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Abstract 
While individually rare, collectively developmental disorders are common, affecting 

around 3% of live births in the UK. The aetiology of these disorders often includes a 

genetic component. Next generation sequencing provides a powerful tool with which to 

identify variants that cause rare developmental disorders. This dissertation describes 

three distinct projects in which next generation sequencing was used for this purpose, 

along with statistical or functional follow-up approaches. 

A cohort of 30 fetuses with a diverse range of structural abnormalities, along with their 

parents, was exome sequenced. I analysed these data to identify rare, high quality, 

coding variants consistent with a de novo or recessive inheritance model. I investigated 

several methods of variant interpretation, including manual and computational 

methods, and found causative variants for 10% of the cohort. These results suggest 

that next generation sequencing is a promising method for prenatal genetic 

diagnostics. 

As part of the UK10K project, 996 patients with moderate to severe intellectual 

disability (ID) underwent sequencing of 565 known or candidate ID-associated genes. I 

developed and implemented a pipeline to identify likely causative loss of function (LOF) 

variants through extensive quality filtering. From these data, causative variants were 

identified for ~14% of the cohort, and the novel ID-associated gene SETD5 was 

identified. Next, I performed a series of case-control enrichment analyses to evaluate 

the contribution of different classes of possibly pathogenic variants. Patients with ID 

had a significant enrichment of both LOF and missense variants in known ID-

associated genes, compared to controls with non-syndromic congenital heart defects.  

One strategy to investigate the consequences of a potentially pathogenic variant is to 

inhibit expression of the gene in an appropriate animal model, and assess the extent to 

which aspects of the human phenotype are recapitulated. I applied this technique to 

two genes identified from the UK10K project as likely to be associated with 

dystroglycanopathy, a subtype of muscular dystrophy. I inhibited the expression of both 

genes, B3GALNT2 and GMPPB, in zebrafish embryos using morpholino 

oligonucleotides. The phenotype of both models mimicked several aspects of the 

human phenotype including morphological defects such as micropthalmia and 

hydrocephalus, structural defects of the tissue such as disordered muscle fibres, and 

the precise molecular defect, which is hypoglycosylation of α-dystroglycan.  
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