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2 Exome sequencing improves genetic 
diagnosis of structural fetal abnormalities  

 

2.1 Introduction 

2.1.1 The impact and causes of fetal structural abnormalities 

The incidence of congenital abnormalities in the UK is approximately 2.2% (18). These 

are frequently first identified by ultrasound scan during the pregnancy. There is a wide 

range of potential outcomes for fetuses with abnormalities. Some abnormalities, such 

as isolated cleft lip, can be corrected in early childhood with a simple surgical 

procedure, and often has minimal long-term impact on the child (19). Others 

abnormalities, such as cerebral malformations, are associated with high morbidity and 

mortality (20).  

Numerous genetic variants have been associated with fetal structural abnormalities. 

These include aneuploidies, copy number variants (CNVs), loss of function (LOF) 

single nucleotide variants (SNVs) and missense SNVs (21-23). Knowing the cause of a 

fetal structural abnormality can help clinicians to make an accurate prognosis regarding 

the pregnancy, and estimate recurrence risk for any future pregnancies. This helps the 

families to make informed decisions, including whether to terminate the pregnancy. 

Despite the importance of a diagnosis, currently only a minority of fetuses affected by a 

developmental disease receive a genetic diagnosis, to the frustration of families, 

clinicians and researchers alike (9). 
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2.1.2 Current techniques for prenatal genetic diagnosis  

 

Sampling methods 

Fetal DNA for genetic testing may be obtained invasively, by transabdominal or 

transcervical penetration of the uterus with a needle, in order to collect cells such as 

amniocytes or chorionic villus cells, from which fetal genomic DNA can be extracted. 

The major disadvantage of invasive sampling is that the risk of miscarriage increases 

by around 1% following a procedure (24). Also, sometimes a fetus and placenta may 

be mosaic for a particular mutation. That is, some of the cells carry the mutation and 

some do not. Therefore, another disadvantage is that if chorionic villus sampling is 

performed, and by chance only cells without the mutation are collected, the mutation 

will not be detected.  

Alternatively, fragmented cell-free DNA (cfDNA) can be obtained non-invasively from 

maternal plasma; a proportion of this is fetal-derived (25). There are limitations to the 

application of this in prenatal diagnostics, as I will explain. 

 

Karyotyping 

One invaluable tool for the detection of chromosomal aberrations that cause fetal and 

congenital abnormalities is chromosome karyotyping, where whole chromosomes are 

stained and examined using a microscope. In classical cytogenetics, the stains (such 

as Giemsa stain) reveal patterns of light and dark bands that are unique to each 

chromosome. The technique was developed in the late 1960s, and it allowed 

researchers to distinguish between chromosomes of similar sizes for the first time (26). 

As karyotyping provides information on the number and gross appearance of 

chromosomes, it can be used to detect potentially pathogenic chromosomal 

aberrations including aneuploidy, deletions, duplications, inversions and translocations. 

Giemsa banding has a highest resolution of 3-10 Mb (27). 

An alternative to classical cytogenetics is molecular cytogenetics, such as fluorescence 

in situ hybridisation (FISH). During this technique, fluorescent-tagged oligonucleotide 

probes complementary to a DNA sequence of interest are used to visualise whole 

chromosomes. It was first developed in the 1980s (28), and subsequent developments 

include chromosome ‘paints’ based on unique, chromosome-specific sequences which 
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allow each chromosome to be visualised simultaneously in a different colour (29). 

Known as spectral karyotyping, this has some advantages over Giemsa banding in that 

it allows easy identification of the chromosomal origin of genetic material, and it has a 

higher resolution of 1-2 Mb (30). However, it is usually used in conjunction with other 

methods, as it has the major disadvantage of not being able to detect 

intrachromosomal aberrations. 

FISH with locus-specific probes can identify known aberrations that cause fetal or 

congenital abnormalities. For example, 7q11.23 deletions in Williams syndrome, and 

dystrophin variants in Duchenne muscular dystrophy (31, 32). In another nice example 

of the clinical use of FISH, specific telomeric probes were used to identify an 

unbalanced subtelomeric translocation in a child with multiple congenital abnormalities, 

where classical cytogenetic analysis had indicated a normal karyotype (33). Generally, 

fetal chromosome karyotyping is offered to families when a significant fetal anomaly is 

identified by ultrasound, or when there is a high risk of such an anomaly. In these 

populations, karyotyping identifies a chromosomal anomaly in around 9% of cases 

(34).  

 

Microarrays and quantitative fluorescent PCR 

DNA microarrays include single nucleotide polymorphism (SNP) arrays and array 

comparative genomic hybridisation (aCGH). SNP arrays can be used for genotyping, 

identifying regions of absence of heterozygosity, performing genetic linkage analysis, 

and detecting unbalanced genomic rearrangements. aCGH can be used to detect 

CNVs that may be pathogenic, benign, or of unknown significance.  

Microarrays have a higher resolution than G-band karyotyping. aCGH can detect 

deletions or duplications as small as 1 kb, depending on the platform used (35). A 

typical SNP array has a lower resolution of around 150-200 kb (36). For clinical 

diagnostic purposes, microarrays with a resolution in the range of 10-400 kb are 

considered to be the most cost-effective (37). An advantage of SNP arrays over aCGH 

is that they can be used to detect copy number neutral loss of heterozygosity, such as 

is caused by uniparental disomy. To utilise the advantages of both approaches, many 

modern platforms use both SNP probes and copy number probes on the same 

microarray. 
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One limitation of microarrays is that they are only able to detect unbalanced 

chromosomal rearrangements. Furthermore, they may not detect triploidy or low-level 

mosaicism (34, 38). Despite the limitations, microarrays have been the diagnostic test 

of choice for several years in children and adults with developmental delay (39). For 

fetuses with structural abnormalities, microarrays have a diagnostic yield of 

approximately 6-10% higher than chromosomal karyotyping (22, 34, 40). 

Quantitative fluorescent polymerase chain reaction (QF-PCR) is an alternative method, 

during which amplification of repetitive loci is used to determine chromosomal copy 

number. QF-PCR is a cost-effective and robust method, which avoids the need to 

culture fetal cells, thus reducing turnaround time and eliminating the problem of 

introducing mutations during the culturing process (41). Because of these advantages, 

QF-PCR is now the clinical diagnostic test of choice for prenatal aneuploidy in the UK 

National Health Service (42). 

 

Non-invasive prenatal testing 

Between 3 and 50% of cfDNA in the plasma of a pregnant woman is fetal-derived (43-

45). It consists of DNA fragments with a size range of 30-510 base pairs (bps), and a 

median of 162 bps (46). The cfDNA can be obtained non-invasively; therefore in recent 

years there has been huge interest in using it for prenatal genetic diagnosis. Non-

invasive prenatal testing (NIPT) refers to assaying cfDNA to identify genetic variants in 

the fetus. This technique can be used to detect autosomal trisomies, sex chromosome 

aneuploidies, CNVs, fetal sex, rhesus status, and single gene disorders such as 

achondroplasia (34, 45, 47-49). 

Regarding clinical practice, in the United States and China, use of NIPT to detect 

aneuploidies and fetal sex is already widespread (50, 51). Implementation for single-

gene disorders is much slower because of lower demand and higher technical 

challenges. In the UK, NIPT is currently only being provided by the National Health 

Service for sex determination and some single-gene disorders. However, the RAPID 

study is investigating how to expand the implementation, and UK health professionals 

and parents generally view NIPT positively, therefore it is likely that provision will be 

expanded to other genomic disorders in the near future (52). 

Two proof of concept studies published in 2012 showed that it is possible to sequence 

the whole genome of a fetus non-invasively using cfDNA, to a sufficient depth to be 



 
2.1   Introduction 

 

 9 

able to call inherited SNVs, using parental haplotypes to distinguish fetal from maternal 

variants (53, 54). However, the sensitivity and specificity of the SNV calling are as yet 

insufficient to consider using this approach in clinical practice.  

For prenatal genetic diagnostics, it is very important to be able to identify de novo 

mutations, as they are often the cause of rare developmental phenotypes (11, 55-58). 

To detect de novo mutations non-invasively requires sequencing the cfDNA to a very 

high depth, because only a small proportion of fragments will carry the variant fetal 

allele. This is possible on a single-gene basis (49), but it is not currently possible 

genome-wide, at least not with any reasonable degree of sensitivity and especially 

specificity (54). Therefore, to identify potentially pathogenic SNVs and insertions or 

deletions (indels), on a large scale including those that occur de novo, in fetuses with 

structural abnormalities, next generation sequencing (NGS) on fetal DNA obtained 

through invasive methods remains, for now, the superior choice. 

 

2.1.3 Next generation sequencing 

NGS is a method of high-throughput DNA sequencing, which allows large amounts of 

genomic data to be generated quickly, and at a relatively low cost. The whole genome 

of an individual can be sequenced, or alternatively, particular genomic regions can be 

selected for sequencing, for example the exome, or diagnostic gene panels.  

Exome sequencing is often favoured over whole genome sequencing, as it targets only 

coding regions, which represent 1-2% of the entire genome, but is said to contain up to 

85% of the variants that cause known genetic disorders (59). Therefore exome 

sequencing is an efficient tool for gene discovery and genetic diagnostics in terms of 

cost, time and computational resources. The first report of exome sequencing as a 

method to discover the genetic cause of a Mendelian disease was made in 2010, with 

the identification of variants in DHODH as the cause of Miller syndrome (7). In the few 

short years since then, exome sequencing has proved to be a remarkably fruitful 

research tool, particularly for rare disease-associated gene discovery. At least one 

hundred genes that harbour variants causing Mendelian disease have been 

discovered, and this rate of progress shows no signs of abating as yet (8).  

NGS is increasingly being used in the clinical setting, as a diagnostic test for patients 

with rare diseases. Often, exome sequencing is used. However, the most appropriate 

method depends upon the phenotype. For example, retinal dystrophy (RD) is a rare, 
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inherited, degenerative cause of visual impairment and blindness. It is genetically 

heterogeneous, but a higher proportion of RD-associated genes have been identified, 

than for other phenotypes. Sequencing of 105 RD-associated genes therefore has a 

diagnostic yield of 55% (60). In contrast, exome sequencing of patients with rare, 

undiagnosed, developmental diseases typically has a diagnostic yield of around 25% 

(11, 61). Therefore, for phenotypes like RD, NGS using gene panels might be a more 

cost-efficient diagnostic method than exome sequencing.  

Recently, as the cost of NGS has continued to fall, the prospect of using whole 

genome sequencing for rare disease-associated gene discovery and diagnostics has 

arisen. A recent study found that whole genome sequencing of patients with intellectual 

disability, for whom no likely cause of disease had been found by exome sequencing, 

had an impressive diagnostic yield of 42%, on top of what had been achieved by 

exome sequencing (62). This improvement was driven primarily by discovery of 

variants in coding regions that had been missed by the initial exome sequencing. 

Another recent study demonstrated that whole genome sequencing has more even 

coverage, and less bias in variant calling, than exome sequencing (63). 

 

2.1.4 Variant prioritisation strategies 

Interpretation of the tens of thousands of variants that are identified by NGS is 

challenging. A variant causing a rare, Mendelian disease must be rare in the general 

population. It is also likely to affect the structure or function of the protein encoded by 

the gene. Therefore, filtering the variants for rare, coding variants, along with various 

quality filters, is usually the first step in interpretation. The expected mode of 

inheritance of the disease is also taken into account. For example, if there is no family 

history of disease, variants with genotypes consistent with a de novo, recessive or X-

linked (in the case of males) mode of inheritance will be prioritised. Of course, this 

requires that samples from parents are also available, which is not always the case. 

This basic filtering framework is the standard approach for both diagnostic and 

research applications (3, 7, 11), however it still often yields multiple candidate variants. 

The next step depends on whether the application of the sequencing is clinical 

diagnostics, or research. For clinical diagnostics, matches between a gene that 

contains a variant in the patient, and genes that are known to be associated with the 

phenotype of that patient, are identified. For research, novel disease-associated genes 
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are often identified by means of a functional link between a candidate gene and the 

phenotype of the patient. Some studies have attempted to partially systematise this 

inherently subjective approach using decision trees (11, 57). However, this approach is 

predicated on current knowledge of gene function, which for many genes is in its 

infancy. Thus, due to the subjectivity involved, there is a risk that the presence of any 

link between gene function and the phenotype could lead a researcher to ascribe 

pathogenicity to that variant. This approach is insufficiently stringent. For example, a 

recent paper looked at many genes in which variants are claimed to cause X-linked 

disability, and have found that several are in fact unlikely to be causative, because 

since the publication of the original studies, the patients’ variants have been identified 

in control cohorts (64). It is imperative that a strict and consistent set of criteria for 

ascribing causality to a variant is developed and implemented across the rare disease 

genomics community to avoid such cases (12). To claim to have identified a novel 

disease-associated gene, recurrence of variants in multiple similar families over and 

above what might be expected by chance is usually also required. 

There has been a lot of research in recent years into computational approaches for 

variant prioritisation. The main application of these is in novel disease-associated gene 

discovery rather than clinical diagnostics. Computational approaches have two obvious 

advantages over manual approaches. First, they are more objective and less biased, 

and second, they can prioritise much larger numbers of candidate variants than manual 

methods can.  

The most basic methods are scores that indicate the probability that a variant is 

pathogenic based on various factors. For example, the PolyPhen and SIFT scores for 

missense variants are based on predicted degree of disruption to protein structure, and 

the evolutionary conservation of the amino-acid change. The GERP score is based on 

evolutionary conservation of a site, and the haploinsufficiency score is based on the 

probability that the gene is haploinsufficient (65-68). More advanced methods prioritise 

genes based on integrating different sources of information. Many such tools have 

been developed, and to name but one example Endeavour incorporates information on 

biological processes in which each candidate gene is involved (69). 
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2.1.5 Prenatal next generation sequencing: proof of concept 

Because NGS can identify SNVs and indels throughout the genome, it has a much 

higher resolution than cytogenetic and array-based methods of variant discovery. 

Therefore, it is an obvious candidate method for prenatal diagnostics. Despite this, and 

despite the success of NGS in genetic diagnostics in rare disease postnatally, only a 

handful of studies have used it for prenatal gene discovery or diagnosis. The first two 

such studies, both published in 2012, used NGS to identify aneuploidy and 

chromosomal rearrangements. Dan et al. used very low-coverage whole-genome 

sequencing to detect aneuploidies and unbalanced chromosomal rearrangements in 

13/62 fetuses (70), and Talkowski et al. used whole genome “jumping library” 

sequencing of amniocytes to identify an apparently balanced de novo translocation that 

disrupts CHD7, causing CHARGE syndrome in a single fetus (71).  

The next two studies used exome sequencing at a depth sufficient to identify SNVs and 

indels, in a very small number of fetuses. Yang et al. performed exome sequencing on 

250 patients with Mendelian disorders, four of which were fetuses from terminated 

pregnancies (11). In one of the fetuses, which had Cornelia de Lange syndrome, they 

found the cause of disease, which was a de novo splicing mutation in the known gene 

NIPBL. Finally, Filges et al. used exome sequencing to identify the cause of a 

recessive, lethal ciliopathy phenotype in one family (72). They sequenced the parents, 

their unaffected daughter, and post-mortem samples from two fetuses that were 

affected by the disease, and found compound heterozygous variants in KIF14 in both 

affected fetuses. 

 

2.1.6 Aims, context, and colleagues 

Some parts of this project have been published (73, 74). The parts of these two 

publications that I have reproduced in this chapter were my work originally. This 

section briefly summarises the aspects of this study with which I was not directly 

involved, in order to put my own data into context.  

The overall aims of this project were to use exome sequencing on a cohort of fetuses 

with structural abnormalities, and their parents, to estimate the diagnostic yield of this 

technique for this purpose, and to identify any issues that would need to be addressed 
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prior to exome sequencing being implemented as a gene discovery or diagnostic tool 

for structural fetal abnormalities on a large scale. 

A clinical team consisting of Dr Sarah Hillman, Dr. Dominic McMullan, Professor 

Eamonn Maher, and Professor Mark Kilby recruited a cohort of fetuses with structural 

abnormalities, and their parents, at the Fetal Medicine Centre Birmingham Women’s 

Foundation Trust, UK. The fetal abnormalities were all first identified by ultrasound. 

The clinical team gathered further phenotypic data where available from post-mortem 

reports or paediatric follow up reports. Dr Sarah Hillman and Dr Dominic McMullan 

collected DNA samples from affected fetuses or neonates, and parental DNA. Prior to 

inclusion in this study the karyotypes were confirmed as normal, and low-resolution 

aCGH did not demonstrate any likely pathological CNVs.  

The high-throughput sequencing team at the Wellcome Trust Sanger Institute (WTSI, 

Cambridge, UK) did the exome sequencing itself. The Genome Analysis Production 

Informatics team at WTSI did the read mapping and variant calling. Dr Saeed Al Turki 

wrote Python scripts to calculate quality control metrics, and to identify and filter 

inherited variants, and he kindly allowed me to use them for this project. Dr Vijaya 

Parthiban developed the CoNVex program, and used it to identify CNVs from the 

exome data. Mr. Alejandro Sifrim developed the eXtasy program and ran it on these 

exome data, and Dr Damian Smedley developed PhenoDigm and ran it on these data. 

The parts of this project that I was responsible for included assessing the quality of the 

exome data, analysing the data to identify rare coding variants consistent with the 

expected model of inheritance, designing a decision tree to use as a tool to interpret 

the variants, and (in close collaboration with the clinical team) interpreting the variants 

to decide which are likely causative. I carried out this work as described below, under 

the supervision of Dr Matthew Hurles. 
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2.2 Methods 

 

2.2.1 Cohort 

This cohort of 30 fetuses (that was collected, phenotyped and sampled by the clinical 

team at the University of Birmingham as described in section 2.1.6) is a subgroup 

(12%) of a larger cohort described previously (22). In this chapter, the participants are 

identified by their trio number prefaced by F for the fetus, M for the mother and P for 

the father. There are two exceptions to this, as the cohort includes two sets of related 

fetuses. F3 and F16 are monozygotic twins; therefore the parents of F16 are M3 and 

P3. F27 and F33 are siblings; therefore the parents of F33 are M27 and P27. F2 has 

an older sibling with a similar phenotype, who is not included in this study. The 

remaining fetuses are sporadic cases, and none of the parents had phenotypic 

abnormalities that were likely to be related to that of the fetuses. The trio numbers go 

up to 33, because there were originally 33 trios intended for sequencing, but exome 

sequencing failed due to insufficient DNA in trios 4, 24 and 30. The total cohort 

described here therefore consists of 26 trios and two quads (couple with two affected 

fetuses), which is a total of 30 affected fetuses. 

The fetuses had a wide range of structural abnormalities (Figure 2-1). The three most 

commonly affected systems are the skeleton, the cardiovascular system and the 

nervous system. Abnormalities of skeletal morphology, such as agenesis of long 

bones, hemivertebrae, polydactyly, or talipes, were common in our cohort. Eighteen of 

the fetuses (60%) had at least one cardiovascular abnormality, such as ventricular 

septal defect, small heart, or defects of the valves or great arteries. Central nervous 

system defects included ventriculomegaly, and hypoplasticity of specific brain regions 

such as the cerebellum or the frontal lobe. Several of the mothers had abnormalities of 

the amniotic fluid such as anhydramnios or oligohydramnios, and five fetuses (17%) 

had generalised growth delay. Some fetuses (e.g. F1 and F10) had a very 

multisystemic phenotype, while others (e.g. F7 and F25) had a more specific 

phenotype, with a single affected system. Importantly, some of the fetuses underwent 

more extensive phenotyping (such as a post-mortem) than others. A detailed 

description of the phenotype of each fetus is recorded in the supplementary material of 

Carss et al. (73). 
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Figure 2 - 1: Matrix showing categories of phenotypes in the cohort of fetuses with 
structural abnormalities 
For each fetus (F1-F33), the colour indicates the number of observed phenotypes that are in 
each category of phenotypes. For example, F1 has more than eight separate abnormalities of 
skeletal morphology. The categories are modified higher-order Human Phenotype Ontology 
(HPO) terms (75), and the data come from ultrasound scans, post-mortem reports or paediatric 
follow-up. This figure and legend have been published (73).  

 

2.2.2 Exome sequencing 

The DNA samples were sent to WTSI. Exome sequencing was performed using a 

SureSelect All Exon capture kit (50 Mb) version 3 (Agilent, Wokingham, UK), followed 

by paired-end sequencing (75 bp reads) on the HiSeqTM platform (Illumina, Saffron 

Walden, UK). This work was done through an optimised pipeline run by the high-

throughput sequencing team at WTSI. Reads were mapped to reference human 

genome GRCh37 (hs37d5). Variants were called using three different callers: 

SAMtools, GATK, and Dindel (76, 77). The Genome Analysis Production Informatics 

team at WTSI did this work. 

 

2.2.3 VCF file merging, annotation, and quality control 

For each of the samples, I merged the variant call format (VCF) files from the different 

variant callers using VCFtools (78). I added the following annotations to the VCF files: 
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gene name, variant consequence, PolyPhen score, and SIFT score using the Ensembl 

Variant Effect Predictor v2.2, and allele frequency information from 1000 Genomes 

Project (20101123 sequence release) (65, 66, 79, 80). I calculated quality control 

metrics using a Python script written by Dr Saeed Al Turki. 

 

2.2.4 Identification of de novo SNVs and indels 

To identify de novo mutations I used De Novo Gear pipeline version 0.6.2., which 

incorporates version 0.2 of De Novo Gear itself (41, 81). I used a two-tier strategy to 

filter the variants called by De Novo Gear. For genes not known to cause 

developmental disease (identified using the Developmental Disorder Gene2Phenotype 

(DDG2P) gene list available at https://decipher.sanger.ac.uk) I filtered out variants with 

minor allele frequency >0.01, in non-coding regions, depth <10x (in any member of the 

trio), in a tandem repeat or segmental duplication, I removed variants which occur in 

>10% of reads from either parent, and those where the calls in the VCF files were not 

consistent with a de novo mode of inheritance. Finally I visually inspected plots of the 

reads using the Integrative Genomics Viewer (IGV) and removed variants associated 

with reads that appeared to be incorrectly mapped (82). For genes in DDG2P I used a 

slightly less stringent filtering process to increase sensitivity. I removed variants with 

minor allele frequency >0.01, in non-coding regions, and those that appeared 

incorrectly mapped on IGV plots.  

To calculate whether the final list of de novo mutations was enriched for functional 

mutations over what would be expected by chance, I calculated that the proportion of 

de novo mutations in exons expected to be functional by chance is 71.4% (83). I 

compared this to the proportion of de novo mutations that are functional in our cohort 

using a binomial test. To calculate the probability that a given number of functional de 

novo mutations will occur in the same gene in this cohort by chance, I calculated the 

number that are expected to occur using the known exome mutation rate, and the 

proportion of mutations that are expected to be functional, taking into account the 

length of the coding sequence of the gene of interest (83, 84). I compared this to the 

observed number of such mutations. 

 



 
2.2   Methods 

 

 17 

2.2.5 Identification of inherited recessive and X-linked SNVs and indels 

I identified inherited SNVs and indels under different Mendelian models using Python 

scripts written by Dr Saeed Al Turki. This work was done twice. There was a 

preliminary round of analysis, then a final round of analysis, using improved filtering 

criteria (as described below). 

For the preliminary round of analysis, I considered only variants that passed quality 

filters, were functional (predicted protein consequences were essential splice site, stop 

gained, complex indel, frameshift coding, non synonymous, stop lost), and had an 

allele frequency of <0.01 in the UK10K twins dataset (V4), the National Heart, Lung, 

and Blood Institute’s Exome Sequencing Project (ESP, release ESP 

6500_MAF_Jun_2012), and dbSNP. I also only considered variants in which the 

genotypes of the three members of the trio were consistent with inherited recessive 

(homozygous or compound heterozygous) or X-linked model of inheritance (in male 

fetuses), with unaffected parents.  

For the final round of analysis, I made the following changes to the preliminary filtering 

protocol I have described. I no longer considered complex indels as candidates. This is 

because in between the preliminary and final rounds of analysis, the Ensembl variant 

effect predictor (VEP) was updated to version 68, which had improved methods to 

annotate the consequences of indels, and updated ontology for indels. Also, I 

considered only variants with an allele frequency of <0.01 in both the 1000 Genomes 

project, and an internal control cohort of 2172 individuals exome sequenced at the 

same laboratory, using the same pipelines and analysis methods. This is because 

using the internal cohort filter increased the specificity of the filtering, and not using the 

ESP and dbSNP databases may increase sensitivity, because these databases contain 

some disease-causing variants (85, 86). 

 

2.2.6 Identification of CNVs 

CoNVex detects copy number variation from exome data using comparative read 

depth. (ftp://ftp.sanger.ac.uk/pub/users/pv1/CoNVex/) It corrects for technical variation 

between samples and detects copy number variable segments using a heuristic error-

weighted score and the Smith-Waterman algorithm. It detects deletions and 
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duplications of targeted sequences from few hundred base pairs in size to a few 

megabases or more.  

Dr Vijaya Parthiban ran CoNVex on this cohort. To identify candidate CNVs I filtered 

the CoNVex initial output. I considered only CNVs with CoNVex confidence score 

>=10, overlap within known common CNVs < 0.5, internal frequency of CNV in the 

dataset <0.05, overlaps at least one protein-coding gene, covered by >1 probe, and 

are not in an excessively noisy sample. I identified putative de novo and inherited X-

linked CNVs in the fetuses, and inspected plots of regional log2
 ratios in the family 

members and filtered out likely technical artifacts.  

 

2.2.7 Sanger sequencing 

I whole genome amplified ~50 ng genomic DNA from each sample using Illustra 

Genomiphi V3 ready-to-go kit (GE Healthcare Life Sciences, Buckinghamshire, UK) 

according to the manufacturer’s instructions. I used this as a template to amplify a 

fragment containing each the variant of interest in the relevant trios using REDTaq® 

DNA Polymerase (Sigma-Aldrich, Dorset, UK) and capillary sequenced using BigDye 

v31 kit and ABI 3730 sequencer according to the manufacturers’ instructions. Primers 

that were used to validate variants are listed in Appendix 1. 

 

2.2.8 Interpretation of variants 

To interpret the variants, I first annotated each candidate gene with functional 

information (where available) from the databases listed below.  

 OMIM (http://www.omim.org/) 

 DDG2P (http://decipher.sanger.ac.uk/ddd/ddd_genes) 

 BioGPS (biogps.org) 

 NHGRI GWAS catalog (http://www.genome.gov/gwastudies/) 

 IKMC (http://www.knockoutmouse.org/) 

 ZFIN (http://zfin.org/) 

 PubMed (http://www.ncbi.nlm.nih.gov/pubmed) 
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I next developed and used a decision tree to classify each variant as being highly likely 

to be causal, possibly causal but requires further genetic or functional confirmatory 

studies, or unknown (Figure 2-2). This work was done in close collaboration with the 

clinical team at the University of Birmingham. Mr. Alejandro Sifrim developed the 

eXtasy program and ran it on these exome data, and Dr Damian Smedley developed 

PhenoDigm and ran it on these data. To calculate the 95% confidence interval limits for 

my estimate of diagnostic yield, I used a binomial test.  
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Figure 2 - 2: Decision tree for classifying candidate genes into three categories. 
Data were used where available from the following sources: Online Mendelian Inheritance in 
Man (OMIM), DDG2P, Biology Gene Portal System (BioGPS), National Human Genome 
Research Institute (NHGRI) genome-wide association study (GWAS) catalogue, International 
knockout mouse consortium (IKMC) database, zebrafish information network (ZFIN) database 
and PubMed. This figure and legend have been published (73). 
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2.3 Results 
 

2.3.1 The exome sequencing data are of high quality 

Exome sequencing in 30 fetuses and neonates with a diverse range of structural 

abnormalities diagnosed at prenatal ultrasound, along with their parents, was 

performed (a total of 86 individuals). The mean depth of coverage of the targeted 

coding regions was 103X. This coverage is much higher than the minimum 30X 

estimated to be required for accurate detection of heterozygous variants (87). A mean 

of only 7.3% of bases in the targeted coding regions had less than 10X coverage, and 

a mean of only 1% had less than 1X coverage  (Figure 2-3 and Table 2-1).  

 

 
Figure 2 - 3: Target coverage of exome sequencing reads by sample. 
P5 has higher coverage, as it was not sequenced as part of a pool. This figure and legend have 
been published (73). 
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ID 
N mapped 
HMQ reads 

% Q20 
bases 

Mean 
coverage >=1x (%) >=10x (%) 

N coding 
variants 

F1 71288090 95.71 106.274 99.25 94.11 21826 
F2 71507176 95.75 106.564 99.03 93.53 21667 
F3 76307901 95.68 114.432 98.95 93.11 21742 
F5 92699881 95.66 137.72 99.42 95.02 21954 
F6 75797156 95.83 113.295 99.16 94.3 21940 
F7 84423053 95.6 125.512 99.18 94.36 21552 
F8 84367449 95.64 125.866 99.37 94.78 21687 
F9 83754651 95.7 125.248 99.25 94.49 21742 
F10 53387862 95.8 79.831 98.78 92.15 21440 
F11 40775602 95.85 61.05 98.62 89.9 20857 
F12 53976303 95.75 80.52 98.75 91.81 21367 
F13 57086795 95.82 85.211 98.95 92.23 21237 
F14 55239595 95.76 82.435 98.98 92.82 21663 
F15 58512496 95.76 87.287 98.78 92.05 21155 
F16 55517406 95.68 83.102 99.2 93.09 21956 
F17 56395887 95.77 84.406 98.82 92.42 21640 
F18 66147741 96.59 98.053 98.62 91.17 20964 
F19 58908353 95.53 87.821 98.92 92.07 21779 
F20 70831428 96.63 105.403 98.95 92.37 21281 
F21 68895929 96.67 102.558 99.07 92.73 21127 
F22 56904719 95.5 84.907 99.06 92.78 21498 
F23 58600063 95.45 87.365 98.82 91.95 21353 
F25 59597856 95.49 88.807 98.95 92.04 21513 
F26 66648868 96.6 99.192 98.84 92.11 20982 
F27 59205640 95.53 88.366 98.84 92.44 21535 
F28 62500308 95.43 93.196 98.85 92.54 21525 
F29 76111740 96.6 113.526 98.93 92.97 21219 
F31 38825777 96.56 57.866 98.17 87.64 20468 
F32 37322925 96.44 55.537 98.46 88.61 21046 
F33 49286255 96.58 73.419 98.64 89.88 21075 
M1 52645663 95.44 78.481 98.84 92.15 21498 
M2 59986920 95.54 89.333 98.81 92.15 21499 
M3 82707758 96.16 123.515 98.99 93.98 21784 
M5 110411666 95.87 165.606 98.73 93.19 21456 
M6 104330917 95.66 155.316 99.36 95.82 22028 
M7 82706691 96.1 123.255 99.16 94.58 21622 
M8 95419993 96.03 142.143 99.17 94.99 21817 
M9 85590849 96.18 127.864 98.94 93.72 21612 
M10 95663391 96.13 142.556 99.16 94.78 21956 
M11 50195030 96.2 75.003 98.48 90.88 20901 
M12 52632594 96.17 78.669 98.67 91.75 21451 
M13 60213492 96.13 90.143 98.51 91.41 21258 
M14 58095399 96.11 86.586 98.89 92.49 21152 
M15 56736873 96.19 84.692 98.85 92.43 20934 
M17 60229898 96.09 89.792 98.86 92.76 21449 
M18 57601439 96.18 85.68 98.74 91.84 20930 
M19 58492263 96.15 87.242 98.86 92.63 22220 
M20 62693258 95.86 93.795 98.72 92.12 21422 
M21 60860845 95.9 90.91 98.67 91.94 21212 
M22 67534892 95.84 100.657 98.64 91.98 21408 
M23 72503603 95.8 107.912 99.05 93.61 21670 
M25 69963332 95.77 104.385 98.97 93.42 21374 
M26 62052636 95.85 92.442 98.74 92.31 21378 
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M27 65123188 95.9 97.14 98.72 92.33 21177 
M28 81636876 97.13 121.798 99.1 93.95 21812 
M29 86596684 97.08 130.433 99.14 94.3 21597 
M31 81006172 96.57 120.641 99.34 93.57 21736 
M32 35173157 96.5 52.393 98.15 87.36 20791 
P1 85699745 96.98 128.031 99.32 94.54 21561 
P2 100554052 97.12 150.412 99.39 94.93 21516 
P3 97431748 97.2 145.569 99.42 95.07 21968 
P5 174856038 96.96 260.148 99.58 96.84 21617 
P6 103897082 95.79 154.839 99.37 95.17 21319 
P7 48099786 97.81 71.891 98.73 90.69 21121 
P8 55948619 97.83 83.722 98.84 91.48 21189 
P9 50521398 97.75 75.181 98.73 90.39 21042 
P10 54187949 97.78 80.854 98.94 91.66 21339 
P11 53758221 97.73 80.136 99.1 92.28 21611 
P12 56321179 97.73 83.975 99.05 92.25 21454 
P13 51049757 97.78 76.128 98.8 91.15 21229 
P14 58646676 97.8 87.73 98.98 92.27 21445 
P15 59527162 97.43 88.824 99.01 92.44 21636 
P17 73688831 97.47 110.281 99.18 93.41 21268 
P18 61532376 97.39 91.506 98.95 91.71 21431 
P19 61501500 97.39 91.594 99.11 92.53 21757 
P20 65921431 97.39 98.197 99.19 93.29 21340 
P21 62992323 97.4 94.03 99.04 92.52 21352 
P22 58820342 97.44 87.688 98.96 92.12 21274 
P23 75143669 96.28 111.818 99.22 93.66 21781 
P25 76510093 96.69 114.498 98.76 92.09 21325 
P26 92137474 96.27 137.371 99.36 94.84 21831 
P27 82888871 96.22 123.255 99.22 93.7 21487 
P28 89608716 96.23 133.306 99.36 94.64 21526 
P29 76685316 96.29 114.252 99.32 94.22 21583 
P31 81272187 96.53 120.872 99.5 93.76 21304 
P32 35398578 96.59 52.7 98.31 87.25 20983 

 
Table 2 - 1: Exome sequencing coverage and quality control metrics. 
Numbers apply to target coding regions only. N = number; Q20 = Number of bases with a 
phred-like calibrated quality score of 20 or above; HMQ = high mapping quality (>Q30). This 
figure and legend have been published (73).  

 

The mean number of SNVs detected per sample was 73970, of which 10329 were 

functional, 10623 were silent, 134 were LOF, and 94.5% were common (≥1% 

population frequency) (Figure 2-4). Of the LOF variants, only 86.6% were common. 

The mean transition/transversion ratio of SNVs was 3.014, which is close to the 

expected value (88). The mean number of indels per sample is 8722, of which 84% are 

common (Figure 2-5). The mean number of coding indels per sample is 449, of which 

85.7% are common. The mean in-frame/frameshift ratio of coding indels is 1.47, 

because there is a bias towards less damaging in-frame indels. This is close to the 

expected value (89).  
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Figure 2 - 4: Quality control metrics for single nucleotide variants. 
(A) Number of high-quality SNVs per sample. (B) Percent of SNVs that are common (≥1% 
population frequency) per sample. The cluster of three samples with a lower percentage of 
common SNVs represents F19, M19 and P19. These individuals are of Indian ancestry, 
whereas most of the cohort is of European ancestry. (C) Number of LOF SNVs per sample. 
Common (≥1%) are shown in blue and rare (<1%) are shown in red. (D) Number of SNVs per 
sample that are functional (green), silent (blue) and other (yellow). (E) Transition/transversion 
ratio per sample. (F) Number of SNVs per sample that are heterozygous (blue), and 
homozygous (yellow). This figure and legend have been published (73). 
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Figure 2 - 5: Quality control metrics for indels. 
(A) Number of high-quality indels per sample. (B) Percent of indels that are common (≥1% 
population frequency) per sample. (C) Number of coding indels per sample. Common (≥1%) are 
shown in blue and rare (<1%) are shown in red. (D) Ratio of coding indels with length that is a 
multiple of three against coding indels with length that is not a multiple of three, per sample. 
This figure and legend have been published (73). 
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No parental phenotypic abnormalities were reported that might be related to the fetal 

abnormalities, suggesting dominant inheritance is unlikely. I therefore identified rare, 

coding variants under dominant de novo, recessive and X-linked (for male fetuses) 

modes of inheritance. No parental consanguinity was reported. Next, through 

systematic manual curation of the existing literature and databases, I classified the 

variants into one of three categories: highly likely to be causal, possibly causal, or 

unknown. For the three non-sporadic cases (the siblings F27 and F33, and F2, who 

has a similarly affected sibling not included in this study), all of which are female, I 

consider a recessive mode of inheritance most likely. I nevertheless investigated all the 

variant classes described above.  

 

2.3.2 There is a mean of 1.13 validated de novo SNVs or indels per fetus 

I identified potential de novo SNVs and indels with high sensitivity, and inevitably low 

specificity, yielding a list of 77 candidate de novo coding or splicing mutations 

(mean=2.6 per fetus, range = 0-5). I attempted to validate all of these by capillary 

sequencing of whole genome amplified genomic DNA, irrespective of their predicted 

functional consequence. I validated 34 as being truly de novo (Table 2-2). This is a 

mean of 1.13 per fetal exome (range 0-4), which is within the expected range from the 

known germline mutation rate, and NGS of other disease cohorts (56, 57, 84, 90). 

These mutations include identical PPFIBP2 mutations in the monozygotic twins F3 and 

F16, with the result that there are 33 independent de novo mutations.  
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ID CHR POS REF ALT Gene CQ N REF N ALT P 
F2 16 9857047 G A GRIN2A NS 29 24 0.29 
F3 11 7618837 G C PPFIBP2 NS 28 16 0.048 
F6 11 33677654 C T C11orf41 STOP 43 46 0.66 
F6 12 56567575 G A SMARCC2 STOP 122 102 0.1 
F6 17 29562669 G A NF1 NS 146 133 0.24 
F6 20 39813788 G A ZHX3 S 9 4 0.13 
F7 2 210694087 G A UNC80 NS 138 136 0.48 
F7 20 44190748 C T WFDC8 SPLICE 28 30 0.65 
F8 1 160811672 G T CD244 NS 33 38 0.76 
F9 2 205829965 G C PARD3B NS 79 25 5.3 x 10-8 
F10 8 20069263 G T ATP6V1B2 NS 26 20 0.23 
F10 9 91994007 C T SEMA4D NS 10 7 0.31 
F14 1 28099859 C T STX12 NS 8 12 0.87 
F14 4 44450177 C T KCTD8 NS 14 13 0.5 
F15 10 128830000 G A DOCK1 NS 147 158 0.75 
F16 11 7618837 G C PPFIBP2 NS 18 19 0.63 
F18 3 58639419 G A FAM3D NS 65 44 0.027 
F18 12 123444538 G A ABCB9 NS 7 8 0.7 
F19 2 205983695 G A PARD3B NS 67 56 0.18 
F19 3 132230069 T C DNAJC13 S 45 37 0.22 
F19 17 5461819 G C NLRP1 NS 30 31 0.6 
F20 12 48369853 C A COL2A1 NS 22 30 0.89 
F22 10 71175853 G A TACR2 NS 11 16 0.88 
F23 4 1806099 A G FGFR3 NS 57 42 0.08 
F25 3 47727627 G A SMARCC1 STOP 17 15 0.43 
F25 10 118359676 C T PNLIPRP1 NS 77 57 0.05 
F26 1 202722193 C A KDM5B NS 45 24 0.0077 
F26 8 74334894 T G STAU2 NS 48 37 0.14 
F27 2 106687405 A G C2orf40 NS 20 14 0.2 
F27 11 15260600 G A INSC NS 10 12 0.74 
F28 19 55748185 T C PPP6R1 NS 27 29 0.66 
F31 12 50047598 G C FMNL3 NS 38 24 0.049 
F33 10 102249809 C A SEC31B NS 21 5 0.0012 
F33 X 13645272 G A EGFL6 S 111 92 0.1 
 
Table 2 - 2: Validated de novo SNVs in fetuses with structural abnormalities. 
ID = ID of fetus; CHR = chromosome; POS = position; REF = sequence of reference allele; ALT 
= sequence of alternate allele; CQ = consequence of mutation; NS = non-synonymous coding 
variant; S = synonymous coding variant STOP= stop codon gained; SPLICE = essential splice 
site variant; N REF = number of sequencing reads that support the reference allele; N ALT = 
number of sequencing reads that support the alternate allele; P = p value from binomial test to 
test whether the proportion of sequencing reads that support the alternate allele is significantly 
less than 0.5 (Bonferroni-corrected threshold of significance = 0.00147). This table and legend 
have been published (73). 

 

The expected percentage of de novo mutations in coding or splicing sequence that are 

synonymous is 29% (83), however, I observed that only three (9%) of the 33 validated 

independent de novo mutations were synonymous, with 26 being non-synonymous, 

three nonsense and one in a splice site. Thus the proportion of validated de novo 

mutations that are predicted to have a functional consequence of the encoded protein 
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is significantly enriched over what would be expected by chance (p=0.007), suggesting 

that an appreciable subset of these functional mutations is likely to be pathogenic. For 

two of the de novo mutations, the proportion of reads that support the alternative allele 

was significantly less than the expected 50% for a non-mosaic, heterozygous mutation. 

This provides suggestive evidence that these mutations are mosaic. These mutations 

were c.313G>C (p.105E>Q) in PARD3B (ENST00000349953) in F9, and c.2921G>T 

(p. 974C>F) in SEC31B (MIM 610258, ENST00000370345) in F33 (Table 2-2). 

 

2.3.3 There are three candidate de novo or X-linked copy number variants 

CNVs from the exome data were denoted using the CoNVex program. I identified three 

rare, high-quality CNVs (one deletion and two duplications) under de novo, inherited 

recessive, or X linked models (Table 2-3 and Figure 2-6).  

 

ID CHR Start 
position 

End 
position 

Size 
(kb) 

CNV 
type 

Inheritance 
model Gene 

F14 X 13770686 13791294 20.6 DEL de novo GPM6B; 
OFD1 

F19 X 48155306 48270940 115.6 DUP Inherited X linked 
SSX3; 
SSX4; 
SSX4B 

F3 X 103267111 103301913 34.8 DUP Inherited X linked H2BFM; 
H2BFWT 

 
Table 2 - 3: Candidate CNVs in fetuses with structural abnormalities. 
None of the genes in these CNVs have additional variants likely to cause disease. None of 
these CNVs have any overlap with common CNVs. 
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Figure 2 - 6: Log2 ratios of candidate CNVs in fetuses with structural abnormalities. 
(A) F14; (B) F19; (C) F3. In each plot the x-axis indicates the genomic coordinates. The top 
panel indicates the normalised log2 ratio of the exome read depth, compared to a group of 
controls. The red line shows the log2 ratio of the fetus, where the variant is a deletion, and the 
blue line shows the log2 ratio of the fetus where the variant is a duplication. The purple line 
shows the log2 ratio of the mother, and the green line shows the log2 ratio of the father. The 
grey lines show the log2 ratio of control samples. The vertical small dashed lines show the 
minimum deleted/duplicated region and the vertical wide dashed lines show the maximum 
deleted/duplicated region. The bottom panel shows the protein-coding genes present in each 
region. This figure and legend have been published (73). 
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2.3.4 There is a mean of 13 candidate genes with inherited recessive or X-linked 
variants per fetus, in the preliminary round of analysis 

Identification and interpretation of inherited recessive or X-linked SNVs and indels was 

done twice in this project. There are three differences between these preliminary and 

final rounds of analyses. In the preliminary round, only samples F1-F30 were included, 

because samples F31-F33 were sequenced later, in a separate batch. Second, I used 

a slightly different, more sensitive and specific filtering protocol for the final round. 

Finally, for variant interpretation, in the final round I was able to take into account data 

from computational gene prioritisation methods, as I will describe. 

For the preliminary round of analysis, I identified potentially relevant inherited recessive 

and X-linked variants (SNVs and indels) by filtering for rare (minor allele frequency less 

than 1%), functional hemizygous, homozygous or compound heterozygous variants. 

This identified a mean of 13 candidate genes per fetus (range of 6-21) with a 

cumulative total of 256 candidate genes across the 27 fetuses, containing 505 rare 

functional variants. Of these variants, 450 are missense, 40 are frameshift indels, 9 are 

in-frame indels and 6 are nonsense (Appendix 2). Of the candidate genes, 47 were 

observed in more than one individual in this cohort (not including the twins F3 and 

F16). 

I next used my decision tree to categorise each variant in each of the three categories 

(de novo SNVs and indels, CNVs, and inherited SNVs and indels) as being highly likely 

to be causal, possibly causal, or unknown. This work was done in close collaboration 

with the clinical team at the University of Birmingham. In the following sections I 

describe the variants I categorised as highly likely to be causal or possibly causal in 

each category, and explain my rationale for these categorisations.  

 

2.3.5 De novo SNVs in FGFR3 and COL2A1 are highly likely to be causal 

Two of the de novo SNVs are highly likely to be pathogenic, and two are possibly 

causal. One de novo mutation that is highly likely to be causal was found in F23, a 

male fetus with features consistent with thanatophoric dysplasia, including a large 

head, disproportionately short limbs, and a narrow, bell-shaped chest. I found the 
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missense mutation c.1118A>G (p.373Y>C) in fibroblast growth factor receptor 3 

(FGFR3, MIM 134934 (http://www.omim.org/), ENST00000440486) (Figure 2-7). 

FGFR3 is a well-characterised negative regulator of bone growth, missense mutations 

in which are known to cause a wide range of skeletal dysplasias, most commonly 

achondroplasia. There is a very tight correlation between specific FGFR3 mutations, 

and the phenotype, for a review see (91). The mutation p.373Y>C is known to cause 

thanatophoric dysplasia (23), giving high confidence that c.1118A>G in FGFR3 is the 

causative mutation in F23. 

 
Figure 2 - 7: Pedigree of trio 23, showing Sanger sequencing of de novo mutation in 
FGFR3. 
 

In F20, a male fetus with increased nuchal translucency (>3.5mm), tricuspid 

regurgitation, and an extended posture and bilateral talipes equinovarus anomaly I 

found the highly likely to be causal missense mutation c.3490G>T (p.1164G>C) in 

COL2A1 (MIM 120140, ENST00000380518) (Figure 2-8). Mutations in this gene, which 

encodes COL2A1, a component of type II collagen, can cause type II collagenopathies. 

This term covers a wide spectrum of phenotypes, from the lethal achondrogenesis type 

II (MIM 200610) which typically involves very severe dwarfism with a short chest and 

can involve heart defects and structural defects of the lower limb (92, 93), to much 

milder phenotypes such as spondyloperipheral dysplasia (MIM 271700), which 

includes short stature and other skeletal defects such as talipes and other lower limb 

abnormalities (94). Importantly, p.1164G>C is a glycine to non-serine in the triple 

helical domain of COL2A1, which is predicted to be a particularly damaging class of 

substitution (95), although p.1164G>C has not previously been reported. 
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Figure 2 - 8: Pedigree of trio 20, showing Sanger sequencing of de novo mutation in 
COL2A1. 
 

2.3.6 De novo SNVs in NF1 and SMARCC2 are possibly causal 

F6 is a female fetus with levocardia with abdominal situs inversus, malposed great 

arteries, and multiple ventricular septal defects. Some of these features are consistent 

with Ivemark’s syndrome (MIM 208530), the molecular basis of which is unknown. In 

this fetus I found three possibly pathogenic variants, two of which are de novo. I found 

the de novo mutation c.2747G>A (p.916R>Q) in NF1 (MIM 613113, 

ENST00000456735). Variants in this gene, which encodes neurofibromin 1, most 

commonly cause neurofibromatosis, but in a subset of patients variants are associated 

with Neurofibromatosis-Noonan syndrome (MIM 601321), one feature of which can be 

cardiac defects including atrial septal defect (96). Mutation of this particular amino acid 

has been previously proposed to be pathogenic (97). Additionally, zebrafish 

knockdowns for either orthologue of NF1 (nf1a or nf1b) have cardiovascular defects 

including valvular insufficiency (98).  

In F6 I also found a nonsense mutation c.1555C>T (p.519R>*) in SMARCC2 (MIM 

601734, ENST00000267064). This encodes the SWI/SNF-related chromatin regulator 

SMARCC2 that, while not known to be associated with human developmental disease, 

does have a role in development (specifically differentiation of embryonic stem cells) 

(99). Heterozygous LOF variants within several genes that encode components of the 

same protein complex or family (such as SMARCAL1) can cause developmental 

disorders (58, 100). Similarly, I found a de novo nonsense mutation c.1297C>T 

(p.433R>*) in SMARCC1 (MIM 601732, ENST00000254480) that I initially classified as 

possibly causal in F25. However, follow up of this case showed that the fetal 

phenotype (hydrothorax with mediastinal shift) resolved postnatally. Therefore this 
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mutation, despite appearing possibly clinically relevant, is unlikely to be significantly 

pathogenic.  

I looked for inherited, rare, coding, ‘second hit’ variants in genes in which I found de 

novo mutations and found only one: a heterozygous, maternally inherited, missense 

variant in SEMA4D in F10.  

De novo mutations in genes known to be involved in developmental disease were not 

necessarily classified as possibly causal, where the phenotype of the fetus did not 

overlap sufficiently with previously reported phenotypes. For example, the de novo 

missense mutation c.4354C>T (p.1452R>C) in GRIN2A (MIM 138253, 

ENST00000461292) was found in F2, a female with atrioventricular septal defect 

(AVSD), hepatic dysfunction, polydactyly, panhypopituitarism and brain injury. GRIN2A 

mutations can cause seizures and intellectual disability, and are highly unlikely to be 

the cause of the multiple structural malformations seen in F2 (101). Supporting this 

assertion is the fact that this individual had an older sibling with a similar phenotype, 

making de novo mutations an unlikely cause of disease. 

 

2.3.7 Two unrelated fetuses with no clear clinical overlap have de novo SNVs in 
PARD3B  

Two of the unrelated fetuses had de novo missense mutations in PARD3B. F9, a male 

fetus with a complex brain malformation and unilateral talipes equinovarus had the 

PARD3B mutation c.313G>C (p.105E>Q). F19, a male with an atrial septal defect, 

oesophageal atresia and a unilateral facial cleft had the mutation c.731G>A 

(p.244R>Q). The likelihood of two functional de novo mutations in a gene of the size of 

PARD3B occurring by chance in unrelated probands in a cohort of this size is small (p 

= 3.1 x 10-6), but does not quite reach the Bonferroni-corrected significance threshold 

for testing of all genes of p = 2.5 x 10-6. De novo PARD3B mutations have not been 

reported in other larger sequencing studies suggesting that PARD3B does not have an 

unusually high mutation rate (57, 84). PARD3B encodes partitioning defective 3 

homolog B (Par3b), which is involved in cell polarisation (102). It has a paralogue, 

PARD3, which has a role in various developmental processes including neurogenesis 

(103). Homozygous mouse knockouts for Par3 are embryonic lethal and have growth 

retardation, heart and brain defects and short tails (104), and zebrafish pard3 

knockdowns have hydrocephalus (103). The overlap between phenotypes resulting 
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from knockdown of PARD3 and the phenotypes in F9 and F19 is interesting, however I 

judged that the current knowledge of the function of PARD3B is insufficient to 

categorise the mutations identified in our cohort as being possibly causal.  

 

2.3.8 A de novo deletion that overlaps with OFD1 is highly likely to be causal 

One of the candidate CNVs is the de novo 21 kb deletion g.13770686_13791294del on 

Xp22.2 found in F14, a female fetus with ventriculomegaly and agenesis of the corpus 

callosum. The breakpoint positions given here are approximate. The deleted region 

covers most of the gene OFD1 (MIM 300170), 15 probe regions, and has a CoNVex 

score of 26 (Figure 2-6A). Mutations in OFD1 cause orofaciodigital syndrome 1 (MIM 

311200), which causes malformations of the mouth, face, and digits, and in 40% of 

cases central nervous system involvement, including absence of the corpus callosum 

(105). This deletion is highly likely to be causal on the basis of this high degree of 

overlap between the phenotype of F14 and the known phenotype caused by OFD1 

mutations. The mutation has been confirmed by aCGH and the results returned to the 

family. This is excellent news for the family as the risk of recurrence is very low at <1%, 

and would only recur in the unlikely event of gonadal mosaicism. 

 

2.3.9 Inherited recessive or X-linked SNVs in five fetuses are possibly causal, in 
the preliminary round of analysis 

Inherited variants in five of the fetuses are possibly causal. These variants have been 

verified by Sanger sequencing of whole genome amplified genomic DNA. These 

variants were identified during the preliminary round of analysis of inherited variants, 

and do not all remain ‘possibly causal’ candidates following the final round of analysis. 

In F5 who had cardiac truncus arteriosus, type B interruption of the aortic arch and 

pyloric stenosis, I found the compound heterozygous variants c.2189G>A (p.730R>Q) 

and c.721C>G (p.241P>A) in DLC1 (MIM 604258, ENST00000276297). Homozygous 

DLC1 knockout mice are embryonic lethal with deformities of brain and heart (106).  

In F6, whose laterality phenotype has been described, I found the compound 

heterozygous variants c.4264G>A (p.1422V>M) and c.3686G>A (p.1229R>Q) in 

RERE (MIM 605226, ENST00000337907). RERE, which is in the retinoic acid pathway, 
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has a role in establishing bilateral symmetry. Although it is not a known human 

disease-associated gene, homozygous knockout mice develop asymmetrically and 

have cardiovascular outflow defects. Homozygous zebrafish mutants have cartilage 

and skeletal defects, abnormal fins and otoliths, reduced viability, deformed brains, and 

absent gills (107-109). In total I have identified two genes with de novo mutations and 

one gene with inherited variants that could possibly account for the phenotype in F6. It 

is not possible to say which is most likely to be causative, as none of the candidate 

genes are known to harbour variants that cause the exact phenotype reported here. 

One possibility is that multiple variants contribute to this multisystemic phenotype, as 

has been reported in other exome sequencing studies of rare disease (3, 11). 

In F8, with a complex cardiac anomaly on ultrasound including transposition of the 

great arteries, we found the compound heterozygous variants c.1208_1210delGAG 

(p.G404del) and c.14194A>G (p.4732K>E) in RNF213 (MIM 613768, 

ENST00000582970). RNF213 has a possible role in vascular development, has been 

implicated in moyamoya disease, and zebrafish knockdowns have abnormal blood 

vessels (110). 

In F12, ultrasound demonstrated significant ventriculomegaly and unilateral talipes.  

The homozygous in-frame deletion c.244_249delGGCGGC (p.G82_G83del) in DACH1 

(MIM 603803, ENST00000305425) was identified. DACH1 is involved in the 

development of various structures including the limbs and nervous system, and 

homozygous knockout mice die shortly after birth (111-113).  

Finally, F13 had multiple abnormalities including a multicystic-dysplastic kidney, 

distorted ribs and spine, brain defects and bilateral talipes equinovarus. Here I 

discovered the compound heterozygous missense variants c.1918C>T (p.640R>C) 

and c.5205C>A (p.1735H>Q) in FRAS1 (MIM 607830, ENST00000264895). FRAS1 

variants can cause Fraser syndrome (MIM 219000), severe cases of which include 

kidney abnormalities such as cysts (114). FRAS1 has a role in renal development and 

epidermal adhesion (115). Additionally, FRAS1 transcripts are upregulated in 

polycystic mouse kidneys (116), and knockout mice have severely defective kidney 

development, along with syndactyly (117). Homozygous zebrafish mutants have 

malformed fins and pharyngeal pouches, suggesting a possible role for FRAS1 in 

skeletal development (118, 119).  
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2.3.10 The variant prioritisation program eXtasy identifies 36 possibly causal 
variants, with an enrichment of de novo mutations 

While manual variant prioritisation using a decision tree is a thorough and nuanced 

approach, it is neither objective, nor suitable for much larger cohort sizes. Therefore, I 

decided to investigate two computational methods of variant prioritisation: eXtasy and 

PhenoDigm. The first aim of this was to assess the utility of these programs in 

comparison to manual methods, with a view to developing recommendations for larger 

cohorts. My second aim was to identify any interesting candidate genes from this 

cohort that my manual method missed.  

eXtasy uses a statistical learning approach to prioritise candidate non-synonymous 

SNVs, taking into account the phenotype of the individual (120). The input to eXtasy is 

the merged VCF files of the proband, and a list of phenotypes of the proband encoded 

as human phenotype ontology (HPO) terms (75). Essentially, eXtasy looks at many 

different features of other genes in which variants are known to cause the phenotype of 

interest. These features include the haploinsufficiency score of the gene, multiple 

estimates of the variant impact including PolyPhen, SIFT, and Mutation Taster scores, 

and multiple estimates of the level of conservation of the genomic region. Next, eXtasy 

calculates these features for each candidate non-synonymous SNV in the individual. 

Finally, a random forest algorithm is used to compute an ‘eXtasy score’ for each SNV 

for each phenotype, which lies between 0 and 1, and is a measure of the probability 

that each SNV causes each phenotype. The higher the similarity between the features 

of the variant in the individual, and the features of variants known to cause the 

phenotype, the higher the eXtasy score will be. An eXtasy score of >0.5 is considered 

indicative that the variant warrants further investigation. If no genes are known to be 

associated with a given phenotype, eXtasy will not be able to compute that phenotype.  

Next, eXtasy computes a combined p-value that indicates, for each non-synonymous 

SNV, the significance level, merged across all phenotypes of the individual. There are 

typically around 9000 non-synonymous SNVs per individual, so a stringent Bonferroni-

corrected p-value threshold of significance of 5.6 x 10-6 is probably appropriate. If a 

combined p-value cannot be calculated (for example because there are not enough 

phenotypes), the highest eXtasy score for a SNV is an alternative metric by which to 

rank them. However, where available, the p-value is preferred, because although there 

may be a high score for an individual phenotype, this does not necessarily equate to a 

high overall score, if there are lots of additional phenotypes for that patient with a low 
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score. For this experiment, all candidate genes with a maximum eXtasy score >0.5 

also have a combined p-value of < 5.6 x 10-6. 

There are 475 candidate non-synonymous SNVs in this cohort, 25 of which are de 

novo (Table 2-2, not including those in F31-F33, which were sequenced subsequent to 

these analyses), and 450 of which are inherited recessive or X-linked (Appendix 2). Of 

these 475, 36 (in 24 genes) have a significant likelihood of causing the phenotypes, 

according to eXtasy (p < 5.6 x 10-6) (Table 2-4). 

Two of the three mutations I classified as highly likely to be causal are non-

synonymous SNVs. Both of these (in COL2A1 in F20 and in FGFR3 in F23) were 

identified as likely candidates in eXtasy. Eight of the eleven variants I classified as 

possibly causal are non-synonymous SNVs. Three of these (in NF1 in F6 and two in 

RERE in F6) were identified as likely candidates in eXtasy.  

Only 5.3% of the 475 candidate non-synonymous SNVs are de novo, but of the 36 that 

were identified as likely candidates in eXtasy, 6 (16.7%) are de novo. This represents a 

significant enrichment of de novo mutations in the variants identified by eXtasy (p = 

0.016, Fisher’s exact test). This is very interesting given that de novo mutations are 

particularly likely to cause rare disease (11, 55, 57), and that eXtasy is blind to the 

mode of inheritance of the candidate variants.  
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ID CHR POS REF ALT Gene COMBI P MAX 
eXtasy 

Variant 
type 

F1 8 101718965 G A PABPC1 2.14E-16 0.4 inherited 
F1 8 101718968 C T PABPC1 3.30E-12 0.376 inherited 
F1 8 101719138 C T PABPC1 1.00E-14 0.396 inherited 
F1 8 101719201 A G PABPC1 1.19E-11 0.41 inherited 
F2 16 9857047 G A GRIN2A 1.20E-12 0.292 de novo 
F2 19 49113215 G A FAM83E 4.40E-07 0.128 inherited 
F5 2 179634421 T G TTN 1.62E-06 0.36 inherited 
F6 1 8418331 C T RERE 1.64E-07 0.376 inherited 
F6 1 8418909 C T RERE 2.27E-06 0.284 inherited 
F6 7 103141235 G A RELN 5.12E-09 0.286 inherited 
F6 7 103205827 G C RELN 7.10E-13 0.46 inherited 
F6 17 29562669 G A NF1 1.04E-17 0.624 de novo 
F6 19 41754430 G A AXL 6.28E-12 0.614 inherited 
F9 20 61288233 G A SLCO4A1 4.96E-09 0.292 inherited 
F10 1 39851427 G A MACF1 2.78E-11 0.644 inherited 
F10 1 39901245 A G MACF1 1.70E-14 0.714 inherited 
F10 8 20069263 G T ATP6V1B2 9.96E-22 0.49 de novo 
F10 9 91994007 C T SEMA4D 4.99E-08 0.18 de novo 
F11 X 30322699 T C NR0B1 2.41E-07 0.24 inherited 
F13 2 1459885 A G TPO 8.57E-14 0.24 inherited 
F13 2 1544464 C T TPO 2.53E-19 0.388 inherited 
F17 1 68960131 T C DEPDC1 1.34E-11 0.308 inherited 
F17 1 68960186 T C DEPDC1 2.54E-07 0.162 inherited 
F18 2 179611552 C T TTN 4.29E-08 0.672 inherited 
F18 3 135969390 A C PCCB 2.08E-12 0.632 inherited 
F18 3 136019898 C T PCCB 1.09E-11 0.458 inherited 
F18 X 138644189 C T F9 2.46E-10 0.458 inherited 
F19 16 87723683 G A JPH3 5.03E-06 0.454 inherited 
F20 12 48369853 C A COL2A1 2.24E-06 0.654 de novo 
F21 6 51656129 C G PKHD1 1.67E-07 0.714 inherited 
F21 6 51768399 A T PKHD1 3.59E-09 0.888 inherited 
F23 2 179610967 C T TTN 3.89E-18 0.626 inherited 
F23 4 1806099 A G FGFR3 2.71E-28 0.902 de novo 
F23 11 70336479 C T SHANK2 2.10E-10 0.384 inherited 
F23 15 22969250 C T CYFIP1 3.04E-14 0.718 inherited 
F23 X 19398315 C T MAP3K15 1.57E-12 0.268 inherited 

 
Table 2 - 4: Candidate genes identified as possible causal by eXtasy.  
Table contains genes with eXtasy combined p value < 5.6 x 10-6. COMBI_P = combined p 
value. MAX eXtasy = maximum eXtasy score across the phenotypes. These are both measures 
of how likely a variant is to cause the fetuses phenotypes. 
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2.3.11 The variant prioritisation program PhenoDigm identifies possibly causal 
variants in 18 genes 

The PhenoDigm program identified possibly causal disease-associated genes on the 

basis of overlap between the phenotype of a patient, and the mouse phenotype caused 

by knocking out the orthologue of genes in which variants have been found in the 

patient (121). If no mouse model has been generated and phenotyped for a gene of 

interest, PhenoDigm cannot be used. Around 32% of mouse protein-coding genes 

have a phenotyped model available (personal communication from Dr Damian 

Smedley).  

The input to PhenoDigm is a list of candidate genes, and a list of phenotypes encoded 

as HPO terms, for each patient. The output is, for each candidate gene, two scores 

indicating the degree of overlap of each patient phenotype with the mouse model. 

These scores are the Information Content (IC) and Jaccard Index (simJ) scores. If the 

geometric mean of these two scores is >1.5, variants in that gene are possibly causal. 

However, as for eXtasy, there may be considerable overlap for one HPO term, but this 

does not necessarily mean there is high overall overlap across all phenotypes 

observed in the patient. The version of PhenoDigm that was used for these analyses 

was an early version that used only mouse phenotype data, whereas more recent 

versions incorporate data from zebrafish.  

There are 390 candidate genes in this cohort (where a gene recurs in multiple fetuses, 

I have counted it that number of times here): 31 have de novo mutations (Table 2-2, 

not including those in F31-F33, which were sequenced subsequent to these analyses), 

7 are in CNVs (Table 2-3), and 352 have inherited recessive or X-linked variants 

(Appendix 2). Of these 390, 99 have a phenotyped mouse model, and of these, 18 are 

possibly causal disease-associated genes identified by PhenoDigm (Table 2-5). 
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ID Gene Fetus HPO term Model MPO term Geo 
Mean 

Variant 
type 

F3 NCOR2 Ventricular septal defect Ventricular septal defect 2.23 Inherited 

F5 TTN Ventricular septal defect Heart left ventricle 
hypertrophy 1.83 Inherited 

F6 FOXC1 Ventricular septal defect Ventricular septal defect 2.23 Inherited 

F6 NF1 Double outlet right 
ventricle 

Persistent truncus 
arteriosus 2.28 De novo 

F6 TGIF1 Abdominal situs inversus situs inversus 2.66 Inherited 

F7 TTN Ventricular septal defect Heart left ventricle 
hypertrophy 1.83 Inherited 

F9 GNAS Abnormality of the 
thymus Thymus atrophy 2.17 Inherited 

F13 FRAS1 Talipes Clubfoot 2.41 Inherited 
F13 PTCH1 Missing ribs Decreased rib number 2.61 Inherited 
F13 TGIF1 Microcephaly Microcephaly 2.17 Inherited 

F17 ABCA3 Pulmonary hypoplasia Increased wet-to-dry lung 
weight ratio 2.19 Inherited 

F19 DNAH5 Defect in the atrial 
septum 

Ostium secundum atrial 
septal defect 2.36 Inherited 

F19 NCOR2 Defect in the atrial 
septum Ventricular septal defect 1.96 Inherited 

F20 COL2A1 Abnormality of the lower 
limb Short femur 1.83 De novo 

F20 SMPD1 Choroid plexus cyst Abnormal choroid plexus 
morphology 2.55 Inherited 

F23 FGFR3 Short ribs Short ribs 2.60 De novo 

F25 HIF3A Pleural effusion Abnormal pulmonary 
artery morphology 1.61 Inherited 

F29 TTN Tricuspid regurgitation Increased left ventricle 
diastolic pressure 1.63 Inherited 

 
Table 2 - 5: Candidate genes identified as possibly causal by PhenoDigm.  
Table contains genes with Geo mean >1.5. For each gene, only the phenotype with the highest 
Geo mean is shown. Geo mean = geometric mean of the SimJ and IC scores; HPO = human 
phenotype ontology; MPO = mammalian phenotype ontology.  

 

PhenoDigm identified COL2A1 in F20 and FGFR3 in F23 as containing possibly causal 

variants. These were also identified by the decision tree method, and by eXtasy. Two 

of the eight genes containing variants classified as possibly causal by the decision tree 

method were also identified as likely candidates using PhenoDigm (NF1 in F6 and 

FRAS1 in F13). NF1 was also prioritised by eXtasy.  
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2.3.12 There is a degree of overlap between the variants identified as possibly 
causal by the three different prioritisation methods 

The variants that were prioritised by the three different variant prioritisation methods 

(manual decision tree, eXtasy and PhenoDigm) overlap somewhat (Figure 2-9). All 

three methods prioritised FGFR3, COL2A1 and NF1. Both the decision tree and eXtasy 

prioritised RERE. Both the decision tree and PhenoDigm prioritised FRAS1. Both 

eXtasy and PhenoDigm prioritised TTN. I did not prioritise TTN manually because it is 

an exceptionally large gene in which many variants fall by chance. Additionally, there 

are five prioritisations unique to the decision tree, 19 unique to eXtasy and nine unique 

to PhenoDigm.  

 

 
 
Figure 2 - 9: Venn diagram showing overlap between the genes prioritised by each of the 
three methods.  
The genes named in the decision tree circle include both ‘highly likely to be causal’ and 
‘possibly causal’ candidates, with the former in red.  
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It is important to note that, while this overlap is interesting, the results are not strictly 

speaking directly comparable, because some methods are not capable of identifying 

the same candidates as others. For example, eXtasy could not have identified OFD1 

as a candidate, because the variant in this case is a deletion and eXtasy only 

interrogates non-synonymous SNVs. Similarly, PhenoDigm could not have identified 

SMARCC2 as a candidate, because a mouse model of this gene is not available.  

 

2.3.13 The continuing need for manual curation 

I further investigated the variants prioritised by eXtasy and PhenoDigm, in order to 

decide whether I should consider upgrading any to my ‘possibly causal’ or ‘highly likely 

to be causal’ categories. For eXtasy, I concluded that most of the additional variants 

that it prioritised should not be upgraded because they either had no obvious link to the 

fetal phenotype, recurred in multiple cases with non-overlapping phenotypes, or were 

found in a fetus for which I had found a clearly causal variant. However, on further 

investigation I decided that one of the genes highlighted by eXtasy should be 

upgraded: MACF1 in F10, which is discussed further below. The PhenoDigm results 

did not lead me to upgrade any variants because they all either recurred in multiple 

cases with non-overlapping phenotypes, or only had overlap with a small proportion of 

the fetal phenotypes. This emphasises the continuing need for manual curation of 

results of computational gene prioritisation methods.  

 

2.3.14 Inherited recessive or X-linked SNVs in five fetuses are possibly causal, in 
the final round of analysis 

As I have explained, I reanalysed the inherited recessive or X-linked variants using a 

slightly more sensitive and specific filtering protocol, incorporating the additional 

samples F31-F33, and upgrading MACF1 in F10 to a ‘possibly causal’ gene on the 

basis of the eXtasy analysis. For this final round of analysis, I detected a mean of 

21,444 high-quality coding SNVs and indels per individual (Table 2-1). Filtering for rare, 

functional variants leaves a mean of 5.3 candidate genes per fetus (range of 0-15) with 

a total of 139 different candidate genes across the 30 fetuses, containing 269 rare 

functional variants. Of these variants, 262 are missense, four are frameshift, and three 

are nonsense (Appendix 3).  
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Inherited variants in five of the fetuses are possibly causal, in this final round of 

analysis. These variants have been verified by Sanger sequencing of whole genome 

amplified genomic DNA. The possibly causal variants in DLC1 in F5, RERE in F6, and 

FRAS1 in F13, are as I described in section 2.3.9. However, I now also consider 

PRKDC variants in F1 and MACF1 variants in F10 as possibly causal, and I no longer 

consider RNF213 variants in F8 or DACH1 variants in F12 to be possibly causal. 

In F1, a male fetus with multiple abnormalities including limb defects, craniofacial 

defects, anogenital defects, heart defects, a tracheal oesophageal fistula and renal 

agenesis, I found the compound heterozygous variants c.9598C>T (p.3200P>S) and 

c.1420G>T (p.474V>F) in PRKDC (MIM 600899, ENST00000338368). PRKDC 

encodes DNA-PKcs, which, in complex with Ku, is required for the DNA double-strand 

break repair mechanism non-homologous end joining. In humans, PRKDC variants can 

cause severe combined immunodeficiency due to defective V(D)J recombination, and 

severe cases can also have abnormalities of the brain, face, limbs, and anogenital 

organs (122). PRKDC was not identified as a candidate gene in the preliminary round 

of analysis because the study described here was published in July 2013, subsequent 

to the preliminary analysis. 

F10 had fetal akinesia syndrome probably caused by neuroaxonal dystrophy. I found 

the compound heterozygous variants c.5323G>A (p.1775E>K) and c.8626A>G 

(p.2876I>V) in MACF1 (MIM 608271, ENST00000372925), which encodes cytoskeletal 

protein microtubule-actin cross-linking factor 1. Knockout of the mouse orthologue 

causes defects in axonal extension (123). This was not a candidate in the preliminary 

round of analysis because it was brought to my attention by the eXtasy variant 

prioritisation. 

DACH1 variants in F12 and RNF213 variants in F8 were considered highly likely to be 

causal after the preliminary round of analysis, but not after the final round. This is 

because for the final round I added a new minor allele frequency filter (<0.01 in an 

internal control cohort of 2172 individuals). The DACH1 variant in F21 had a frequency 

in the control cohort of 0.47. One of the compound heterozygous variants in RNF213 in 

F8 had a frequency in the control cohort of 0.014. It is therefore highly likely that these 

variants do not cause the structural abnormalities in these fetuses.  

F19 has a high number of inherited, apparently rare variants (Appendix 3). F19 is of 

Indian ancestry, whereas the majority of the cohort is of European ancestry. It is likely 

therefore that some of the apparently rare variants that I have identified in F19 are in 
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fact more common in this population, but I have not been able to identify them as such 

due to an underrepresentation of individuals of Indian ancestry in the databases I used 

to filter the variants.  

 

2.3.15 The estimated diagnostic yield of this study is 10% 

According to the classification system described, and in close collaboration with the 

clinical team at the University of Birmingham, I identified three mutations that are highly 

likely to be causal: the de novo mutation in FGFR3 in F23, the de novo mutation in 

COL2A1 in F20 and the de novo deletion covering OFD1 in F14. Additionally, I 

identified seven variants (in five additional fetuses) that are possibly causal: two de 

novo and five inherited. Candidate genes in all categories are summarised in Table 2-

6. Out of our cohort of 30, this represents a minimum diagnostic yield of 10%, although 

due to the relatively small size of the cohort, this estimate of 10% has a broad 95% 

confidence interval of 3.5% - 25.6%. 
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ID Sex De novo 

Inherited 
autosomal 
recessive (comp 
het) 

Inherited 
autosomal 
recessive 
(homozyg
ous) 

Inherited X-
linked CNV 

F1 M . HEPHL1; PRKDC; 
ZNF44 . 

BCORL1; 
FAM47A; 
KCNE1L; 
MAGEA6; 
ZCCHC12 

. 

F2 F GRIN2A 

FAM83E; 
KIAA1239; 
KIAA1755; LAMA5; 
MIA3 

. . . 

F31 M PPFIBP2 
C16orf91; C9orf79; 
CCDC144NL; 
NHSL1 

. CCDC22; 
SHROOM2 

[H2BFM; 
H2BFWT] 

F5 M . DLC1; TTN . 

FAM70A; 
FTHL17; 
GPR112; 
PCDH19; 
RBMXL3; 
WDR44 

. 

F6 F 

C11orf41; 
NF1; 
SMARCC2
; ZHX33 

FAM188B; RELN; 
RERE AXL . . 

F7 F UNC80; 
WFDC8 

MUC16; TSC22D1; 
TTN . . . 

F8 M CD244 LY75-CD302; TTN; 
WDR59 . 

PLXNB3; 
RBBP7; 
SRPX2 

. 

F9 M PARD3B 

ABCA13; COL6A6; 
GNAS; KIAA1462; 
MUC17; SRRM2; 
TRPM8 

. ATP2B3; 
CCDC22 . 

F10 F ATP6V1B2
; SEMA4D 

C19orf28; CDHR1; 
DNAH10; MACF1 . . . 

F11 M . REST . 
CITED1; 
MXRA5; 
NR0B1 

. 

F12 F . FRG1B; TTN; 
ZNF451 . . . 

F13 M . FRAS1; SPTBN5; 
TPO . 

ALG13; 
DDX26B; 
MAP7D3; 
TLR7 

. 

F14 F KCTD8; 
STX12 

ADNP; ANO7; 
CENPF; TDRD6 . . [GPM6B; 

OFD1] 
F15 F DOCK1 ABLIM3; VCAN . . . 

F161 M PPFIBP2 
C16orf91; C9orf79; 
CCDC144NL; 
NHSL1 

. SHROOM2 . 

F17 F . 
ABCA3; AKAP11; 
DEPDC1; PAFAH2; 
POM121C 

. . . 

F18 M ABCB9; PCCB; TTN; . CXorf57;  . 
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FAM3D ZFHX3 DUSP21; F9; 
FOXR2; 
HS6ST2; 
NKAP; 
RBMX2 

F194 M 
DNAJC133; 
NLRP1; 
PARD3B 

AHNAK2; 
C20orf90; 
CD163L1; DNAH1; 
DNAH5; DNAH6; 
FSTL4; PHLPP2 

ADAD2; 
PCNT 

COL4A6; 
GYG2; 
PNMA3; 
SATL1; 
SHROOM2 

[SSX3; 
SSX4; 
SSX4B] 

F20 M COL2A1 CHD7; EPB41L2; 
GPR98; VPS13D . 

FAM58A; 
MTCP1NB; 
PLXNA3; 
SLC10A3 

. 

F21 M . CACNA1H; PKHD1 KIF26A 

ARMCX2; 
EDA2R; 
HTATSF1; 
MAP7D3; 
MTMR8; 
MXRA5 

. 

F22 M TACR2 DECR1; DUOXA1; 
NEB; VPS13C PCDHB7 MAP7D3 . 

F23 M FGFR3 C1orf129; 
SHANK2; TTN GFM2 MAP3K15; 

MAP7D3 . 

F25 M PNLIPRP1; 
SMARCC1 HSPG2; IQGAP3 . 

BCOR; 
RAB40A; 
USP26 

. 

F26 M KDM5B; 
STAU2 GNRHR2 . HTATSF1; 

MTMR1; PIR . 

F272 F C2orf40; 
INSC . . . . 

F28 F PPP6R1 

CYP24A1; 
KIAA1109; 
KIAA1609; 
SLC39A11 

. . . 

F29 F . 

ABCA13; MCF2L2; 
NLRP12; 
POM121C; TTN; 
ZNF831 

TTN . . 

F31 F FMNL3 FAH . . . 
F32 F . . . . . 

F332 F SEC31B; 
EGFL63 AGRN; NUDT19 . . . 

 
Table 2 - 6: Summary of all candidate genes identified in 30 fetuses with structural 
abnormalities.  
Column headers indicate the type of variant associated with the candidate genes. Bold red text 
indicates variants that are highly likely to be causal. Bold orange text indicates variants that are 
possibly causal. Square brackets contain genes in a single CNV. 1Monozygotic twins; 2Siblings; 
3Synonymous de novo mutation; 4Indian ancestry. 
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2.4 Discussion 
 

2.4.1 Summary 

In this study, I analysed exome data from 30 parent-fetus trios with a range of fetal 

structural abnormalities detected from prenatal ultrasound. I identified rare, LOF or 

functional, de novo and inherited (X-linked or recessive) variants. I used a decision tree 

to interpret the variants, and together with colleagues decide which were likely to be 

causal. I found a degree of overlap between the genes I classified as causal using this 

subjective method, and genes prioritised by two different pieces of gene prioritisation 

software. For three fetuses (10%) I found mutations that were highly likely to be causal. 

For a further five fetuses (17%), I found variants that were possibly causal. This study 

is the largest published cohort of fetuses with structural abnormalities to have been 

exome sequenced to date, and suggests that exome sequencing is a viable diagnostic 

strategy in these cases. 

 

2.4.2 The diagnostic yield in context 

The diagnostic yield of this study was 10%. The typical diagnostic yield of microarrays 

in cohorts of fetuses with structural abnormalities is 6-10% (22, 34, 40). Only one of the 

causal mutations identified in this study was a CNV detected by microarray, which 

highlights the additional utility of exome sequencing, and demonstrates that the 

detection rate is increased over that achieved by karyotyping and microarrays alone. 

Nevertheless, our diagnostic rate is lower than that found in exome sequencing studies 

of rare postnatal diseases, which is typically around 25% (3, 11, 61). There are several 

possible reasons for this. First, our estimate of 10%, being based on a relatively small 

sample size, has a broad confidence interval of 3.5% - 25.6%, meaning that a 

diagnostic rate of up to 25% could be possible in prenatal samples, and the diagnostic 

rate in this study might just be lower just by chance. Second, it is likely that in some 

cases, variants in the same gene will have different phenotypic manifestations between 

prenatal and postnatal stages of development (124). It seems likely for example, that, 

for a given variant or gene, one might observe more severe phenotypes in utero, which 

may not be compatible with life postnatally. Given that I interpreted the data in this 
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study by comparing fetal phenotypes to available data, the vast majority of which is 

postnatal, this makes interpretation more difficult. Similarly, for some of the fetuses in 

this study the only phenotypic data came from ultrasound scans. There are many 

phenotypes that cannot be identified from an ultrasound scan including subtle 

morphological abnormalities, most metabolic phenotypes, and behavioural and 

cognitive deficits. This potentially incomplete phenotype data also complicates variant 

interpretation.  

In this study, we did not identify any novel disease-associated genes. This is 

unsurprising because the study is underpowered for this task because of the small 

cohort size, and variation in phenotypes. However, the recurrence of de novo 

mutations in PARD3B in two fetuses with non-overlapping phenotypes is intriguing. 

The probability of this happening by chance is small (p = 3.1 x 10-6, which does not 

quite reach the stringent Bonferroni-corrected significance threshold of p = 2.5 x 10-6, 

but is clearly close to it). Further work such as sequencing of PARD3B in larger cohorts 

of fetuses, or investigation of PARD3B function using model organisms, would shed 

more light on whether these mutations have a role in the phenotypes of these fetuses.  

 

2.4.3 Comparison of variant interpretation methods 

I interpreted the variants in this study using three methods: a decision tree, eXtasy and 

PhenoDigm. Each had advantages and disadvantages. The advantages of using a 

decision tree include the fact that it is thorough and wide-ranging. I was able to 

incorporate information from lots of different sources, not all of which are accessible to 

computational methods. For example, I could search the PubMed literature for studies 

about each gene. Computationally, this is a difficult task. While text-mining programs 

have improved greatly in recent years, they are still subject to technical limitations. 

Also, I could put different weights on different types of information, taking into account 

what I know about the biology of the phenotype. Again, this is something that would 

potentially be difficult to automate. For example, typically if a phenotype of an animal 

model and a human patient with variants in orthologous genes overlap, this strongly 

suggests that the variants might be causal in the patient. However, if a zebrafish model 

of a candidate gene found in a fetus with growth restriction had reduced body size, I 

would not necessarily think this is relevant, because I know that growth delay is a 

common, fairly non-specific phenotype in zebrafish disease models.  
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However, the decision tree method has two important disadvantages. First, the very 

flexibility that I have described leaves room for unconscious bias. I tried to limit this by 

taking a systematic approach, but there is no escaping the fact that it is a subjective 

method. For example, one distinction between my ‘highly likely to be causal’ and 

‘possibly causal’ categories relies on whether phenotypes overlap ‘to a high degree’, or 

‘somewhat’, respectively. There is no quantitative distinction between these groups.  

Second, it is a labour-intensive method. I estimate that it took me roughly 2-3 hours to 

categorise the candidate genes for each trio, depending on the number of candidates, 

and the amount of information available for those candidates. This method was 

therefore feasible for 30 trios, but would be out of the question for 1000 trios, and 

probably too slow even for 100 trios. This is why I additionally investigated two 

computational methods, both of which solve both of these problems. 

The variants categorised as interesting by eXtasy had some overlap with those I 

highlighted using the decision tree. Additionally, they were significantly enriched for de 

novo mutations. In particular, the results from eXtasy highlighted the possibility that 

MACF1 variants in F10 are possibly casual. While it is unsurprising that eXtasy 

prioritises known genes because it is trained on known disease-associated genes, 

these observations do emphasise the potential of eXtasy as a gene prioritisation tool, 

and highlight its potential for novel disease-associated gene discovery. However, there 

are several limitations to the program, too. Currently, it can only be used to prioritise 

non-synonymous SNVs. Also, it requires information on known genetic causes of the 

phenotypes of interest. If there are no known genetic causes of an observed 

phenotype, then the program cannot be used. Finally, it is not always obvious why 

eXtasy has prioritised a particular variant, when it is in a gene with no obvious link to 

phenotype. Clearly, the gene has some similarity to another gene known to cause the 

phenotype. However, the information about what that other gene is, and in what way it 

is similar, is not easy to extract. Therefore these cases are very difficult to interpret. 

Of the ten variants that I initially classified as highly likely to be causal or possibly 

causal, PhenoDigm also highlighted four of them as interesting. This is a promising 

degree of overlap. The main disadvantage of PhenoDigm is that if there is no animal 

model for a particular gene, it cannot be used. This limits its utility in practice, and 

means that it could not be used as the sole method of variant prioritisation, at least until 

a higher proportion of mouse genes have phenotyped knockouts. Similarly, there are 

cases where the phenotype of a human and the phenotype of a mouse with a variant 

on the orthologue of the same gene are not similar (125). While these cases are not 
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typical, they could lead to misleading results from PhenoDigm. The other disadvantage 

of PhenoDigm is that it can give a very significant score for a gene when there is 

overlap of a single phenotype. But this does not equate to a high degree of overall 

phenotypic overlap. For example, PhenoDigm identified ABCA3 as an interesting 

candidate in F17, because the mouse has a similar lung defect to the fetus. However, 

the fetus had 14 phenotypes, only two of which overlapped with the mouse. Almost all 

of the phenotypes of the mouse model had to do with the lungs, whereas the fetus had 

many additional affected systems that did not recapitulate in the mouse model. 

Therefore, I concluded that the ABCA3 variants are unlikely to be causal.  

From my comparison of these three methods, I concluded that each of the 

computational tools identified most of the same high priority candidates that the manual 

method did. However, they each have technical limitations. Furthermore, they currently 

have insufficient sensitivity and specificity to replace manual investigation by a 

researcher. For a large-scale exome sequencing project, my recommendation for a 

variant prioritisation approach, based on my experience described here, would be to 

employ at least two computational approaches of gene prioritisation. Where the results 

overlap, it is likely that those candidate genes are strong candidates, assuming that the 

programs take reasonably independent approaches, and assuming that huge genes 

such as TTN, which are often problematic in such approaches are considered 

separately. Candidates identified by one program but not the other should undergo 

manual curation by a researcher to decide whether they are likely to be causative. 

Finally, the technical limitations of the programs must be overcome. For example, 

eXtasy only prioritises non-synonymous SNVs, so all other categories of variants would 

have to be considered separately. In addition to this, it is necessary to use robust 

statistical assessment to determine whether the candidate variants were likely to have 

arisen by chance. 

 

2.4.4 The ethics of next generation sequencing for prenatal genetic diagnosis 

The many thorny ethical issues surrounding NGS in the clinical context have been 

extensively debated, chief among them are whether to report incidental findings, and 

how to report variants of unknown significance (VOUS) (126). In the prenatal context, 

the issues are similar but amplified, partly due to the possibility of termination of the 
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pregnancy. One possible application of prenatal sequencing that raises some unique 

ethical questions is widespread use in the general population.  

In some cases, widespread use of prenatal sequencing in the general population could 

identify a pathogenic variant that causes a severe, distressing, and lethal phenotype 

and is highly penetrant, at an earlier stage than an ultrasound scan could have found 

structural abnormalities. An example of such a variant might be missense changes in 

FGFR3 that cause thanatophoric dysplasia (23). In these scenario, earlier detection 

would undoubtedly be better for families. It would avoid potentially devastating news 

later in pregnancy, in the neonatal period, or even later in childhood. If the families 

elect to terminate the pregnancy, distress is generally less severe at an early stage of 

pregnancy. For families who choose to continue with the pregnancy, early diagnosis 

may offer a more accurate prognosis, more time to prepare, and in some cases the 

option to start treatments earlier. Therefore, such families would definitely benefit from 

prenatal sequencing.  

However, in other, less clear-cut cases, the disadvantages of widespread use of 

prenatal sequencing in the general population may outweigh the advantages. 

Identification of VOUS is virtually inevitable during prenatal sequencing. For example, a 

predicted pathogenic variant may be identified in a known developmental disorder 

gene, but if it has never been reported before it may be very difficult to accurately 

predict the phenotype. The ethical issues of returning VOUS to families have been 

considered in the context of CNVs discovered by aCGH. Some research suggests that 

receiving information on VOUS during pregnancy can be very distressing (127). 

Therefore, some researchers and clinicians think that they should not be reported to 

families, and that their detection should be limited in the first place by using targeted 

tests (37). Others think that it is paternalistic to withhold this information (128). If VOUS 

were to be returned, it is imperative that families receive extensive genetic counselling 

before and after prenatal sequencing. These issues are still under debate, and it is 

important for clinicians and researchers to come to a consensus on the issue of 

reporting VOUS, prior to any widespread use of prenatal exome sequencing in the 

general population, because interpreting variants identified by exome sequencing is 

generally more difficult than those identified by aCGH, and there will be a higher 

number of VOUS identified. 

Another question is whether return to families information on variants that are likely to 

cause late-onset disease, or have incomplete penetrance, such as a BRCA1 variant 
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that confers an 80% risk of developing cancer later in life (129). Some argue that 

families have a right to this information to do with what they will, even if it will result in 

increased termination rates, and termination of some healthy fetuses (130). An 

alternative is to do more targeted sequencing based on the indication for the test, so as 

to avoid incidental findings. 

There are currently more questions than answers regarding the ethics of widespread 

implementation of prenatal exome sequencing in the general population. Nevertheless, 

many pertinent issues have already been thoroughly discussed in the context of 

postnatal clinical sequencing, or interpretation of prenatal aCGH results. While prenatal 

exome sequencing clearly poses additional specific ethical challenges, it is likely that 

with continued open debate amongst clinicians and researchers, along with sensitive 

and thorough genetic counselling to families, these can be overcome.  

 

2.4.5 Next generation sequencing is the future of prenatal genetic diagnostics 

From a scientific perspective, it seems inevitable that NGS is the future of prenatal 

genetic diagnostics. Nevertheless, many questions remain to be answered before 

prenatal NGS could become widespread. These include issues of cost effectiveness, 

clinical utility, ethics, and interpretation of variants.  

To address some of these, the Wellcome Trust and the Department of Health in the UK 

have awarded a Health Innovation Challenge Fund grant to the collaborative Prenatal 

Assessment of Genomes and Exomes (PAGE) project. This will involve WTSI, the 

University of Cambridge, the University of Birmingham, Birmingham Women’s 

Foundation Trust, University College London and Great Ormond Street Hospital 

(London, UK). One thousand fetuses with structural abnormalities, along with maternal 

and paternal samples, will undergo exome sequencing or whole genome sequencing 

from invasively sampled material. The results of this study are expected to yield 

insights into the genetic causes of fetal abnormalities, and pave the way scientifically, 

clinically, and socially for large-scale implementation of NGS in the UK’s prenatal 

arena. Additionally, the increased size of the PAGE cohort compared to that of this 

study will increase power to identify novel disease-associated genes, and allow for a 

more accurate estimate of diagnostic yield. 

Exome sequencing is currently considered more cost-efficient than whole-genome 

sequencing for clinical diagnostic purposes. However, for several reasons, I predict an 
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eventual move towards whole-genome sequencing rather than exome sequencing for 

clinical diagnostic purposes, including in prenatal samples. First, there are many 

examples of non-coding variants that can cause congenital abnormalities including 

pancreatic agenesis and malformations of the digits (131, 132). These variants would 

usually not be detected by exome sequencing. Second, while the costs of NGS are 

falling rapidly, if the costs of the exome capture step do not fall in line with this, at some 

point whole-genome sequencing may become more cost-effective than exome 

sequencing (133). Third, in exonic regions that are difficult to capture (for example 

because they are GC-rich), whole genome sequencing actually results in higher 

sensitivity of variant calling in coding regions than exome sequencing does (63). 

Finally, a major reason why whole-genome sequencing is currently often avoided is 

that interpretation of non-coding variants is very difficult. However, with large-scale 

whole-genome projects being planned, this is also likely to start becoming easier (134). 

Another important advance in prenatal diagnostics would be the ability to detect de 

novo mutations non-invasively, by the sequencing of maternal cfDNA. Currently, this 

requires sequencing to a depth that has not yet been achieved genome-wide. Further 

technical advances in coming years are likely to render this possible, making this 

technique far more useful. For example, improvements in calling algorithms could 

reduce the required depth of coverage to detect de novo fetal variants. Another 

possibility is the development of supremely accurate whole genome amplification 

methods, which would allow a sufficient quantity of DNA to be obtained from a 

maternal plasma sample to achieve the required depth. This would also require 

continuing decreases in sequencing costs, because it would involve generation of a 

huge amount of data. 

In regard to this cohort, I think that the most fruitful next step would be to perform 

further, functional investigation of some of the ‘possibly causal’ candidate genes. For 

example, phenotypic investigation of a zebrafish PARD3B knockdown embryo might 

help to clarify the role of this gene in development. Similarly, there are currently no 

animal models of SMARCC2. While this gene may prove to be lethal if completely 

knocked out because it is a chromatin regulator, a heterozygous mouse or a zebrafish 

knockdown may be able to clarify whether the de novo SMARCC2 mutations found in 

F6 contributes to the phenotype.  

In conclusion, the main outcomes of this project are as follows. We have achieved an 

approximate diagnostic yield of 10% in this small cohort. All of these 10% were de 
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novo mutations, which would allow families to be counselled as to a low recurrence 

risk. We found possible genetic causes for an additional 17% of the cohort. While we 

could not confidently ascribe pathogenicity in these cases, these data might aid variant 

interpretation for other researchers who might come across candidate pathogenic 

variants in those genes. More widely, we have demonstrated the utility and efficacy of 

exome sequencing for the purposes of prenatal genetic diagnostics, and paved the 

way for the PAGE project to expand upon these findings. 

 

  


