012) package for clustering, eQTL mapping with linear models as well as for visualisation. For
count-based methods such as DESeq2 (Love et al., 2014) and RASQUAL (Kumasaka et al.,

2016) | used the raw read count data directly.

Differential expression analysis

I included 15,797 genes whose mean expression in at least one of the conditions was greater
than 0.5 transcripts per million (TPM) into our differential expression analysis. For each gene, |
used likelihood ratio test (test = “LRT”) implemented in DESeq2 (Love et al., 2014) v1.10.0 to
test if a model that allowed different mean expression in each condition was a better fit to the
data than a null model assuming the same mean expression across conditions. | used 1%
Benjamini-Hochberg FDR threshold to identify differentially expressed genes. | further filtered
the genes by requiring them to be at least 2-fold differentially expressed between the naive

condition and one of the stimulated conditions resulting in 8758 differentially expressed genes.

To identify differentially expressed genes with specific expression patterns, | calculated mean
quantile-normalised expression level in each condition and standardised the mean expression
values across conditions to have zero mean and unit variance. | then used c-means fuzzy
clustering implemented in MFuzz v.2.28 (Kumar and E Futschik, 2007) package with
parameters ‘c = 9, m = 1.5, iter = 1000’ to assign the genes into 9 clusters. The number of
clusters was chosen iteratively by trialling different numbers and observing which ones led to
stable clustering results from independent runs. | ranked the genes in each cluster by their fold
change and used g:Profiler (Reimand et al., 2016) R packages to identify pathways and Gene

Ontology (GO) categories enriched in each cluster.

Detecting hidden confounders with PEER

To detect hidden confounders in gene expression, | applied PEER (Stegle et al., 2012) on each
condition separately allowing for at most 10 hidden factors. As discussed in Chapter 3, | found
that the first 3-5 factors explained the most variation in the data and the others remained close

to zero.
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4.2.2 Gene expression QTL mapping

Preparing genotype data

| obtained imputed genotypes for all of the samples from the HipSci project (Kilpinen et al.,
2016). | used CrossMap (Zhao et al., 2014) v0.1.8 to convert variant coordinates from GRCh37
reference genome to GRCh38. Subsequently, | filtered the VCF file with bcftools v.1.2
(http://samtools.github.io/bcftools/) to contain only bi-allelic variants (both SNPs and indels) with
IMP2 score > 0.4 and minor allele frequency (MAF) > 0.05 in our 84 samples. This VCF file was
used for all subsequent analyses. The genotype data for 52 managed access lines is available
from the European Genome-phenome Archive (EGA) (EGAD00010000773), the data for the
remaining 34 open access lines is deposited in the European Nucleotide Archive (ENA)
(PRJEB11749). The VCF file was imported into R using the SNPRelate (Zheng et al., 2012) R

package.

Detecting eQTLs using linear model

| used linear regression implemented in the fastQTL (Ongen et al., 2016) software to map cis
eQTLs in each experimental condition. | used the “--permute 100 10000” option to obtain
permutation p-values for each gene. The size of the cis windows was set to +/-500 kb around
the gene. | used sex and the first six PEER factors as covariates in the model. | picked single
most significantly associated variant for each gene and used Benjamini-Hochberg correction to

identify genes with at least one significant eQTL at 10% FDR level (‘eGenes’).

Quantifying allele-specific expression

| used ASEReadCounter (Castel et al., 2015) from the Genome Analysis ToolKit (GATK) to
count the number of allele-specific fragments overlapping each variant. | used the following
flags with ASEReadCounter: -U ALLOW_N_CIGAR_READS -dt NONE --minMappingQuality 10
-rf MateSameStrand’. | removed indels from the VCF file prior to quantifying allele-specific

expression because they are not supported by the RASQUAL model.

Detecting QTLs using RASQUAL

| wrote a collection of python scripts and a rasqualTools R package to simplify running
RASQUAL on large number of samples and work with large RASQUAL output files. This
software is available on GitHub (https://github.com/kauralasoo/rasqual). | used the

vcfAddASE.py script to add allele-specific counts calculated in the previous step into the VCF
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file. | ran RASQUAL (Kumasaka et al., 2016) independently for each experimental condition
using sex and first two PEER factors as covariates. In contrast to standard linear model,
covariates seemed to have only a minor effect on the number of eQTLs detected by RASQUAL.
| only included variants that were either in the gene body or within 500 kb upstream or
downstream of the gene. | specified ‘--imputation-quality > 0.7’. As a result, variants with
imputation quality of < 0.7 were used as feature SNPs in allele-specific analysis but were not
considered as possible causal variants. | also used RASQUAL’s GC correction option to correct
for sample-specific GC bias in the gene-level read count data. To correct for multiple testing, |
picked one minimal p-value per gene, used eigenMT (Davis et al., 2016) to estimate the number
of independent tests performed in the cis-region of each gene and then performed Bonferroni
correction to obtain the corrected p-value. | further performed Benjamini-Hochberg FDR
correction on the Bonferroni-corrected p-values to account for multiple testing between features

and defined associations with FDR < 0.1 as significant.

Comparing RASQUAL and FastQTL results

To compare RASQUAL and FastQTL, | focussed on genes that were not filtered out by
RASQUAL because of zero read count. Since performing thousands of genome-wide
permutations was not feasible for RASQUAL, | only computed nominal p-values for the lead
eQTL variant for each gene from both methods. | estimated the number of independent variants
in the cis region of each gene with eigenMT (Davis et al., 2016) and then performed Bonferroni
correction on gene level using the eigenMT estimates. Subsequently, | used Benjamini-
Hochberg FDR correction to account for the number of genes tested and identified the genes
that had a significant eQTL at 10% FDR. The eigenMT based FDR threshold was more
conservative than permutation-based FDR normally used for FastQTL as reported in the

eigenMT paper (Davis et al., 2016).

Detecting condition-specific QTLs with a linear model

In each condition, | first identified all features (genes or intron clusters) and corresponding lead
variants that displayed significant association at 10% FDR level. These were identified either
using RASQUAL (gene expression) or linear regression (intron excision ratios). For each
feature, | then only kept independent lead variants (R? < 0.8). Finally, | used all independent
pairs of features and corresponding lead variants to test if the QTL effect size was significantly

different between conditions. This was equivalent to testing the significance of the interaction
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term between condition and lead QTL variant for each feature. Specifically, | used ANOVA to
compare two models for each gene-lead SNP pair:

Ho: expression ~ genotype + condition + covariates

Hq: expression ~ genotype + condition + genotype:condition + covariates

| calculated the p-value of rejecting Hy and performed Benjamini-Hochberg FDR correction to
identify condition-specific QTLs that were significant at 10% FDR level. For both gene
expression and alternative transcription analysis, | used the same normalised data sets and

covariates that were used for QTL mapping in each condition separately.

Filtering and clustering QTLs based on effect size

| extracted the RASQUAL eQTL effect size estimates 1 for each gene-variant pair in each
condition and converted them to log, fold changes between the two homozygotes using the
formula log,FC = -log,(1/(1-17)). For an eQTL to be considered condition specific | required the
difference in log,FC between naive and any one of the stimulated conditions to be greater than
0.32 (~1.25 fold). | used k-means clustering to identify groups of eQTLs that had similar
condition-specific patterns. For each eQTL, | divided the log,FC values in each condition by the
maximal log,FC value observed across conditions. This scaling was necessary to make eQTLs

with different absolute effect size comparable to each other for the k-means algorithm.

4.2.3 Alternative transcription analysis

| used three complementary approaches to quantify transcript expression in our samples. First, |
quantified the expression levels of all known Ensembl transcripts. Secondly, | constructed
alternative transcription events from known transcript annotations and quantified their relative
expression. Finally, | used an annotation-free approach to quantify the rates of intron excision.
All of these quantification approaches were subsequently used to identify transcript ratio QTLs
(trQTLs).

Quantifying the expression of annotated alternative transcripts

| downloaded the Ensembl 85 gene annotations in FASTA format from the Ensembl website. |
then used Salmon (Patro et al., 2016) v0.7.2 to quantify the expression levels of 178,136
transcripts from 39,037 genes. | specified the following options: ‘--useVBOpt --segBias --gcBias
--libType ISR’. The ‘--seqBias’ option quantified the extent of sample specific fragment bias for
each gene and adjusted the normalised transcript expression levels accordingly. Similarly, ‘--

gcBias’ option quantified the extent of sample specific GC content bias and corrected the
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normalised transcript expression levels accordingly. | expected the ‘--gcBias’ option to be
important given the difference in GC content bias between automatic and manual library

construction methods that | identified in Chapter 3.

Constructing alternative transcription events from known annotations

In the second approach, | modified the reviseAnnotations
(https://github.com/kauralasoo/reviseAnnotations) code introduced in Chapter 2 to construct
alternative transcription events from known annotated transcripts. | downloaded the Ensembl 85
transcript coordinates as well as transcript metadata using the biomaRt (Durinck et al., 2005) R
package. | focussed the analysis on 71,991 protein coding and lincRNA transcripts from 16,762
genes, only including genes that had at least two annotated transcripts. | also extracted
transcript tags from the Ensembl 85 GTF file downloaded from the Ensembl website.
Importantly, the tags contained information if the 3" or 5" end of the coding sequence (CDS) was
incomplete for any given transcript. In total, | found that the coding sequence was incomplete for
20,966/65,140 (32%) of the protein coding transcripts. The truncated transcripts of the IRF5
gene are illustrated on Figure 4.1A. To overcome potential bias caused by incomplete transcript
annotations, | first decided to extend the truncated transcripts by using exons from transcript
with the furthermost 3’ or 5’ end (depending on which end of the transcript was incomplete). The

extended transcripts of the IRF5 gene are illustrated on Figure 4.1B.
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Figure 4.1: Extending truncated transcripts of the IRF5 gene. (A) Protein coding transcripts
of the IRF5 gene from the Ensembl 85 gene set. The transcripts with annotated incomplete 3’
ends are marked with red asterisks. (B) Truncated transcripts have been extended using the
exons from the transcript with the furthermost 3' end (ENST00000249375). Transcript
annotations have been plotted using wiggleplotr (https://github.com/kauralasoo/wiggleplotr) R

package and introns have been rescaled to constant length to facilitate visualisation.
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In Chapter 2 | observed that different types of alternative transcription are often regulated
independently, but this complexity is not well represented by current transcript annotation. After
extending the truncated transcripts, | modified the reviseAnnotations
(https://github.com/kauralasoo/reviseAnnotations) code to split the full transcripts into alternative
transcription events. Briefly, | first identified the set of exons that were shared by all transcripts
of the gene. Then | went through all of the individual transcripts of the gene and identified all the
exons of the transcript that were either upstream, between or downstream of the shared exons.
Finally, | appended the transcript-specific exons to the shared exons to construct alternative
transcription events corresponding to alternative promoters, alternative middle exons and
alternative transcript ends. With this approach | was able to identify seven different alternative
promoters, one alternative middle exon and four alternative transcript ends from the original 11
different transcripts of the IRF5 gene (Figure 4.2). If there were no shared exons between all of
the transcripts of the gene, | first split the transcripts into multiple groups of overlapping
transcripts and then constructed alternative events in each group separately. The approach
described here is best suited for disentangling changes in alternative promoters from changes in
alternative transcript ends. Due to high complexity in transcript annotations, the alternative
promoter and alternative transcript end events identified with this approach can still contain

alternative middle exons (Figure 4.2).

| used the rtracklayer (Lawrence et al., 2009) package to export the alternative transcript
annotations in GFF format and used to gffread tool from cufflinks v2.2.1 (Trapnell et al., 2010) to
extract the alternative event sequences from the GRCh38 reference genome sequence. Finally,
| quantified the expression of each alternative transcription event with Salmon using identical
parameters that | used for full transcript analysis. | used separate Salmon index for the three
different types of events (alternative promoters, middle exons and transcript ends) to avoid any

bias caused by shared exons common to all of these events.
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Figure 4.2: Alternative transcription events constructed from the 11 annotated transcripts
(Figure 4.1B) of the IRF5 gene. Exons shared by all alternative events are highlighted in green

and exons specific to some events are shown in blue.
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Quantifying rates of intron retention

| used LeafCutter (Li et al., 2016b) to identify 38,725 clusters of intron excision events
corresponding to a total of 142,030 alternatively excised introns. In each sample, | counted the
number of reads supporting each intron excision event in a cluster as well as the total number of

reads in a cluster.
4.2.4 Transcript ratio QTL mapping

Data normalisation

All three quantification approach described above (Ensembl 85, reviseAnnotations, and
LeafCutter) allowed me to calculate the relative expression of a single event (transcript,
transcription event or intron) relative to all other events in the same cluster (gene, part of a gene
or intron cluster). In the case of transcripts, this can be interpreted as the proportion of the total
expression of the gene that can be attributed to a single transcript. For transcripts and
transcription events | used the Salmon TPM estimates to calculate the relative expression
values. For intron excision events identified by LeafCutter | used the raw read counts

overlapping exon junctions.

In some samples the relative expression of an event was not defined because the total
expression of the group was zero. In those cases, | replaced the missing relative expression
values with the mean value from all present samples. Finally, | quantile normalized the relative
expression levels for each event across samples to a standard normal distribution. While
conservative, this approach was efficient against two types of artefacts in intron excision ratios:
(i) excess of values very close to 0 and 1 and (ii) excess of outlier excision ratios caused by very

low estimated expression level for some events.

Detecting transcript ratio QTLs

| applied FastQTL to the quantile normalised transcript ratios from the three quantification
approaches described above. | used the first six principal components of the phenotype matrix
as covariates for the transcript ratio QTL (trQTL) mapping. | limited the cis region to +/- 100kb
around the group of transcripts and obtained permutation p-values for each transcript. For each
group, | took the p-value of the most significantly associated transcript and used Bonferroni

correction to correct for the number of transcripts in a group. This approach was conservative as

104



the alternative events in a group are not independent from each other. Finally, | used Benjamin-
Hochberg FDR correction on the Bonferroni-corrected p-values to identify all trQTLs at 10%
FDR level.

4.2.5 Overlap analysis with the NHGRI-EBI GWAS catalogue

| downloaded the latest version of the NHGRI-EBI GWAS catalogue v1.0.1 from the EBI website
on 2 March 2016 (Welter et al., 2014). | only retained studies that were conducted in European
populations and where the sample size exceeded 1,000. For each trait, | performed LD pruning
to only keep independent associations (R? < 0.8). After filtering, the catalogue contained 10,727
independent associations for 807 different traits. | considered an QTL to overlap a GWAS hit if
the distance between the lead QTL variant and the GWAS hit was less than 1 Mb and R?

between the variants was greater than 0.8.

4.2.6 QTL replicability between conditions

For the Storey’s 111 analysis (Nica et al., 2011), | identified eGenes at 10% FDR in one
condition, took their permutation-based lead variant p-values in the other condition and used the
gvalue (Dabney et al., 2010) package to estimate the proportion of non-null p-values. For the
lead variant concordance analysis, | identified eGenes together with their lead variants at 1%
FDR in one condition, extracted their lead variants in the other condition and counted how often

R? between the two lead variants of the same gene was > 0.8.

4.3 Quantifying gene expression and alternative transcription

We collected a total of 336 RNA-seq samples from macrophages differentiated from 84 iPSC
lines in four experimental conditions. After quantifying gene expression levels (See Methods), |
used Principal Component Analysis (PCA) to assess the quality of the data. PCA revealed four
distinct clusters with the first principal component (PC1) explaining 44% of the variance and
roughly corresponding to Salmonella infection status and PC2 (explaining 15% of the variance)
roughly corresponding to IFNy stimulation (Figure 4.3). PC5 that was most strongly correlated
with the RNA-seq library construction method (manual or automatic) explained only 1.6% of the

variance in the data.
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Figure 4.3. Principal component analysis of normalised and standardised gene

expression data.

In addition to gene level analysis, | also quantified the relative expression of individual
transcripts from the Ensembl 85 reference annotations and used the ratio between the transcript
expression and total gene expression as the phenotype of interest. However, as highlighted in
Chapter 2, reference annotations are still incomplete and often miss many transcripts expressed
by the cells. To overcome this limitations, | used a modified version of the reviseAnnotations tool
that | developed in Chapter 2 to split reference transcripts into individual alternative transcription
events and subsequently quantified the relative expression of each event. | also used
LeafCutter (Li et al., 2016b) to identify and quantify the relative excision ratios of 50,538
alternative introns. These three complementary quantification approaches are referred to as
Ensembl 85, reviseAnnotations, and LeafCutter in the following text. More details on each of

these approaches is given in the Methods section.

In the LeafCutter data, the first two PCs only explained ~9% of the variance, indicating that
there was less structure in the intron excision measurements (Figure 4.4A) compare to the gene
expression levels. Moreover, while PC1 (explaining 5% of the variance) still corresponded to
Salmonella infection, the second PC was now strongly correlated with the method of RNA
library preparation (manual vs automatic) (Figure 4.4A). Finally, PC3 (2% variance explained)

corresponded to IFNy stimulation (Figure 4.4B). In Chapter 3 | showed that there was a
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difference in GC-content bias between manual and automatic RNA-seq library construction
protocols. This suggests that intron excision ratios that are based on a small number of reads
from a short region are more susceptible to GC-content bias than gene expression

measurements that are aggregated over a longer region.
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Figure 4.4: Principal component analysis of normalised intron excision ratios. (A) PC1
plotted against PC2. (B) PC1 plotted against PC3. Protocol - type of RNA-seq library

construction protocol used, either manual or automatic.

4.3.1 Differential expression analysis reveals expected pathways

First, | wanted to verify that our iPSC-derived macrophages are a suitable model to study
genetics of gene expression in immune response. Fortunately, macrophage response to IFNy
and bacterial stimuli (such as LPS) have been extensively studied and most of the pathways
involved in the response have been identified. | therefore sought to verify that the expected

pathways are also activated in iPSC-derived macrophages after corresponding stimuli.
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Figure 4.5: Differential gene expression between the four experimental conditions. (A)
Heatmap of 8758 differentially expressed genes clustered into nine distinct patterns of
expression. (B) A selection of Gene Ontology (GO) terms specifically enriched in each cluster.
Only enrichments with p < 1x10°® are shown in the figure. ‘IFNy response’ was the only GO term

with enrichment p-value < 1x10® in more than one cluster.

| identified 8758 genes that were > 2-fold differentially expressed across all four conditions and
clustered them into nine distinct expression patterns (Figure 4.5A). | then used g:Profiler
(Reimand et al., 2016) to perform pathway and Gene Ontology enrichment analysis on these
clusters. Cluster 1 (genes strongly upregulated by Salmonella or IFNy + Salmonella) was
enriched for TNF and NF-kB signalling pathways (IL1B, TRAF1) as well as pathways involved in
cell death and apoptosis (Figure 4.5B). This agrees with the observation that we recovered less

total RNA from Salmonella and especially IFNy + Salmonella conditions (Figure 4.6), which
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would also result from greater cell death following Salmonella infection. Cluster 2 (upregulated
by Salmonella) was enriched for genes involved in locomotion. Cluster 3 consisted of genes that
responded to Salmonella infection only after the cells had been pre-treated with IFNy. This
cluster was enriched for type | interferon genes (IFNA1/8, IFNL2/3, IFNW1) and JAK-STAT
signalling, but also contained other important inflammatory genes such as NOD2 and IL12A.
Moreover, the synergistic activation of IL12A in response to IFNy and LPS is well established in
monocyte-derived macrophages (Qiao et al., 2013). Cluster 4 contained genes that were
upregulated similarly by IFNy and Salmonella and it was strongly enriched for type | interferon
response and IRF1 target genes (CXCLS8, IRF1, ATF3, STAT2, IDO1/2). This is consistent with
the production of IFN and activation of IFN signalling downstream of TLR4 activation
(Ivashkiv and Donlin, 2014). Genes in cluster 5 were only upregulated by IFNy and they were
strongly enriched for antigen processing and presentation and MHC class |l protein complex
(CIITA). Again, the role of IFNy in activating antigen presentation genes is well established
(Schroder et al., 2004).

Relative RNA amount
o

Naive IFNg Salmonella Both
Figure 4.6: Relative amount of RNA obtained from each condition across 84 macrophage
lines. | quantified the total amount of RNA obtained from each sample. For all four samples
from a single line (corresponding to four conditions) | then subtracted the mean RNA amount

across conditions and divided by standard deviation to obtain relative RNA amount.
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Genes downregulated in the stimulated conditions also clustered into four distinct groups
(Figure 4.5). Here, cluster 6 (downregulated by IFNy) were strongly enriched for cell cycle
genes. This is consistent with multiple reports that stimulation with IFNy induces cell cycle arrest
in macrophages (Schroder et al., 2004; Xaus et al., 1999). Finally, clusters 7,8 and 9 (all
downregulated by Salmonella) was strongly enriched for ncRNA processing, ribosome
biogenesis and tRNA processing, perhaps representing repression of translation as a general

stress response.
4.4 Genetics of gene expression

4.4.1 Gene expression QTL mapping

Table 4.1: Number of eQTLs detected in +/-500kb window around each gene using either
linear model (FastQTL) or allele-specific model (RASQUAL).

condition FastQTL RASQUAL % difference
Naive 1932 2590 34
IFNy 1985 2478 25
Salmonella 1518 1882 24
Both 1449 1869 29

| used two alternative approaches to map eQTLs in each of the four conditions. First, | used
standard linear model implemented in the FastQTL (Ongen et al., 2016) software. Secondly, |
also used a novel RASQUAL (Kumasaka et al., 2016) method that combines both allele-specific
and between-individual signal to increase the power of detecting eQTLs and also improves fine
mapping causal variants. | decided to use both models for two reasons: (1) | wanted to take
advantage of the allele-specific information to increase eQTL detection power (2) gene-level
permutation p-values and summary statistics from the linear model can be directly used in eQTL
replication and colocalisation analyses whereas this is not as straightforward for the RASQUAL
output. | found that at the same 10% FDR level RASQUAL was able to detect on average 28%
more genes with significant eQTLs (Table 4.1). The increase in power was also evident on the

quantile-quantile (Q-Q) plot (Figure 4.7).
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Figure 4.7: Quantile-quantile plots for the p-values of eQTLs detected either with
RASQUAL or FastQTL. Solid lines represent the expected distribution of p-values under the

null model.

4.4.2 Transcript ratio QTL mapping

| also used FastQTL in combination with the three quantification methods described above to
map transcript ratio QTLs (trQTLs) in a +/-100 kb cis-window around the feature in all four
conditions. | use smaller cis-window for trQTLs compared to eQTLs (+/-500kb), because trQTLs
are known to be strongly enriched near the exon boundaries (Li et al., 2016c). Using either raw
reference transcripts (Salmon + Ensembl 85) or transcription events constructed from them
(Salmon + reviseAnnotatons), | detected between 1,500 and 2,500 trQTLs per condition (Table
4.2). Ensembl 85 results contained slightly more unique genes while reviseAnnotatons was able
to identify multiple independent trQTLs for a subset of genes as illustrated by the IRF5 example
below. Finally, LeafCutter detected approximately 45% less trQTLs than the annotation-based

methods.

Table 4.2: Number of transcript ratio QTLs detected by different quantification methods
at 10% FDR. Only variants within +/- 100kb of the transcript were included in the analysis.

Condition LeafCutter Salmon + Salmon +

Ensembl 85 reviseAnnotations
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Naive 1953 2201 2429

IFNy 1756 2095 2314
Salmonella 1496 1743 1858
Both 1304 1481 1547

4.4.3 Concordance of QTLs detected by different methods

Comparing different QTL mapping approaches just by the numbers of QTLs found is not very
informative, because it completely ignores the identity of the QTLs detected. Looking at simple
overlaps between lead QTL variants can also be misleading, because the lead SNPs can be
randomly different between the methods and still tag the same causal variant in high LD. To
overcome this limitation, | decided to test if the lead variants for the same sets of genes (or
transcripts) were concordant with each other for two different QTL mapping approaches.
Specifically, | took all lead variants at 1% FDR from one method and compared them to the lead
variants of the same genes (or transcripts) from a different method (even if below the 1%
threshold). | then calculated the fraction of lead variant pairs that were in high LD (R? > 0.8) with
each other. Note that this approach is likely to underestimate the true extent of QTL sharing

between methods in cases where there are multiple independent QTLs per gene.

First, | found that 60% of the eQTL lead variants detected by FastQTL were also found by
RASQUAL whereas only 40% of the RASQUAL QTLs were detected by FastQTL (Figure 4.8).
This is consistent with the smaller number of eQTLs detected by the linear model (Table 4.1). |
found similar level of lead variant sharing (~60%) between trQTLs detected using
reviseAnnotations and Ensembl 85 annotations whereas sharing between reviseAnnotations
and LeafCutter trQTLs was considerably lower (30-40%). This suggests that LeafCutter might
be more efficient in capturing unannotated alternative exons that are not present in reference
annotations. Finally, there was only moderate (20-30%) lead variant sharing between FastQTL
eQTLs and reviseAnnotations trQTLs and this decreased to 10-12% when comparing to
LeafCutter. This suggests that eQTLs and trQTLs are to a large extent independent from each

other.
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Figure 4.8: Concordance of lead QTL variants detected by different methods. In the gene
expression (eQTL) comparison (left panel) | used FastQTL and RASQUAL lead variants from
+/-500kb cis-window. For the eQTL and trQTL comparison (rightmost panel) | reran FastQTL
eQTL mapping in a 100kb around the gene to ensure that the lead variants were comparable to
the trQTLs.

4.4.4 Condition specificity of eQTLs and trQTLs

Next, | used two different approaches to estimate the proportion of condition specific eQTLs and
caQTLs. First, | used Storey’s 114 statistic to estimate the sharing of QTLs between conditions.
Briefly, | identified eGenes at 10% FDR in each condition and then looked their minimal p-
values in the other three conditions and estimated the fraction of those that were true positives. |
found that the fraction of shared eGenes varied between 0.75 and 0.90 with the lowest sharing
observed between naive and IFNy + Salmonella conditions (Figure 4.9). This is somewhat
higher than the 53-80% sharing observed between different tissues (Nica et al., 2011; The
GTEx Consortium, 2015), but much lower than the sharing of eQTLs in the same tissue across

twin pairs (Nica et al., 2011).
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Figure 4.9: Replicability of eGenes between conditions. The heatmap shows the pairwise

Storey’s T4 statistic for eQTLs detected between conditions.

However, this type of replicability analysis has several limitations. First, it considers only the p-
value of one lead variant per gene and ignores patterns of linkage disequilibrium. Consequently,
if the gene has two unlinked highly condition-specific eQTLs then this would be considered a
successful replication even though both of the variants have condition-specific effects.
Secondly, calculating the 1 statistic requires that the null p-values are uniformly distributed.
This assumption is not satisfied by the Bonferroni corrected p-values from RASQUAL or trQTL
analyses where most p-values are strongly skewed towards 1. As a result, 14 statistic cannot be

used on those datasets.

To overcome these limitations, | decided to use the same lead variant concordance analysis
described above to compare QTLs from different conditions. | found that ~55% of the eQTL lead
variants and ~65 trQTL lead variants were shared between conditions, suggesting that trQTLs

are slightly less likely to be condition specific than eQTLs (Figure 4.10).
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Figure 4.10: Concordance of QTL lead variants between pairs of conditions detected by
different QTL mapping methods. Each dot represents one pairwise comparison between
conditions (such as IFNy vs naive). | mapped eQTLs with FastQTL in both +/- 500kb and +/-

100kb cis-windows to match the 100 kb window used for transcript ratio QTLs.

Identifying condition-specific eQTLs

Although the 111 and lead variant concordance analyses are useful to estimate the global level of
eQTL replicability between conditions, they do not identify specific variants and analyse their
effect sizes. To identify individual condition-specific eQTL and their target genes, | compiled all
independent (R? < 0.8) lead SNP-gene pairs from RASQUAL across conditions and used
standard ANOVA model to test for interactions between genotype and condition (See methods).
A Q-Q plot revealed that the p-values of the interaction test were well calibrated (Figure 4.11A).
| found that 1,172/5,782 (20%) lead eQTL variants corresponding to 996/3,905 (26%) eGenes

had significantly different effect sizes between conditions.

Although statistically significant, sometimes the effect size differences were relatively small. As

a measure of the effect size of an eQTL | used the log, fold change (log.FC) between reference
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and alternative alleles estimated by RASQUAL. For an eQTL to be considered condition specific
| required the difference in log,FC between naive and any one of the stimulated conditions to be
greater than 0.32 (~1.25 fold). In our dataset, 741/996 condition-specific eQTLs passed this
threshold out of which 496 appeared after stimulation (i.e. log,FC was less than <= 0.59 (~1.5-
fold) in the naive condition, Figure 4.11C) and 245 disappeared after stimulation (log,FC was
greater than 0.59 (~1.5-fold) in the naive condition, Figure 4.11B). Finally, | used k-means
clustering of the relative effect sizes to assign eQTLs into different activity patterns (Figure
4.11B-C). | observed that slightly more eQTLs appeared after Salmonella infection (clusters 2,3
and 4, n = 260) than after IFNy stimulation (clusters 5,6, n = 156). Furthermore, 83 eQTLs only
appeared after both of the stimuli were present (cluster 1), highlighting the importance of

studying combinations of stimuli.
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Figure 4.11: Condition-specific eQTLs clustered by their effect size. (A) Quantile-quantile
plot of the expected and observed p-values for the interaction test (B) Effect size heatmap of the
seven clusters of eQTLs that disappeared after stimulation. (C) Effect size heatmap of the six
clusters of eQTLs that appeared after stimulation. For each gene, the relative effect size was

calculated by dividing the eQTL effect size in each condition by the maximal absolute effect size
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across conditions. This ensured that the eQTLs with different absolute effect sizes were visually

comparable on the heatmap.

4.5 Case study: genetics of IRF5 transcription

To illustrate the power of using complementary approaches for gene expression and transcript
ratio QTL mapping, | focussed on the IRF5 gene. Using total read counts and the standard
linear model (FastQTL), | was not able to detect any significant eQTLs for this gene. Transcript
level analysis with Ensembl 85 annotations, however, identified a very strong trQTL
(rs10954213, p < 2.9x10°?, MAF = 0.46) that on a closer inspection turned out to regulate 3’
UTR usage (Figure 4.12). The association between the rs10954213 variant and 3' UTR usage
of the IRF5 gene has been previously reported by multiple studies (Cunninghame Graham et
al., 2007; Yoon et al., 2012; Zhernakova et al., 2013) and the lead variant is likely to be the

causal one because it changes the canonical polyadenylation signal from AATAAA to AATGAA.

Using alternative transcription events from reviseAnnotations not only detected the 3' UTR QTL
(Figure 4.12), but also identified an additional trQTL regulating alternative promoter usage
(rs3778754, p < 4.7x107'°, MAF = 0.33) independently of the 3' UTR usage (MAF = 0.43)
(Figure 4.13). A key advantage of reviseAnnotations was that it was able to correctly identify
that one of the trQTLs regulated 3' UTR usage while the other one regulated alternative
promoters, thus greatly improving the interpretability of the detected trQTLs. Although the
promoter QTL was also detected by LeafCutter (p < 3x107"") the 3' UTR QTL was not, because
alternative polyadenylation will not result in detectable changes in exon-exon junction reads.
The lead promoter QTL variant (rs3778754) is also in high LD (R? = 0.84) with a GWAS lead
SNP rs4728142 for Systemic lupus erythematosus and Ulcerative colitis. Moreover, a recent
fine mapping analysis of the GWAS locus identified rs3757387 as the most likely causal variant
which is in even higher LD with the promoter QTL (R? = 0.93) (Kottyan et al., 2015).

Finally, RASQUAL detected a third trQTL for the same gene (rs199508964, p < 4.9x10%, MAF
=0.48) that seems to influence the excision of an alternative intron in the fifth coding exon of the
gene (Figure 4.14). Although the lead variant directly overlaps the splice site of the retained
intron, it is a 33 bp deletion that is also in moderate LD with the 3' UTR QTL variant (R = 0.58).
Therefore, some care is in order when interpreting this variant. This trQTL was missed by

LeafCutter, because it does not detect intron retention events.
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Figure 4.12: Example of a trQTL for the IRF5 gene that influences the proximal
polyadenylation site usage. (A) Manhattan plot of the associated variants around the IRF5
gene in the naive condition. The lead variant rs10954213 disrupts the proximal polyadenylation
site motif. (B) RNA-seq read coverage stratified by the lead variant genotype. The panel below
the coverage plot shows the union of IRF5 exons (top row) together with transcription events
constructed by reviseAnnotations (other rows). The alternative 3' UTR is highlighted by the
dashed box.
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Figure 4.13: Alternative promoter QTL for the IRF5 gene. (A) Manhattan plot of the
associated variants upstream of the IRF5 promoter in the naive condition. (B) RNA-seq read
coverage across the IRF5 gene stratified by the genotype of the lead promoter QTL variant
(rs3778754). The panel below the coverage plot shows the union of IRF5 exons (top row)

followed by alternative promoter annotations constructed by reviseAnnotations.
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4.6 Overlap with GWAS hits

An important motivation for studying the genetics of gene expression is to identify molecular
QTLs that enable GWAS hits to be linked to their target genes and thereby provide a
mechanistic hypothesis that could potentially explain the GWAS association. | have performed a
naive overlap analysis (R? > 0.8) between all independent GWAS associations from the NHGRI-
EBI GWAS catalogue and all eQTLs and trQTLs identified from the macrophage RNA-seq data.
As a result, the probability that any individual overlap represents a shared causal mechanism is
likely to be low. However, looking at the overlaps in aggregate can inform us about the traits and

diseases for which iPSC-derived macrophages might be a relevant cell type.

First, | assessed how many potential GWAS overlaps are missed when looking at eQTLs and
trQTLs only in the naive condition. | found using eQTLs and trQTLs from all four conditions as
opposed to just from the unstimulated cells identified at least twice as many overlapping GWAS
associations (Figure 4.15). Furthermore, the GWAS overlaps with eQTLs and trQTLs were
largely independent from each other as illustrated by the fact that joint analysis with all QTLs
identify 40% more overlaps. It is important to stress that most of these overlaps are likely to be

spurious and careful colocalisation analyses are needed to dissect individual loci.
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Figure 4.15: Number of RASQUAL eQTLs and Salmon trQTLs overlapping GWAS hits.
‘Naive’ represents QTLs from the unstimulated condition only while ‘all’ stands for all
independent (R? < 0.8) QTLs across conditions. Lead QTL and GWAS variants were considered
to be overlapping if the distance between the variants was less than 1 Mb and R? between the

variants was > 0.8.

Secondly, | counted the number of overlaps for each trait in the GWAS catalogue and ranked
the traits by fraction of associations that overlapped a macrophage QTL. | found that top 20
traits with the largest fraction of associations overlapping macrophage QTLs contained
Alzheimer’s disease, multiple autoimmune disorders and multiple lipid traits, suggesting that
iPSC-derived macrophages might be a relevant cell type for studying the genetic mechanisms
underlying these traits. As a negative control, height ranked 56th with only 10% of its
associations overlapping macrophage eQTLs and trQTLs and most cancers had even smaller

overlap.

Table 4.3: List of top 20 traits with largest overlap between GWAS hits and macrophage
eQTLs/trQTLs. Only traits with more than 15 independent associations were included.

Autoimmune traits are highlighted in red, lipid traits in green and blood traits in blue.

Trait Overlap size | Trait size | Fraction

1 5 17 0.29
2 8 28 0.29
3 | Testicular germ cell tumor 5 21 0.24
4 | Alzheimer's disease (late onset) 8 36 0.22
5 | Metabolic traits 8 36 0.22
6 | Fibrinogen 5 25 0.2

7 | White blood cell count 4 20 0.2

8 111 0.19
9 | Menopause (age at onset) 6 32 0.19
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16 0.19

Platelet count 58 0.17

90 0.17

18 0.17

61 0.16

15 | Liver enzyme levels (gamma-glutamyl 4 25 0.16
transferase)

16 | Homocysteine levels 3 19 0.16

109 0.16

71 0.15

123 0.15

78 0.15

4.7 Discussion

In this chapter | have shown that iPSC-derived macrophages are able to well recapitulate known
aspects of macrophage biology in immune response. In particular, | have shown that their gene
expression response to Salmonella infection and IFNy stimulation matches what is known from
the literature. | have also shown iPSC-derived macrophages are a robust cell culture based
system that can be used to map condition-specific genetic effects on both gene and transcript

expression level.

We detected around 2,000 gene expression and transcript ratio QTLs in each experimental
condition and found that ~25% of the QTLs were condition specific. This also included 495
eQTLs that were completely hidden in the unstimulated cells and only appeared after
stimulation. Many potential overlaps with disease hits were also only detected in the condition-

specific samples. Together these results highlight that the effect of some genetic variants on
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gene expression manifests most clearly in specific environmental conditions. Hence, to
construct a comprehensive catalogue of regulatory variation we need to profile gene expression
in a large number of conditions. IPSC-derived cells provided an excellent opportunity for this,

because they can be reliably obtained in large numbers from the same set of individuals.

The three independent transcript ratio QTLs regulating alternative promoter usage, alternative
intron retention and alternative 3' UTR usage of the IRF5 gene highlight that different parts of
the same transcript can be regulated by independent genetic mechanisms. This can be a
challenge for transcript ratio QTL mapping, because all possible combinations of promoters,
exons and 3’ ends are usually not represented by the set of annotated transcripts. Furthermore,
up to 30% of the human protein coding transcripts annotations are incomplete and miss either
their 3' or 5’ ends. As a result, methods that focus on individual alternative transcription events
such as MISO (Katz et al., 2010), DEXSeq (Anders et al., 2012) and LeafCutter (Li et al.,
2016b) have proven to be very successful. The first contribution of my reviseAnnotations
approach is that it extends truncated transcripts with known exons of the gene. It then splits
known transcripts into alternative 5’ ends, middle sections and 3’ ends. It is therefore a hybrid
approach between full transcript and exon level analyses, that is still able to take advantage of
the read coverage patterns over multiple exons (such as alternative promoters skipping multiple
first exons) and at the same time identify independent effects on different parts of the gene.

| found that eQTLs and LeafCutter trQTLs were largely independent from each other, thus
confirming an earlier observation in LCLs (Li et al., 2016¢). | also mapped trQTLs on
transcription event level (Salmon + reviseAnnotations) and found that these QTLs were also
largely independent from eQTLs, although to a lesser degree. Although LeafCutter and Salmon
detected similar numbers of trQTLs, | found that only 30-40% of the lead variants were shared.
One reason for this discrepancy is that the two approaches capture different transcription
events. LeafCutter is able to detect QTLs for alternative exons that have not been annotated.
Salmon, on the other hand, is able to detect QTLs for annotated alternative 3’ and 5’ ends that
do not involve splicing (i.e. alternative polyadenylation) and are therefore missed by LeafCultter.
Salmon might also be more powerful for lowly expressed genes and weaker effects, because it
is not limited to exon-exon junction reads and is able to correct for fragment length and GC-

content bias during quantification.
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