
Chapter 2

Case-control association testing

using sequencing data

2.1 Introduction

The emergence of ‘next-generation’ technology has caused the cost of DNA sequenc-

ing to plummet over the last ten years. This has already led to a number of very

successful large-scale sequencing studies using healthy human populations, such as

the 1000 Genomes, UK10K, and Exome Aggregation Consortium projects. However,

researchers are now looking to extend this success to the identification of disease

risk variants using case-control cohorts. Through the direct capture of millions of

rare and low frequency variants, such studies offer an unprecedented opportunity

to better understand the genetic architecture of complex disease, uncover novel

associations underlying disease risk, and further resolve signals down to causal

variants of potential therapeutic relevance.

Despite the promise offered by such studies, in practice they are hampered by the

high costs associated with sequencing at scale, and the complexity of analysing such

data. One cost-saving approach that has been used very successfully in array-based

genome wide association studies is to borrow control samples from publicly-available

datasets, allowing a maximal number of disease cases to be assayed. However,
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30 Chapter 2. Case-control association testing using sequencing data

attempts to use the same study design in a sequencing setting are faced with a

number of difficulties associated with combining multi-source sequencing data at

scale. In particular, systematic biases in exome capture technology and sequencing

depth lead to crucial sensitivity and specificity differences when performing variant

calling; for case-control studies, the effects of these systematic biases can be observed

as a slew of false associations.

2.1.1 Chapter overview

In this chapter, I shall describe methods that can be used for the case-control

analysis of sequencing data in the presence of a known bias in sensitivity and

specificity between the cohorts, as may arise through systematic differences in,

amongst other things, sequencing depth. Existing methods to approach this problem

include the incorporation of population-level information, through the use of joint

calling, genotype refinement, and imputation into GWAS datasets, in order to

improve the ability to test for association at sites of low frequency variation.

For rare variation, where the minor allele is observed too infrequently for population-

based methods to be effective, I implement a new statistic proposed by Derkach

et al. (2014) that is able to account for systematic biases between cases and controls

directly in the association test. In order to obtain a well-behaved test statistic on

real data, I develop a number of additional filtering recommendations that can be

used to identify both errors and variants that are likely to be true sites of variation

but have been poorly captured in one of the groups due to systematically lower

sequencing depth.

Together, these methods demonstrate that it is possible, albeit difficult, to perform

large-scale association testing in sequencing data that suffers from widespread

systematic biases between cases and controls. This opens up the opportunity for

researchers to perform case-control analyses on datasets that have been obtained

from multiple sources, such as can often occur when merging datasets in large-scale

efforts by disease consortia, or when looking to maximise sample sizes in a fixed-cost

study through the use of publicly available control datasets.



2.1. Introduction 31

2.1.2 Contributions

In order to test the methods described here, I used a low coverage sequencing study

of inflammatory bowel disease performed by the UK IBD Genetics Consortium.

Variant calling, genotype refinement, and many of the quality control analyses on

this dataset were performed by Yang Luo. Further details on this dataset, and

those who contributed to preparing it, will be provided in Chapter 3. Of particular

relevance to the work in this chapter, the analysis of low quality sites using support

vector machines was performed by Yang Luo. Unless stated, I carried out all other

analyses.
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2.2 Next-generation sequencing studies

2.2.1 Study design considerations

Next-generation sequencing offers an exciting opportunity to improve our un-

derstanding of the genetics underlying complex traits. However, in reality this

excitement is tempered by the high costs still associated with sequencing. Because

expenditure increases approximately linearly with the number of short sequencing

reads produced, a crucial design decision in a fixed cost study revolves around how

best to distribute these reads to maximise information: towards increased sample

size, increased individual coverage, or an increased number of interrogated sites.

To date, the majority of sequencing studies have focused on the exome. This

cost-effective approach to sequencing captures just the protein-coding portion

of the genome to high coverage, which makes it well suited for use in clinical

diagnostics and the discovery of rare, coding disease variants. Initial studies were

therefore focused on individuals or small family groups with unexplained Mendelian

disorders. However, exome sequencing has seen an explosion in popularity over the

past decade, culminating in the recent release of over 60,000 exomes by the Exome

Aggregation Consortium (Lek et al., 2016). During this time, exome studies have

offered important insights into a number of aspects of human health and disease,

ranging from the identification of causal mutations in rare disorders (Choi et al.,

2009; Ng et al., 2010; Wright et al., 2015) and driver mutations in cancers (Barbieri

et al., 2012; Stephens et al., 2012), through to more general characterisations of

rare coding variation across large cohorts (Walter et al., 2015; Lek et al., 2016).

An alternative study design involves redistributing the sequencing reads to capture

the whole genome, but to much lower coverage. This allows for large sample sizes,

and the detection of potentially interesting non-coding variation, but comes at

the cost of data quality at the individual sample level. This type of study has

proven to be a valuable way of obtaining comprehensive genome-wide catalogues

of variation across human populations, via studies such as the 1000 Genomes and

UK10K projects (1000 Genomes Project Consortium et al., 2015; Walter et al.,

2015). Furthermore, through the cost-effective collection of large whole genome
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cohorts, such studies have led to the development of a haplotype reference panel

containing over 32,000 individuals, providing a very important public resource that

can be used for the accurate imputation of low frequency variants from existing

genotyping arrays (McCarthy et al., 2016).

2.2.2 Challenges of performing case-control analyses

These large-scale exome and low coverage whole genome efforts have highlighted not

only the importance of generating very large sequencing cohorts, to reveal patterns

of human population biology and provide vital resources for interpreting the clinical

relevance of variation, but also the practical difficulties in managing multi-source

data at this scale. The lack of a standardised approach for the generation of

sequencing data has resulted in a number of slight variations on the basic study

design, whether it be high-coverage exomes or low-coverage whole genomes, as

investigators try to fine-tune their designs to answer a variety of scientific questions.

As a result, when combining data from 14 different studies, the Exome Aggregation

Consortium pointed out that variations in exome capture technology and sequencing

depth across their 60,706 exomes required a joint analysis of such computational

intensity and analytical complexity that it would be impossible using the limited

resources available to most research centres (Lek et al., 2016).

I will note here that the systematic differences between cohorts being referred to

here are not the same as the batch effects that can arise through the course of

an experimental study. Just as is often seen with genotyping data, sequencing

studies are still plagued by such issues: the specific reagents and machines used,

slight variations in experimental conditions, or even the day on which a sample was

processed can all lead to differences in the quality of the data produced (Figure 2.1).

Naturally, these problems are important to consider, and indeed if samples are

processed at multiple sequencing facilities then these effects can become even more

pronounced. However, generally, these sorts of batch effects can be accounted for

using careful quality control.
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Figure 2.1: Batch effects observed in the 1000 Genomes project sequence data. Each row repesents

a different HapMap sample, sorted by processing date. Every sample was processed in the same

sequencing facility, using the same platform. Colours represent the standardised coverage data

for each sample: blue indicates three standard deviations below average, and orange indicates

three standard deviation above average. A large batch effect is observed between days 243 and

251. Figure sourced from Leek et al. (2010).

Of greater concern when combining sequence data from multiple sources are more

widespread systematic differences that have arisen due to variation in the study

designs. One example of this is the exome capture kit used, which defines the

regions of the genome that will be sequenced and (through variable probe efficacies)

the relative read depth that is likely to be obtained for certain regions. Systematic

differences in read depth can also be observed on a more global scale, when data

has simply been collected to different average coverages.

Because variants are detected in sequence data using the distribution of alleles

across all the reads that overlap at a given position, sequencing depth has a direct

impact on the sensitivity and specificity of variant calling. In particular, increased

read depth leads to both improved sensitivity (the detection of true variant sites)
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and improved specificity (the ability to distinguish true variants from sequencing

errors). As a result, a cohort sequenced to higher depth (whether that be globally

or locally) can be expected to contain more sites of true variation, and fewer errors,

than a cohort sequenced to lower average depth across the same regions.

This observation is likely to be a serious problem as we extend the success of

sequencing-based studies in healthy human populations to explore disease associa-

tions in case-control cohorts. I shall describe one such effort in Chapter 3, where

we use low coverage sequencing to search for rare and low frequency variation

associated with IBD. In that example, the cases were sequenced to a lower average

depth than the controls (which were sourced from the UK10K project), in order

to maximise sample size and therefore power to detect associations. Although

this study may represent a particularly extreme example of differing read depths

between cases (2-4x) and controls (7x), we envision that similar issues are likely

to arise in other studies that use publicly available controls to save on costs. In

this sort of case-control setting, any systematic differences between sequencing

data from different sources is likely to heavily bias attempts to perform association

testing.

In the following sections, I shall describe a range of methods that can be used to

overcome systematic differences in sequencing depth between cases and controls.

These consist of two broad approaches, depending on the prevalence of the variant

of interest in the population. Firstly, for more common variants, population level

information can be used to improve the overall sensitivity of both datasets and

reduce differences between cohorts, thereby allowing standard association testing

methods to be used. For rare variants, where this information is not available, I

instead describe the development of a new approach to perform association testing

in the presence of coverage bias between cases and controls.
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2.3 Low frequency and common variants

2.3.1 Joint calling across samples

A powerful means of overcoming systematic sequencing differences between cases

and controls at sites of low frequency and common variation is to perform joint

variant calling (Figure 2.2). This method uses population-level detail about a given

site to improve sensitivity to detect variation in carriers that have only intermediate

levels of sequence support. It also allows for better specificity in variant detection:

essentially, when more information is incorporated, it becomes easier to model

errors and detect false positives. This is particularly important for sequencing data

where, unlike the extensively curated variant lists that are included on genotyping

arrays, there has been no pre-selection for true sites of variation.

Figure 2.2: Calling variants jointly across a number of individuals can increase both the sensitivity

and specificity of variant detection. While some variants may be accurately captured through

variant calling on a single sample (A), for some individuals a lack of sequence support can cause

the variant to be missed (B). However, if the variant is jointly called across reads pooled from a

number of samples, these variants can be more accurately detected (B). Joint calling also helps

to improve the detection of errors (C).
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By performing variant calling jointly across the entire case-control cohort, the

genotype calls for all samples will utilise information from reads accumulated over

both cases and controls. This can greatly improve the sensitivity and specificity of

variant calling for both groups, and reduce calling differences that may have arisen

due to variations in average sequencing depths.

2.3.2 Genotype refinement

After joint calling, some variants that have been poorly captured for a given

individual can be improved using genotype refinement (Figure 2.3), which infers

specific genotypes by imputing from other individuals and neighbouring variation.

As Li (2011) explains, this method improves the genotype call for an individual, I,

who happens to have poor sequence coverage at the site of interest, S0. If there

are other samples that have high coverage at S0 then, if there exists a second site

S1 which is in high linkage disequilibrium with S0, and for which both I and the

other samples have sufficient sequence support, the likely genotype for individual I

at position S0 can be inferred.

Figure 2.3: Genotype refinement through imputation, where the poor quality genotype at position

S0 for individual I is improved by imputing from position S1.
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2.3.3 Imputation of GWAS cohorts

A combination of joint variant calling and genotype refinement is an effective

way of improving variant calls in sequencing data, particularly when the average

read depth is low. Both methods were used successfully in the 1000 Genomes

and UK10K projects to generate high-quality variant call sets, and when applied

simultaneously to both case and control cohorts they are also able to help alleviate

the variable sensitivity and specificity that can arise from systematic differences in

sequencing coverage (Figure 2.4).

Figure 2.4: I investigate the effect of read depth on sensitivity and specificity across the allele

frequency spectrum, for a range of average sequencing depths as shown with blue (2x), red (4x)

and yellow (7x) lines. Variants have been jointly called across three cohorts (1,767 2x, 2,513 4x,

and 3,652 7x samples), followed by genotype refinement. Sensitivity is then approximated as the

median number of variants called per individual. Compared to rare variant calls, which do not

have sufficient population-level information to be improved through joint calling and genotype

refinement, the differences in sensitivity between each cohort have been notably improved for low

frequency and common variation.

However, association testing using low frequency and common variation (MAF

≥ 0.1%) is still susceptible to residual bias due to sequencing depth. As will

be discussed in more detail in section 3.5, despite using joint calling, genotype

refinement, and very stringent quality control on our low coverage IBD sequences,

there was still an excess of extremely significant sites (P < 1×10−15) falling outside
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of known IBD-associated loci, the majority of which had a MAF < 5%. Most (if

not all) of these are likely to be false associations that simply reflect the greater

number of observations in the higher coverage group due to better sensitivity, rather

than any true effect on disease risk.

Although residual bias from sequencing depth differences can prevent case-control

association testing of low frequency variation in differentially sequenced cohorts

alone, these datasets still provide valuable imputation reference panels. With

quality variant call sets produced using joint calling and genotype refinement,

a set of haplotypes from across both cases and controls can be used to impute

these variants into large panels of genotyped individuals. This approach not only

increases sample size, and therefore power to detect associations, but will also

produce case-control datasets that are not affected by the original coverage bias

present in the sequenced reference panels. For example, imputation into GWAS

was used successfully by a recent case-control association study of Type 2 diabetes

to increase the utility of their low-coverage whole genome sequences (Fuchsberger

et al., 2016).

2.4 Rare variant association testing

Because the minor allele of a given rare variant is observed so infrequently, methods

that rely on the incorporation of population-level information, such as joint calling,

genotype refinement, and imputation, cannot be usefully applied (Figure 2.4).

This leads to two major issues when performing rare variant association studies in

case-control cohorts. Firstly, testing can only be performed in directly sequenced

individuals, limiting sample sizes. Given the scarcity of these variants in the

population, obtaining a significantly large difference in minor allele frequency

between cases and controls is simply not possible with achievable sample sizes.

Secondly, any systematic bias in read depth between the cohorts cannot be overcome

by processing the data prior to association testing, requiring new association test

statistics that are tailored to this specific situation. I shall discuss the development
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of an approach that can be used to address each of these problems in the following

sections.

2.4.1 Increasing power using burden testing

Single-variant association tests can only be successfully applied to rare variants if

the sample sizes are sufficiently large, or the variant effects are particularly strong.

Because of this, rare variant association testing generally relies on the aggregation of

signals from across multiple variants in order to increase power. The most common

methods by which variants are aggregated and their cumulative effects are tested

can be broadly broken into three categories: burden tests, variance-component tests,

and combined tests (Lee et al., 2014b; Moutsianas and Morris, 2014). Depending

on the underlying genetic architecture of the disease being tested, different methods

will be better powered to detect an association (Table 2.1).

The simplest approach is to perform a burden test, which combines information

across a number of variants in a target region (e.g. by counting the number of

occurrences of each minor allele) and then tests the resulting summary score.

However, such methods only work well if the majority of variants included are

causal, and all have the same direction of association with the trait. One way to

overcome these limitations is to use a variance component test, which compares the

observed variance with the expected variance of the distribution of allele frequencies

in a target region. If the variance is over-dispersed, meaning an increase from

the expected binomial variance, this can indicate a subset of variants that are

preferentially observed in either cases or controls (Figure 2.5). In this way, it is

possible to efficiently test for a combination of effect directions (risk, neutral or

protective), although this does come at the cost of reduced power if all variants do

in fact act in the same direction (Neale et al., 2011).
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Figure 2.5: An example of the distribution of recurrent, low frequency non-synoymous variants in

NOD2, comparing 350 CD cases to 350 controls. Each row defines variants observed n times in

the dataset, with the observations split between controls (left of the vertical line) and cases (right

of the vertical line). As an example, the n = 3 row describes three observed variants in red, one

seen in 3 cases and 0 controls, one seen in 2 cases and 1 control, and one seen in 1 case and 2

controls. The variance component test determines if there is a difference in the variance of the

observed data (red) and the binomial probability distribution (grey). Figure sourced from Neale

et al. (2011).

While variance component tests are generally the preferred approach when faced

with the aggregation of variable effect sizes and directions, their loss of power

compared to simple burden tests when effect direction is consistent means that

many people who are testing data of unknown genetic architecture will turn to

tests that combine both burden and variance component approaches. Rather than

simply applying each test separately and taking the minimum p-value, which can

lead to an inflated type I error rate, these combined tests attempt to find the

optimal linear combination of both the burden and variance-component tests (Lee

et al., 2012b).
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2.4.2 Accounting for differences in sensitivity and

specificity between cases and control

In general, the rare variant association tests discussed above assume the case and

control datasets have been well matched. In particular, the minor allele frequencies

to be tested are derived directly from genotype calls, thereby assuming that these

calls are equivalent for the two datasets. Unfortunately, when there are systematic

biases in coverage between the cohorts this assumption does not hold. In practice,

there is increased sensitivity to detect variation in the higher coverage group, and

decreased specificity to avoid errors in the lower coverage group (Figure 2.6). This

can lead to two types of false association signals: an excess of erroneous variants

that have been called in the lower coverage group, and an excess of true variant

calls in the higher coverage group that failed to be detected in the lower coverage

cohort. Depending on how different subsets of these variants (which have opposing

false signals) are selected for aggregation into a burden test, it is possible that

significant false associations may be observed.

Figure 2.6: The effect of read depth on the sensitivity and specificity of calling genotypes for rare

variants. Variants were jointly called across three cohorts (1,767 2x (blue), 2,513 4x (red), and

3,652 7x (yellow) samples), followed by genotype refinement. For singletons, which are observed

just once in the population, there is an excess of variants called in the 2x cohort, indicating a

loss of specificity at low coverage (panel A). For doubletons, which are observed twice in the

population, we see a more general pattern of increasing sensitivity as read depth is increased

(panel B).
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One way to overcome this issue would be to down-sample the higher coverage

group so that the average read depth is consistent across both cases and controls

prior to variant calling, and then perform association testing using one of the

standard methods from Table 2.1. However, this requires the removal of potentially

useful sequence information. To avoid the loss of valuable data, another commonly

proposed solution is to test for association using a logistic regression analysis that

includes the read depth as a covariate (Garner, 2011), or weights variants based

on quality scores (Daye et al., 2012). However, if the cases and controls can be

perfectly separated by read depth then it cannot be used as a covariate, as it will

cause the parameters of the logistic regression to no longer be estimable (Derkach

et al., 2014).

Instead, the solution I use here is to account for known differences in the sensitivity

and specificity of variant calling by replacing the hard genotype calls with genotype

dosages. Rather than discrete counts of the minor allele, such that a genotype

call for individual i at position j can be defined as Gij ∈ {0, 1, 2}, the dosage

is calculated as the expected genotype given the sequencing data D, such that

E (Gij|Dij) =
∑2

g=0 gP (Gij = g|Dij). Here, P (Gij = g|Dij) is the probability of

each genotype given the sequencing data. The resulting dosage estimate better

reflects the confidence of a variant call, allowing for the effects of read depth to be

incorporated into the test.

Association testing using genotype dosage

Skotte et al. (2012) developed a score statistic that performs association testing

using this genotype dosage data. Their statistic is derived from the joint likelihood of

phenotype and sequencing data across all individuals at a given locus (Equation 2.1).

This assumes that, across n samples, for any one individual i their phenotype Y

depends on the observed sequencing data D through the unobserved genotype G

at locus j.

P (Y = (Y1, ..., Yn) ,D = (D1j , ..., Dnj)) =
n∏

i=1

(
2∑

g=0

P (Yi|Gij = g)P (Gij = g,Dij)

)
(2.1)
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The main component of interest in this likelihood is the relationship between the phe-

notype and the genotype, P (Yi|Gij = g): if we were to consider logit (P (Yi|Gij = g)) =

B0 + B1g then a test to determine if the slope is null (H0 : B1 = 0) can be used to

indicate if there is any association between the two. Sj, the score statistic for B1,

has been derived in Equation 2.2, and has the variance as shown in Equation 2.3.

The corresponding test statistic Tj =
Sj

2

V ar(Sj)
is chi-squared, with one degree of

freedom. Under the null hypothesis, Sj = 0.

Sj =
n∑

i=1

(
Yi − Ȳ

)
E (Gij|Dij) (2.2)

V ar (Sj) =
∑
cases

(
1− Ȳ
)2

V ar (E (Gij|Dij)) +
∑

controls

(
Ȳ
)2

V ar (E (Gij|Dij))

(2.3)

Importantly, the variance of E(Gij|Dij) is read depth dependent. Intuitively,

as read depth increases the data will better reflect the true genotype, so that

E(Gij|Dij) will approach the true Gij while V ar(E(Gij|Dij)) approaches the true

V ar(Gij). This is because we obtain less information about the true genotype at

lower coverages, and thus the expected variance of the genotype given the data,

E(V ar(Gij|Dij)), is greater. At sufficiently high coverage, when we can consider

the data to perfectly reflect the true genotype, this value should converge to 0.

Therefore, by the law of total variances (Equation 2.4), estimating the variance

of the true genotypes using V ar(E(Gij|Dij)) will lead to an underestimate of this

value at low depths.

V ar(Gij) = V ar(E(Gij|Dij)) + E(V ar(Gij|Dij)) (2.4)

How this corresponds to the variance component of the test statistic depends on

the relative depths and sample sizes of the two groups, as the group with the

smallest sample size will contribute the most to the variance calculation, due to

the inclusion of the average phenotype Ȳ in the weights (see Equation 2.3). For
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example, if we assume that the high coverage group has sufficient information

to obtain reasonable variance estimates, while the lower coverage group does

not, then when NLow >> NHigh the variance component will be underestimated,

while if NHigh >> NLow the variance component may actually be overestimated.

Underestimation of the variance component will lead to an overinflated test statistic,

and vice versa.

Derkach et al. (2014) therefore proposed that, in the presence of systematic read

depth differences between cases and controls, a more accurate test statistic could

be obtained by calculating the variance components for the two groups separately

(Equation 2.5).

V̂ ar (Sj) = Ncase

(
Ncontrol

N

)2

V̂ arcase
(
E(Gij|Dij)

)
+Ncontrol

(
Ncase

N

)2

V̂ arcontrol
(
E(Gij|Dij)

) (2.5)

This ‘Robust Variance Score’ (RVS) statistic can be extended to perform a burden

test for multiple rare variants, using a similar approach as standard burden tests

like CAST and CMC. The individual variant score statistics are simply summed

together to given an overall score, while the variance component is calculated

by combining the covariance matrices of the cases and controls, after estimating

them separately. Unfortunately, however, the distribution of the resulting test

statistic for the joint variant analysis is unknown. Instead, a permutation-style

procedure needs to be used, whereby a p-value is generated by creating X bootstrap

samples and counting up the number of times they generate a test statistic that is

more significant than the original sample. Usually, evaluating significance using

permutation would involved randomly permuting case and control status, but the

different read depths between the groups precludes this. Instead, both the case

and control groups are separately centred around their respective means, and then

(still separately) sampled with replacement from these centred values, maintaining

the same numbers of cases and controls as the original sample. In this way, the

difference between the groups is reduced to one dimension (variance only), forming
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an empirical null set from which bootstrap samples can be generated without

swapping case and control status (Derkach et al., 2014).

2.4.3 Testing in a dataset with systematic read depth bias

between cases and controls

In order to test the performance of the RVS in the presence of a known systematic

bias in read depth between cases and controls, I considered a low coverage whole

genome sequencing study of inflammatory bowel disease. The sample collection,

sequencing and quality control procedures used to generate this dataset will be

described in more detail in Chapter 3. However, briefly, it consists of 1,767 patients

with ulcerative colitis (median coverage of 2x), 2,513 patients with Crohn’s disease

(4x), and 3,652 population controls (7x).

Implementing the RVS statistic in C++

Testing a dataset of this size using the original R implementation of the RVS

statistic as provided by Derkach et al. (2014) would lead to extensive computer

memory demands and excessive run times, such that it was not possible even

given the sizeable computational resources available at the Wellcome Trust Sanger

Institute. I therefore had to first implement the RVS statistic as an extension to

the software ANGSD (Korneliussen et al., 2014), which makes use of the compiled

language C++ and multi-threading to generate much more efficient run times. My

implementation can be found at https://github.com/katiedelange/angsd.

I developed the algorithm described in Box 2.1 to perform the RVS association test

within the framework defined by ANGSD. I optimised this solution to minimise

memory requirements (currently the most limiting resource within the cluster

computer framework to be used for association testing) and made use of multi-

threading in order to parallelise steps wherever possible.
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Box 2.1: Algorithm used to implement the RVS statistic within the ANGSD framework.

// Request the f o l l ow i n g inpu t s from the user

− The number o f burn−in boots t rap resampl ing permutat ions to

perform be fo r e s i g n i f i c a n c e i s eva luated

− The number o f boots t rap resampl ing permutat ions to perform

(−1 s p e c i f i e s that adapt ive permutation should be used )

// Extrac t the r e l e v an t summary data from the genotype p r o b a b i l i t i e s

For each s i t e j

For each i nd i v i dua l i

Compute and s t o r e the expected genotype

E(Gij |Dij) =
∑

g P (Gij = g|Dij) , f o r g=0 ,1 ,2

Compute and s t o r e the expected var iance

V ar(Gij = g|Dij) = E(G2
i |Dij)− E(Gij |Dij)

2

Determine the populat ion a l l e l e f requency es t imate

(Gij |Dij)/2N ac r o s s both samples at t h i s s i t e .

// Compute the score s t a t i s t i c components f o r the unpermuted sample

Append the burden s co r e S to the l i s t o f s c o r e s

S =
∑N

j=0(Sj) , where Sj =
∑

(Yi − Ȳ )E(Gij |Dij)

Append the burden var i ance V ar(S) to the l i s t o f va r i anc e s

V ar(S) =
∑

i

∑
j

∑
k cov(E(Gij |Dij), E(Gik|Dik)

// Centre the s t o r ed genotype dosages around t h e i r r e s p e c t i v e means

Separate ly f o r ca s e s and c on t r o l s

For each s i t e j

Compute the mean expected genotype

Subtract t h i s from each i nd i v i dua l us ing a matrix trans form

// Run permutat ion t e s t i n g to e va l ua t e the s i g n i f i c a n c e o f the t e s t

For the reques ted number o f permutat ions

Separate ly f o r N0 c on t r o l s and N1 ca s e s

Randomly sample N(0,1) t imes ( with replacement )

Append the permuted sample s co r e S to the l i s t o f s c o r e s

Append the permuted sample var i ance V ar(S) to the l i s t o f va r i anc e s

// Return the f r a c t i o n o f t imes t ha t a permuted sample i s more

// s i g n i f i c a n t than the o r i g i n a l sample
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Performance of the RVS in systematically biased data

I tested the performance of the RVS burden test on rare (0.0001<MAF<0.01) func-

tional coding variation within genes. I define functional coding variants to be those

with one of the following Variant Effect Predictor (McLaren et al., 2010) annota-

tions: frameshift variant, stop gained, initiator codon variant, splice donor variant,

splice acceptor variant, missense variant, stop lost, inframe deletion, or inframe ins-

ertion. The MAF range used is also defined so as to exclude singletons, due to

the lack of specificity at this frequency for very low coverage data (Figure 2.6).

Despite these restrictions, I observe a very large excess of apparently significant

associations after 106 permutations (Figure 2.7), and systematic over-inflation of

the test statistic (λ = 1.34).

Figure 2.7: Burden testing using the RVS statistic (up to 1,000,000 permutations) on rare

(0.0001<MAF<0.01) functional coding variation within genes.

When trying to determine why this statistic does not appear to be adjusting for

the systematic coverage bias in this dataset as well as the authors suggest it will

(Derkach et al., 2014), I note that there are a few crucial assumptions that must be

met. In particular, the method assumes that 1) the variants being tested are true

sites of variation; and 2) a variant has been successfully detected if it is present.

However, particularly when dealing with rare variants in very low coverage datasets,

it is likely that these assumptions will be violated at a number of tested sites. This
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includes both errors that have been mistakenly included in the lower coverage group

due to reduced specificity, and rare variants that have failed to be detected in the

lower coverage group due to reduced sensitivity. I therefore looked to modify the

standard sequencing quality control procedure that was applied to this test dataset

(see Chapter 3 for details) to include additional filters tailored to rare variants, in

order to both better remove potential errors and try to identify sites that, whilst

true sites of variation, failed to be identified in one group due to low coverage

(rather than disease association).

2.4.4 Adjusting the quality control procedures

Identifying variants sites that were missed at lower coverage

I first focus on trying to deal with rare variant calls that are likely to be true

sites of variation, but were missed in the lower coverage group due to a lack of

sensitivity. Hu et al. (2016) show that this particular problem can sometimes be

overcome by modelling the error rate and using it to predict loci that are likely to

be true variants. In particular, they aim to include the maximal set of possible

variants in the test, applying only minimal filtering to try and remove sites that

are predicted to be truly monomorphic in both datasets. This is done by screening

out sites that are predicted to be uninformative, in that they have a score S = 0

and therefore do not contribute to the burden test. However, because this minimal

screening step is unlikely to capture all problematic sites, they then adjust the

permutation procedure to try and generate bootstrap datasets that have identical

allele frequencies between cases and controls, but match the read depths, error

rates, and the number of true variants and monomorphic loci that are seen in

the original dataset. Unfortunately, this method relies on a sufficiently strong

signal-to-noise ratio at very rare sites in at least one of the groups being tested, in

order to properly model errors for the initial screening step. For situations where

both cases and controls are of low coverage, this method is not expected to offer

any significant advantages over Derkach et al’s RVS model.
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I therefore looked to capture these sites as part of the filtering process instead, by

trying to measure how accurately a given site is likely to have been captured across

all the individuals in each cohort. To do this, I calculate the INFO score α, which

can be interpreted as describing the amount of ‘missing’ information such that the

observed data at a site is equivalent to a set of perfectly observed genotypes in a

sample of size αN (Marchini and Howie, 2010), separately for each cohort. It is

computed using the likelihood of the true population allele frequency θj at a given

site j if we had observed genotypes Gij, as shown in Equation 2.6.

L(θj) =
N∏
i=1

θ
Gij

j (1− θj)
2−Gij (2.6)

The score (first derivative) and information (second derivative) for this likelihood

are shown in Equations 2.7 and 2.8, where N is the sample size, and X =
∑N

i=1 Gij .

The score reflects how sensitively L(θj) depends on θj, while the information

describes how much information the observable variable Gij carries about θj.

U(θj) =
d logL(θj)

dθj
=

X − 2Nθj
θj(1− θj)

(2.7)

I(θj) =
d2 logL(θj)

dθ2j
=

X

θ2j
+

2N −X

(1− θj)2
(2.8)

If we then consider that the genotypes Gij are not perfectly observable, but are

instead approximated through the data Dij, we can compute a similar likelihood

for the allele frequency parameter θj that is integrated over the missing data that

comes from estimating Gij using Dij (Equation 2.9). In order to do this, the data

is partitioned into the observed data YO and the missing data YM .

L∗(θj, YO) = log(P (YO|θ)) = log

∫
P (YO, YM |θ) dYM . (2.9)

The score and information of this observed data likelihood is heavily related to

that of the full likelihood, as shown in Equations 2.10 and 2.11 (Louis, 1982).
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U∗(θ) =
dL∗(θj)
dθj

= EYM |YO.Gij
[U(θj)] (2.10)

I∗(θj) =
d2L∗(θj)

dθ2j
= EYM |YO.Gij

[I(θj)]− VYM |YO.Gij
[U(θj)] (2.11)

Of particular interest here is the information statistic, which we can use to describe

the amount of missing information about the true allele frequency due to estima-

tion using observed data as opposed to true genotypes. If we consider I∗(θj) to

represent the observed information, and EYM |YO.Gij
[I(θj)] the complete information,

it follows that VYM |YO.Gij
[U(θj)] is the missing information. These components can

be calculated using Equations 2.12 and 2.13. Importantly, we can see that the top

line of Equation 2.13 is actually calculating V ar(Gij|Dij): as mentioned earlier,

this converges to 0 as the read depth improves. Therefore, we expect more missing

data in lower coverage samples.

EYM |YO.Gij
[I(θj)] =

2N

θ̂(1− θ̂)
(2.12)

VYM |YO.Gij
[U(θj)] =

∑N
i=1 E(Gij|Dij)− E(G2

ij|Dij)

θ̂2(1− θ̂)2
(2.13)

Using these two terms, we can compute the ratio of observed data to complete

data (Equation 2.14), giving the INFO score α that can then be used to generate

an effective sample size αN for the amount of informative data in the sample set

at site j.

α =
EYM |YO.Gij

[I(θj)]− VYM |YO.Gij
[U(θj)]

EYM |YO.Gij
[I(θj)]

(2.14)

This INFO score provides an estimate of how well a variant has been captured

across all the individuals in each cohort, and (as can be seen in Equations 2.12

and 2.13) is also closely related to the terms being tested by the RVS statistic. I
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therefore computed this statistic for each site separately in each of the test cohorts,

and plotted the distributions as shown in Figure 2.8.

Figure 2.8: The distribution of the INFO score for 2x (blue), 4x (red) and 7x (yellow) data across

a range of minor allele frequencies.

Immediately apparent are the large differences in median INFO scores between

each of the cohorts below a minor allele frequency of ∼ 2%. This is particularly

pronounced for very rare variants, where the datasets sequenced to 2-4x average

coverage retain almost no information about sites with a MAF < 0.2%. Given

these observations, it is unsurprising that a score statistic calculated using datasets

that are so distinct in their ability to capture the true genotypes resulted in such

an excess of false positive associations. However, the extent to which each cohort

differed on their median INFO measure, and how this changed between rare and

common sites, was more unexpected.

One possibility is that this effect may be related to the use of genotype refinement

via imputation, which is the major MAF-dependent factor affecting the genotype

probabilities from which both the INFO score and RVS statistic are calculated. This

process aims to remove noise and improve confidence in genotype calls made: in

essence, producing a set of ’smoothed’ genotype probabilities through the incorpora-

tion of population-level information. However when the true signal is low, such as for

sites of rare variation, it may be that this refinement step is overzealous. To evaluate

if this is the case, I investigated the use of genotype probabilities generated directly

from the samtools Genotype Quality (GQ) field, without any genotype refinement.
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The GQ value represents the phred-scaled genotype probability of the most likely

genotype, as calculated by GQ= −10 log10 max
(
P (Gij = g|Dij) , for g ∈ {0, 1, 2}

)
.

Unfortunately, this does not provide enough information to resolve all three possible

genotype probabilities (homozygous reference, RR; heterozygous, RA; and homozy-

gous alternate, AA). Therefore, in order to produce a set of genotype probabilities

I assign the probability reflected in the GQ score to the genotype called in the

VCF file, and all the remaining probability to the most likely alternate call:

P (Call) = 1− 10

−GQ

10

P (Alt) = 1− P (Call)

P (Remainder) = 0

When the called genotype is homozygous, the next most likely genotype is assumed

to be the heterozygous genotype (i.e. if Call=RR or AA, then Alt=RA). If the

genotype call was heterozygous I assume, given the low MAF (≤ 0.01) of the

variants being considered for burden testing, that the rare homozygote is not likely

to be observed and thus I define the next most likely genotype as being homozygous

reference (i.e. Call=RA, Alt=RR).

I compute these unrefined genotype probabilities across the complete dataset, and

recalculate the INFO score separately for each of the three cohorts, across all sites.

As can be seen in Figure 2.9, using unrefined genotype data leads to a dramatic

improvement in the amount of information obtained at sites of rarer variation (MAF

≤ 2%). The utility of performing genotype refinement at common sites is also

apparent, with improved INFO score distributions for higher MAFs (particularly

MAF ≥ 10%, Figure 2.8).
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Figure 2.9: The distribution of the INFO score for 2x (blue), 4x (red) and 7x (yellow) data across

a range of minor allele frequencies, using raw genotype probabilities estimated directly from the

samtools genotype quality score.

In order to minimise the possible differences in INFO score between the case and

control cohorts during association testing, and thus attempt to reduce the inclusion

of rare variants that have been detected in the high coverage group but missed in

the low coverage group due to reduced sensitivity, I filter out any sites with INFO

< 0.6 in either of the relevant cohorts for each test. In general, this allows more

sites to be retained when comparing the 4x cases (as opposed to the 2x cases) to

the 7x controls.

Additional error filtering

I then applied the following additional quality control filters, to try and reduce the

number of erroneous sites included (particularly from the lower coverage group,

which has poorer specificity during variant calling):

– Sites with a missingness rate > 0.9. When using unrefined genotype proba-

bilities, the missingness rate across all sites is greatly increased, compared to

the refined set that has attempted to infer a number of missing genotypes. I

remove any sites with a high number of samples where a genotype could not

be called.



56 Chapter 2. Case-control association testing using sequencing data

– Sites with low confidence observations comprising ≥ 1% of non-missing data.

I define a low confidence observation as one with a maximum genotype

probability ≤ 0.9. This filter helps to capture sites where it is particularly

difficult to confidently call variants, or where a large number of samples

happen to have particularly low coverage.

– ‘Uncertain’ sites. These are sites that I first identified by analysing some of

the most significant associations originally produced by the RVS, that did

not lie in known IBD loci. In general, I noted a number of sites with low

quality scores and a high proportion of individuals with a maximum genotype

probability less than one (although not sufficiently low so as to be captured by

the low-confidence filter described above). As can be seen in Figure 2.10, these

sites have quite different distributions of genotype probabilities compared

to high-quality sites. In order to systematically detect such variants, I used

the output of five independent Support Vector Machines (SVMs) that were

trained on 1,000 high-quality sites that overlapped with the HapMap3 dataset

(Altshuler et al., 2010), and 1,000 poor-quality sites with a quality score < 10

in the raw VCF files. Any site with an SVM score < 0.1 in any of the five

runs was removed.

Figure 2.10: An example of a site captured to high quality (panel A), compared to a site

with mostly low confidence genotype probabilities (panel B).
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Using these additional quality control filters, and unrefined genotype probabilities,

I repeated the RVS burden test on rare (0.0001<MAF<0.01) functional coding

variation within genes. As can be seen in Figure 2.11, the Type I (false positive)

error rate is now properly controlled and no systematic over-inflation of the test

statistic is observed (λ=1.06).

Figure 2.11: The performance of the RVS statistic in a dataset with systematic read depth bias

between the cases (4,280 samples at 2-4x coverage) and controls (3,652 samples at 7x).

2.4.5 Increasing the size of the burden test

The logical extension of these gene-based rare variant burden tests is to combine

individual tests together into larger, more powerful, gene set tests. However, the

RVS statistic is a simple burden test, and does not account for potential differences

in the direction of effect of its constituent variants. Within individual genes, one

possible way to try and overcome this is to select for variation that is predicted to

have a damaging effect on the protein, in the hope that all variation affecting a

given gene will therefore act in the same direction. However, for larger gene set

tests this is unlikely to help, particularly as previous research has already shown

that loss of some genes will lead to an increase in risk, while loss of others will

be protective. For example, if we consider just the two most strongly associated

genes in IBD, variation in NOD2 is risk-increasing, while variation in IL23R is

risk-decreasing.
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I therefore extended the RVS statistic to perform larger burden set tests using

an enrichment procedure that allows for opposing directions of effect. For each

gene (or other form of primary aggregation set, such as enhancers or promoters),

the absolute scores are summed together to form an overall score statistic that

is independent of effect direction. Overall variances are also summed together,

meaning that whilst covariance is included when computing the variance component

for an individual gene, the inter-gene covariance is not accounted for. This decision

was made in order to greatly reduce the number of between-variant comparisons

that were required, which generated massive improvements in the computational

efficiency of this method. However, overall I expect the loss of inter-gene covariances

to be of minimal consequence. In general, covariance is used to capture the effects

of linkage disequilibrium between variants in the test, increasing the overall variance

component of the test statistic when highly-correlated variants are present, in order

to avoid over-estimating the significance of an association. It is therefore retained

for individual gene tests, where all included variation is in very close proximity, but

overall it is expected to be relatively small given the rarity of the variants being

tested (and therefore their low correlation with other variation in the region). For

gene set tests in particular, where many of the contributing genes are not even on

the same chromosome, linkage disequilibrium between variants from different genes

should be very low.

The resulting set statistic is then divided by the equivalent statistic produced

using the set consisting of all genes, in an approach based on the SMP method

devised by Purcell et al. (2014). Accounting for the exome-wide statistic in this

way helps to remove any residual case-control coverage bias that may accumulate

over the large numbers of variants contributing to these gene set tests. Significance

is evaluated using permutation testing, where individual gene statistics are re-

computed in bootstrapped samples (with the exact same samples drawn for every

gene during each permutation round) and summed to produce both set and exome-

wide permutation statistics.
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2.5 Discussion

Large-scale sequencing studies such as the Exome Aggregation Consortium (Lek

et al., 2016), the 1000 Genomes project (1000 Genomes Project Consortium et al.,

2015), and the UK10K project (Walter et al., 2015) have revealed important insights

into human population biology, and provided vital resources for interpreting the

clinical relevance of variation. However, they have also highlighted the practical

difficulties associated with combining multi-source sequencing data at scale, as

systematic biases in exome capture technology and sequencing depth lead to crucial

sensitivity and specificity differences when performing variant calling. As researchers

now look to extend the success of these cohort studies to investigate genetic disease

risk using large case-control comparisons, the effects of these systematic biases can

be observed as a slew of false associations.

In this chapter, I have described various methods that can be used to overcome

systematic biases in read depth in a case-control setting, in order to prevent over-

inflation of the test statistic and tightly control the Type I error rate. While the

effects of sequencing coverage can be largely overcome at sites of low frequency

variation, through joint calling of variants followed by genotype refinement, ulti-

mately disease associations for such variants are best tested by imputing them

into the wealth of existing GWAS cohorts currently available. Not only does this

increase sample size, and therefore power to detect association, but the resulting

imputed sequences will not be affected by any of the systematic sequencing biases

present in the original cohorts.

For rare variation, which is poorly correlated with nearby variation and therefore

cannot be accurately imputed, studies must be performed in the directly sequenced

data. As the rare allele for these sites is observed so infrequently in the population,

joint calling and genotype refinement offer little power to alleviate the effects of

sequencing depth on the sensitivity and specificity of variant calling. Rare variant

association testing in the presence of systematic read depth bias between cases and

controls therefore required the development of a novel approach that accounts for

this bias directly in the association test.
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To this end, I implemented the RVS statistic described by Derkach et al. (2014),

which adjusts for read depth bias by using genotype dosages (as opposed to hard

genotype calls) and calculating the variance component of the test statistic (which is

read depth dependent) separately for cases and controls. I then test the performance

of this statistic in real data, using cases that had been sequenced at 2-4x average

coverage, and controls that were sequenced to 7x. Unfortunately, when using a

standard sequencing processing and quality control pipeline, this statistic failed to

control the Type I error rate. However, I overcame this problem by reverting to

the use of unrefined genotype probabilities, as the genotype refinement process is

overzealous when acting upon sites of rare variation, and applying additional quality

control filters. Using these adjustments, the number of false positive associations

when performing rare variant burden testing across genes can be well controlled,

and no systematic over-inflation of the test statistic is observed.

This process has emphasised the difficulties associated with performing large-scale

sequencing studies, particularly in a case-control setting. However, I have also

shown that, through the use of carefully chosen methods and very stringent quality

control, it is possible to perform association testing on this scale even in the presence

of systematic read depth bias between cases and controls. This analysis proves that

it is feasible for researchers to cost-effectively investigate the role of low frequency

and rare variation in genetic disease risk by combining their own sequenced cases

with large, publicly-available control datasets.


