
Chapter 3

The role of rare and low

frequency variation in IBD risk

3.1 Introduction

Genome wide association studies (GWAS) have identified 215 risk loci for inflam-

matory bowel disease (Parkes et al., 2007; Anderson et al., 2011; Kenny et al.,

2012; Yamazaki et al., 2013; Julià et al., 2014; Yang et al., 2014b; Liu et al., 2015;

Ellinghaus et al., 2016), nearly all of which are driven by common variation. The

high correlation between common variants in close proximity has driven the success

of GWAS, but also makes it difficult to narrow these associations down to individual

causal variants, or even to identify which gene is likely to be affected. In contrast,

rare variants (which plausibly have larger effect sizes) can be more straightforward

to interpret, but are more difficult to assess. Because they are poorly tagged by

neighbouring variation, each rare variant must be directly captured in order to be

tested for association.

Recent reductions in the cost of DNA sequencing means that rare variants may now

be captured at scale. In order to maximise sample size, early IBD sequencing studies

concentrated on genes in GWAS-implicated loci (Rivas et al., 2011; Beaudoin et al.,

2013; Hunt et al., 2013; Prescott et al., 2015), which can logically be extended to
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62 Chapter 3. The role of rare and low frequency variation in IBD risk

study the entire exome. However, coding variation has been shown to explain at

most 20% of the IBD associations uncovered using GWAS (Huang et al., 2015),

with the remaining variants lying in non-coding, presumed regulatory, regions of the

genome. Low coverage whole genome sequencing has therefore been suggested as a

cost-effective approach to capture both coding and non-coding variation in large

numbers of samples (Li et al., 2011). This approach is well suited to explore rarer

variants than are accessible using GWAS (Cai et al., 2015; Danjou et al., 2015),

although the low individual sequencing depth precludes the capture of extremely

rare and private mutations.

3.1.1 Chapter overview

In this chapter, I investigate the role of rare, low frequency and structural variation

in inflammatory bowel disease risk using low coverage whole genome sequences

from 4,280 IBD cases and 3,652 controls. In order to maximise the number of IBD

patients included in this study, the cases were sequenced to a lower average depth

(2-4x) than the controls (7x), which were already available via managed access

from the UK10K project (Walter et al., 2015). For structural variants, which are

particularly challenging to call in low coverage data, even very careful filtering

and joint analysis was not sufficient to overcome this bias. However, for rare and

low frequency variation the use of joint calling, genotype refinement, and specially

designed test statistics (Chapter 2) allows the false positive rate to be adequately

controlled.

I observe a significant burden of rare, damaging missense variation in the gene NOD2,

as well as a more general burden of such variation amongst known inflammatory

bowel disease risk genes. However, I note the need to perform larger sequence-based

studies in order to properly resolve the precise variation that is contributing to this

observation. At current sample sizes, I do not detect any burden of rare variation

within cell- and tissue-specific enhancer regions.

In collaboration, I then impute from these sequences into both new and existing

GWAS cohorts in order to test for association at ∼12 million low frequency variants

across 16,267 cases and 18,841 controls. We discovered a missense variant in
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ADCY7 that approximately doubles the risk of ulcerative colitis (MAF=0.6%,

OR=2.19). However, despite good power to detect such associations, we did not

identify any other new low frequency risk variants, suggesting that such variants as

a class explain very little disease heritability.

3.1.2 Contributions

This study was conceived and designed by the UK IBD Genetics Consortium

(UKIBDGC), with case ascertainment, phenotyping and sample collection performed

by the numerous clinics that contribute to this effort: please see Appendix A for

a full list of contributors. DNA sample preparation, sequencing, read alignment,

and initial quality control of the whole genome sequences used in this chapter was

performed by the Wellcome Trust Sanger Institute sequencing pipeline facility and

the human genetics informatics team. Calling of single nucleotide polymorphisms

and insertion-deletions, genotype refinement, quality control analyses (except where

indicated), and heritability analyses were performed by Yang Luo. Code for

identifying variants predicted to create or disrupt a transcription factor binding

motif was provided by Hailiang Huang. Imputation of GWAS datasets using an

IBD-specific reference panel was performed by Shane McCarthy; quality control

and conditional analysis of the resulting meta-analysis was performed by Loukas

Moutsianas. Analysis of the UK BioBank replication cohort was performed by

Luke Jostins. Unless stated, I carried out all other analyses.
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3.2 Data preparation

3.2.1 Low coverage whole genome sequencing

Sample ascertainment

Individuals were consented into the study based on a confirmed diagnosis of

Crohn’s disease or ulcerative colitis using standard endoscopic, radiological and

histopathological criteria. No selection was made for patients based on family

history or early age of onset, and all subtypes of CD and UC were included. Blood

or saliva samples were donated for DNA extraction at UK clinics involved in the

UK IBD Genetics Consortium (Cambridge, Dundee, Edinburgh, Exeter, London,

Manchester, Newcastle, Norwich, Nottingham, Oxford, Sheffield, Torbay and the

Scottish early onset IBD project). Ethical approval was granted by the Cambridge

MREC (reference: 03/5/012).

Control samples were collected by the UK10K Consortium, including individuals

from both the Avon Longitudinal Study of Parents and Children (Boyd et al., 2013)

and the Twins UK cohort (Moayyeri et al., 2013). Full details of selection criteria

may be found in the UK10K flagship paper by Walter et al. (2015).

Sequencing and data processing

Whole genome sequencing of 1,817 ulcerative colitis cases at 2x average coverage,

and 2,697 Crohn’s disease cases at 4x average coverage, was performed at the

Wellcome Trust Sanger Institute (WTSI). For each sample, 1-3μg of DNA was

sheared to 100-1000bp using a Covaris E210 or LE220 machine, then prepared for

sequencing using an Illumina paired-end DNA library preparation kit. The resulting

libraries were selected for insert sizes of 300-500bp, and then sequenced on the

Illumina HiSeq platform as paired-end 100bp reads (according to the manufacturer’s

protocol). Controls were whole genome sequenced to 7x average coverage using the

same protocol, with 1,556 samples processed at the WTSI and 2,354 at the Beijing

Genomics Institute (BGI).
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Sequencing reads were aligned to the human reference genome by their respective

sequencing centres. Case data was aligned to hs37d5, the reference genome used in

Phase II of the 1000 Genomes Project (The 1000 Genomes Project Consortium,

2011), which consists of the GrCH37 primary assembly plus sequences from human

herpesvirus and concatenated decoy sequences. Control data was originally aligned

to the GrCH37 primary assembly that was used in Phase I of the 1000 Genomes

Project (The 1000 Genomes Project Consortium, 2010), but was later updated

to hs37d5 using the software BridgeBuilder (Luo et al., 2017). Automatic quality

control of the resulting BAM files was performed by the WTSI pipelines.

3.2.2 Variant calling and imputation improvement

Generating a SNP and indel call set

Single nucleotide polymorphisms (SNPs) and small insertion-deletions (indels) were

called jointly across 8,354 pooled sample-level BAM files that passed automatic

quality control. First, genotype likelihoods were obtained using samtools-0.19 (Li

et al., 2009) and then converted to variant calls with bcftools-0.19 (Li et al., 2013b).

Before refinement of these genotypes via imputation improvement, initial quality

control was applied to remove low-confidence sites.

Initial SNP filtering

A set of Support Vector Machines (SVMs) were trained to identify poor quality

SNP calls. Training data consisted of 1, 000 sites that overlapped with HapMap3

(Altshuler et al., 2010), and were therefore deemed highly likely to be true sites of

variation, and 1, 000 sites with a quality score QUAL < 10 in the raw VCF file.

Because the composition of HapMap3 (and established variant databases in general)

is heavily skewed towards common variation, training variants were selected so as

to roughly preserve the expected true MAF distribution in the human population

within three MAF bins (0 ≤MAF< 0.5%, 0.5% ≤MAF< 5%, and MAF≥ 5%).

The models were then trained using the following variant call features:

– DP: Raw read depth
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– MQ: Root-mean-square mapping quality of reads covering the site

– AN: Total number of alleles in called genotypes

– MDV: Maximum number of high-quality non-reference reads in samples

– EDB: End distance bias

– RPB: Read position bias

Five independent SVMs were run in parallel, and only SNPs labelled as high-quality

by at least two of the five SVMs were taken forward for imputation improvement.

Initial indel filtering

Indels were filtered using VQSR, or Variant Quality Score Recalibration (DePristo

et al., 2011), trained on the Mills-Devine high-confidence indel call set (Mills et al.,

2011). VQSR assigns each indel a variant quality score log odds ratio (VQSLOD)

based on the following features:

– DP: Approximate read depth, after reads with MQ= 255 or bad mates are

removed

– FS: Phred-scaled p-value using Fisher’s exact test to detect strand bias

– ReadPosRankSum: Z-score from Wilcoxon rank sum test of alternate vs.

reference read position bias

– MQRankSum: Z-score from Wilcoxon rank sum test of alternate vs. reference

read mapping qualities

A minimum VQSLOD score of 1.0659, which corresponds to a truth sensitivity

threshold of 97%, was used to select high-quality indels.

Genotype refinement

Genotypes at all SNP and indel sites that passed initial filtering were refined via

imputation. To increase the computational efficiency of this process, imputation

improvement was performed in batches of 3, 000 sites, with a buffer region of 500

sites on either side, using BEAGLE v4.1 (Browning and Browning, 2016) with

default parameters.
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After an initial round of refinement, a number of poor-quality sites not identified

during initial quality control became apparent. These were removed using the

following filters:

– Evidence for a deviation from Hardy-Weinberg equilibrium in controls, where

the p-value < 1× 10−7

– Removal of sequencing centre batch effects in controls, where the p-value

< 1× 10−3 when testing for association with sequencing centre

– Variants with > 10% missing genotypes following genotype refinement, where

the minimum posterior probability required to call a genotype was 0.9

– SNPs within 3 base pairs of an indel

– Clusters of indels separated by 2 or fewer base pairs, so that only one may

pass

Following these exclusions, a second round of genotype refinement was performed

using BEAGLE v4.1 to ensure that neighbouring variant calls had not been adversely

affected by imputation with poor-quality sites.

Challenges of calling structural variants in a large low coverage sequenc-

ing study

Copy number variants (CNVs) are usually detected via the identification of localised

changes in read depth, an individual read that spans a deletion or insertion

breakpoint, or read pairs that map unexpectedly far apart. However, the low

average read depth of this particular dataset means that this form of variant

detection is not particularly sensitive for individual samples. I therefore called

CNVs using GenomeSTRiP 2.0 (Handsaker et al., 2015), which was designed to

discover and genotype shared deletions, duplications and multiallelic copy number

variants (mCNVs) across whole-genome sequences from multiple individuals. As

this study uses low coverage sequences, power to detect variation is limited to

larger CNVs. Thus GenomeSTRiP 1.0, which is more sensitive to smaller deletions
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and therefore usually recommended as a complementary CNV analysis, was not

used for this project.

The actual discovery and genotyping process can be broken down into several

modules, as summarised in Figure 3.1. To improve efficiency, I ran the pre-

processing steps separately for each chromosome and cohort (CD, UC and controls).

Computational resource restrictions also required the discovery and genotyping

processes to be run separately across each chromosome, which led to a need for

manual intervention at the sample filtering step during discovery to ensure that

filtering considered all chromosomes at once.

Figure 3.1: Overview of the modular structure employed by GenomeSTRiP 2.0 to discover and

genotype CNVs across a number of low coverage whole genome sequences.
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Default GenomeSTRiP configurations were used, as per the example configuration

files provided within the software releases. Window sizing parameters, which define

the size of CNVs that can be detected, matched those used for the 1,000 Genomes

Project’s low coverage (6-8x) dataset:

tilingWindowSize 5000

tilingWindowOverlap 2500

maximumReferenceGapLength 2500

boundaryPrecision 200

minimumRefinedLength 2500

Because reads realigned from GrCH37 to hs37d5 using BridgeBuilder did not

contain appropriate metadata information for use by GenomeSTRiP 2.0, these

reads were excluded from discovery and genotyping.

3.2.3 Quality control

Sample filtering

Individuals failing on one or more of the following filtering criteria (when calculated

using refined genotypes) were removed from the dataset:

– Heterozygosity rate ±3.5 standard deviations from the mean.

– Duplicate or closely-related individuals with π̂ > 0.25 (indicating second-

degree relatives or closer). To identify these individuals, SNPs were first

pruned such that no two sites within 5,000kb had an r2 > 0.2, and the

Identity-By-State value for each pair of individuals was then calculated using

only variants with MAF > 1%. Only one individual from each duplicate or

related pair was removed.

– Individuals of non-European ancestry, as identified using a principal compo-

nent analysis projected from 11 HapMap2 populations.
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Site filtering for SNPs and indels

In addition to the SNP and indel site filters applied in section 3.2.2, the following

criteria were used to remove lower quality sites prior to association testing:

– Minimum score < 0.1 in any of the five independent SVM runs

– INFO score < 0.4

– Evidence for a deviation from Hardy-Weinberg equilibrium in controls, where

the p-value < 10−6

Site filtering for copy number variants

Initial CNV filtering was performed in accordance with the default thresholds set

in the GenomeSTRiP 2.0 CNVDiscoveryPipeline workflow. These thresholds are

generous, and many poor-quality sites are expected to remain: nevertheless, this

process removed 86, 379 variants (out of 179, 774) variants from the discovery set,

and made manual quality control more manageable. The filters applied at this step

include:

– Deletion or mixed CNV length > 1, 000. Given the search windows used,

this still allows variants slightly smaller than those we expect to confidently

detect to be included.

– Duplication length > 2, 000. This follows the recommendations of Handsaker

et al. (2015), who note that small duplications appear to have a higher false

discovery rate than equivalently sized deletions or mixed CNVs.

– Call rate > 0.9, to remove those variants with excessive missingness.

– Density> 0.5, with density calculated by dividing GSELENGTH (the effective

CNV length) by GCLENGTH (the denominator of GC content).

– Cluster separation > 5. This measure checks that appropriate cluster sep-

aration was achieved by the Gaussian mixture model used in read depth

genotyping.
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– GSVDJFRACTION > 0. Remove variants with any evidence of V(D)J recom-

bination, based on the vdjregions.bed file provided with the GenomeSTRiP

metadata.

I then apply the following dataset-specific quality control filters:

– Remove CNVs attributable to missing sample data. Specifically, an excess of

very large copy number variants with a MAF of 1-2% was observed (Figure 3.2),

that I traced down to 1, 103 copy number variants that were driven by 95

control samples with a large stretch of missing data on chromosome 6.

Figure 3.2: Due to a stretch of missing data on chromosome 6 for 95

control samples, there is an apparent excess of large copy number variants

with a MAF of 1-2%.
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– Remove CNVs with GSELENGTH ≤60,000. For shorter copy number vari-

ants, I observed considerable differences in sensitivity across different mean

coverage depths (Figure 3.3).

Figure 3.3: The average number of calls per individual per site, across

different copy number variant (CNV) lengths. UK10K controls (7x) in

yellow, Crohn’s disease cases (4x) in red, and ulcerative colitis cases (2x)

in blue.

– Keep only biallelic sites, for simplicity when association testing. However,

because GenomeStrip 2.0 is capable of calling multi-allelic CNVs, I noted an

abundance of common sites where a small fraction of non-reference individuals

contain a CNV in the opposite direction to the majority call, possibly due

in part to the particularly low coverage seen in this dataset. At sites where

this fraction of inconsistent directions is less than 10% of the alternate calls

made, I retain the site as biallelic.
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3.3 Structural variation

Following quality control, I observed an approximately equal number of variants

in cases and controls, but retained only 1,475 CNVs. Of these, just 59 had a

MAF > 0.1% and were taken forward for single site association testing. Following

association testing using a likelihood score test, as implemented in SNPTEST v2.5

(Marchini and Howie, 2010), no individual CNV was significantly associated after

correction for multiple testing.

I then considered the 1,464 CNVs with a MAF ≤ 0.5% in controls, performing a

simple chi-squared test to compare the cumulative minor allele frequencies of these

variants between cases and controls (Table 3.1). I note that there is a significant

genome-wide excess of rare duplications in controls (P = 0.0002), suggesting

that even after very stringent filtering the data remains too noisy for meaningful

conclusions to be drawn. Therefore, to avoid including any bias due to sequencing

depth heterogeneity between cases and controls, I tested within cases only for a

burden of CNVs in known IBD regions (Liu et al., 2015) compared to regions not

previously associated with IBD. However, the number of CNVs contributing to

these tests were very small (Table 3.1), and no significant results were obtained.

Table 3.1: Testing for an association of structural variation with IBD.

Variation Number of

CNVs

Cumulative

MAF in A

Cumulative

MAF in B

P -value

A
)
C
a
se
s

v
s

B
)
C
o
n
tr
o
ls Deletions 668 0.00019 0.00017 0.0499

Duplications 796 0.00020 0.00023 0.0002

Combined 1,464 0.00019 0.00020 0.1200

A
)
IB

D

v
s

B
)
N
o
n
-I
B
D

R
eg
io
n
s Deletions 5 0.00012 0.00019 0.2967

Duplications 11 0.00013 0.00020 0.1227

Combined 16 0.00012 0.00019 0.0684

These results suggest that high coverage whole genome sequencing of more individ-

uals, preferably with balanced coverage between cases and controls, will be required

to evaluate the contribution of rare CNVs to IBD risk.
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3.4 Rare variation

Low coverage sequencing is not generally a suitable study design with which to

accurately capture very rare and private variants, particularly as joint-calling and

cross-sample genotype refinement adds little information at sites where nearly all

individuals are homozygous for the major allele. Nevertheless, given how difficult

such variants are to impute from GWAS data (recently, McCarthy et al. (2016)

showed that even a reference panel of over 32,000 individuals offers little imputation

accuracy for MAF < 0.1%), this sequence dataset represents the largest source

of rare variation in an IBD cohort to date. Because of this, it was decided that

the potential role of rare variation in IBD risk within this dataset was worth

investigating.

Due to the sequencing depth heterogeneity between cases and controls, existing rare

variant burden methods will give systematically inflated test statistics. I therefore

performed rare variant burden testing across both genes and putative enhancers

using unrefined genotype probabilities and an extension of the Robust Variance

Score statistic by Derkach et al. (2014), which was developed to account for this

type of bias as described in Chapter 2.

3.4.1 Additional quality control

Additional site filtering was required prior to rare variant association testing, as

these types of studies are more susceptible to differences in read depth between

cases and controls (as discussed in Chapter 2). This filtering consisted of removing:

– Singleton variants, observed only once in the population.

– Variants with a missingness rate >0.9, when calculated using genotype

probabilities estimated from the samtools genotype quality (GQ) field

– Low confidence observations (maximum genotype probability ≤ 0.9) compris-

ing ≥1% of non-missing data

– Sites with INFO < 0.6 in the appropriate cohorts
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I will note here that the singleton variants removed from this analysis have actually

been the primary focus of other rare variant association studies in complex traits,

such as schizophrenia and educational attainment (Ganna et al., 2016; Genovese

et al., 2016), where they have been shown to have an important role. However,

in this dataset we observe distinct differences in the specificity of variant calling

between the lowest coverage group (2x) and the higher coverage groups (4x and 7x),

as shown in Figure 2.6. This bias cannot be fully accounted for during association

testing, and was not able to be overcome using more stringent filtering techniques.

Therefore, in order to maintain a well-controlled Type I error rate, it was necessary

to remove all such sites from the analysis. As with structural variants, high coverage

whole genome sequencing of more individuals, preferably with balanced coverage

between cases and controls, will be required to assess the contribution of ultra rare

variation to IBD risk.

3.4.2 Burden testing across coding regions

Gene-based burden tests

For each of 18,670 genes, as defined by annotation with an Ensembl ID, I tested

for a differential burden of rare (MAF ≤ 0.5% in controls) variation between the

sequenced cases and controls. Two separate burden tests were performed for each

gene: one aggregating all functional coding variants and one for all predicted

damaging functional coding variants, as defined in Table 3.2. Variant annotations

were assigned using the Variant Effect Predictor by McLaren et al. (2010) and

the Combined Annotation Dependent Depletion (CADD) score by Kircher et al.

(2014). The CADD score is used to estimate the deleteriousness of a given variant

in the human genome, with higher scores indicating a variant is more likely to

be deleterious: the threshold of 21 used here represents the median value of all

possible canonical splice sites and non-synonymous variants.
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Table 3.2: Variant annotations used to define each of the gene-based burden test subsets.

Annotation Functional coding Predicted damaging

frameshift variant � �
stop gained � CADD≥21
initiator codon variant � CADD≥21
splice donor variant � CADD≥21
splice acceptor variant � CADD≥21
missense variant � CADD≥21
stop lost � CADD≥21
inframe deletion � X

inframe insertion � X

Every test was repeated to independently check for association with CD, UC and

IBD at every gene containing one or more relevant variants. This resulted in a

total of 100, 335 tests, with an average of 5.84 variants contributing to each test

(Table 3.3). To correct for this multiple testing, I used a Bonferroni-adjusted

threshold for significance of 5 × 10−7, reflecting an overall alpha value of 0.05.

This does not take into account the correlation between the different tests (as the

predicted damaging variant set is a direct subset of the functional coding set, and

the CD and UC individuals are a subset of the IBD set) and therefore may be too

stringent a threshold.

Table 3.3: The number of gene-based burden tests performed for each combination of annotation

set and phenotype, with the average number of variants contributing to each of those tests given

in parentheses.

Test Functional coding Predicted damaging Total

UC 18,149 (6.83) 14,850 (4.25) 32,999 (5.67)

CD 18,670 (7.42) 15,406 (4.56) 34,076 (6.13)

IBD 18,293 (6.88) 14,967 (4.26) 33,260 (5.70)
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For each gene with a final p-value < 5 × 10−4, I inspect the BAM files for the

three variants with the largest individual contributions to the overall gene signal

(as determined using single-site association testing with the RVS statistic at each

site), in order to assess the quality of variant calling at that position. This manual

inspection was used to identify sites where, for example, all the alternate alleles lie

at the ends of reads, or predominantly on reads sequenced in one direction. I also

check for regions that appear to have been generally difficult to map, or contain an

excess of potential errors around the variant call (Figure 3.4). Details of the genes

passing this quality control check can be found in Table 3.4, while the full tests are

summarised in Figures 3.5 and 3.6.

Figure 3.4: Manual inspection of variant calling at nominally associated sites, to identify low

quality sites that may have passed the broad quality control thresholds.
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The only gene for which I detected a significant burden of rare variants was NOD2

(Pfunctional = 1 × 10−7), the well-known Crohn’s disease risk gene. To ensure

this association was not due to the known low frequency NOD2 risk variants, I

evaluated the independence of the rare variant signal against the common IBD-

associated coding variants rs2066844, rs2066845, and rs2066847. Individuals with

a minor allele at any of these sites were assigned to one group, and those with

reference genotypes to another. Burden testing for this new phenotype produced

Pfunctional = 0.0117 and Pdamaging = 0.7311. On average, contributing rare variants

were at an elevated frequency in non-NOD2 canonical mutation carriers, compared

to those individuals with a minor allele at any of these three sites.

When compared to a previous targeted sequencing study by Rivas et al. (2011),

which investigated NOD2 in 350 CD cases and 350 controls, I discover a number

of additional variants (Figure 3.7). These additional variants can be seen to be

contributing to the significant burden of rare variation in NOD2, with evidence

of a signal remaining even after removal of the previously discovered rare variants

(Pfunctional = 5.4 × 10−4, Pdamaging = 7.5 × 10−5). However, cumulatively these

additional variants explain just 0.13% of the variance in Crohn’s disease liability,

compared to 1.15% for the previously known NOD2 variants (starred in Figure 3.7).

This highlights the fact that the low frequency of very rare variants means that

they cannot account for much of the overall population variability in disease risk.
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Gene set tests

Some genes that have been implicated by IBD GWAS had suggestive p-values, but

did not reach exome-wide significance (P = 5 × 10−7, Table 3.4). To test if the

allelic series of associated variation observed in NOD2 might also exist at other

known IBD genes, I combined the individual gene results to perform gene set tests

across IBD risk genes.

For these tests I created two separate definitions of IBD risk genes. The first, more

stringent, definition included only genes that have been confidently implicated

in IBD risk (Table 3.5) through fine-mapping and eQTL studies (Huang et al.,

2015; Fairfax et al., 2014; Wright et al., 2014). A second, broader definition of

IBD-associated genes was created to also include 63 additional genes that were

implicated by two or more candidate gene approaches in Jostins et al. (2012).

Table 3.5: IBD-associated genes implicated by a coding variant in the fine-mapping credible sets

recently defined by Huang et al. (2015), or with a plausible eQTL association.

Gene ID Name Disease Gene ID Name Disease

ENSG00000085978 ATG16L1 CD ENSG00000134460 IL2RA CD

ENSG00000187796 CARD9 IBD ENSG00000005844 ITGAL UC

ENSG00000013725 CD6 CD ENSG00000173531 MST1 IBD

ENSG00000164308 ERAP2 CD ENSG00000167207 NOD2 CD

ENSG00000143226 FCGR2A IBD ENSG00000095110 NXPE1 UC

ENSG00000176920 FUT2 CD ENSG00000134242 PTPN22 CD

ENSG00000115267 IFIH1 UC ENSG00000166949 SMAD3 IBD

ENSG00000136634 IL10 IBD ENSG00000079263 SP140 CD

ENSG00000115607 IL18RAP IBD ENSG00000106952 TNFSF8 IBD

ENSG00000162594 IL23R IBD ENSG00000105397 TYK2 IBD
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I first tested the stringent gene set (after excluding NOD2, which otherwise domi-

nates the test) using an enrichment procedure that allows for genes with opposite

directions of effect to be combined, as described in Chapter 2. To account for

residual bias due to sequencing depth differences between cases and controls (that

is not fully accounted for using the RVS statistic with such large burden tests), I

evaluate the significance of the gene set within the context of the exome-wide gene

set. The test was performed to 105 permutations separately for CD, UC and IBD,

and for each of the functional coding and predicted damaging variant definitions.

The results from these tests are summarised in Table 3.6.

Table 3.6: P -values for burden tests performed on the stringently-defined set of IBD risk genes.

Results for the Crohn’s disease burden test excluding NOD2 are shown in parentheses.

Functional coding Predicted damaging

UC 0.7330 0.4615

CD 0.0001 (0.2291) 0.0000 (0.0045)

IBD 0.2275 0.0026

I detect a burden of rare variants in the twelve confidently implicated Crohn’s disease

genes (Pdamaging CD = 0.0045) and seven confidently implicated inflammatory bowel

disease genes (Pdamaging IBD = 0.0026) that contained at least one damaging

missense variant. This signal is driven by a mixture of genes where rare variants

are risk increasing (e.g. NOD2 ) and risk decreasing (e.g. IL23R), as shown in

Figure 3.8. It is notable that this burden is not detected when considering all

functional coding variation, highlighting the value of being able to predict the likely

functional impact of a variant in order to better refine the signal to noise ratio of the

burden tests. Similarly, I observe no signal in the second, less stringently defined,

set of IBD-associated genes (Table 3.7). Figure 3.8 highlights how the broader gene

set definition contributes a number of genes that are not associated with IBD in

this dataset, causing the signal to be diluted. This observation underscores the

importance of using methods such as fine-mapping and eQTL associations when

causally assigning an association signal to a particular gene.
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Table 3.7: The burden of rare, predicted damaging (CADD ≥21) coding variation in IBD

gene sets.

Gene sets Constituents Phenotype P -value

NOD2 NOD2 CD 4× 10−7

Other IBD genes

implicated by

causal coding or

eQTL variants

(genes in brackets

had zero con-

tributing rare

variants)

CARD9, FCGR2A, IFIH1,

IL23R, MST1, (SMAD3),

TYK2, (IL10), IL18RAP,

(ITGAL), NXPE1,

TNFSF8

UC 0.4615

ATG16L1, CARD9,

CD6, FCGR2A, FUT2,

IL23R, MST1, (NOD2),

PTPN22, (SMAD3),

TYK2, ERAP2, (IL10),

IL18RAP, (IL2RA),

(SP140), TNFSF8

CD 0.0045

CARD9, FCGR2A,

IL23R, MST1, (SMAD3),

TYK2, (IL10), IL18RAP,

TNFSF8

IBD 0.0026

Other IBD GWAS

genes

Genes implicated by two

or more candidate gene ap-

proaches in Jostins et al.

(2012)

UC 0.9512

CD 0.9438

IBD 0.9307
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Figure 3.8: The burden of rare damaging variants in Crohn’s disease. Each point represents a

gene in my confidently implicated (green) or generically implicated (blue) gene sets. Genes are

ranked on the x-axis from most enriched in cases to most enriched in controls, and position on the

y-axis represents significance. The purple shaded region indicates where 75% of all genes tested

lie. The burden signal is driven by a mixture of genes where rare variants are risk increasing (e.g.

NOD2 ) and risk decreasing (IL23R).

3.4.3 Burden testing across non-coding regions

Enhancer-based burden tests

Using the same approach outlined above for individual genes, I evaluated the

role of rare (MAF ≤ 0.5% in controls) regulatory variation using burden tests

across enhancer regions. I consider enhancer regions as defined by the FANTOM5

project (Andersson et al., 2014), which used cap analysis of gene expression

(CAGE) to identify enhancer activity through the presence of balanced bidirectional

capped transcripts. In particular, I focus my testing on those enhancers that were

transcribed at a significant expression level in at least one of the 432 primary cell
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or 135 tissue samples tested by the FANTOM5 consortium, which are referred to

as ’robust enhancers’ by Andersson et al. (2014). The locations of these robust

enhancers were downloaded using the robust enhancers.bed track available at

http://enhancer.binf.ku.dk/presets/.

As with the gene-based burden tests, I looked to restrict the tested variants to those

sites predicted to have some sort of functional impact, in order to maximise power.

However, estimating the likely functional impact of variation within an enhancer

region is a challenging task, as understanding is generally limited to a handful of

sites that have been through extensive experimental follow-up. One of the few

functional aspects of non-coding variation that can be predicted genome-wide is the

presence of certain transcription factor binding motifs, and whether a given variant

is likely to disrupt or create a known motif. The performance of other measures

that have been calculated genome-wide, including the CADD score, have generally

not been thoroughly evaluated in non-coding regions due to a lack of testing data.

For each robustly-defined enhancer, I therefore chose to perform two burden tests:

one containing all variation overlapping with the enhancer region, and one containing

just those variants predicted to disrupt or create a known transcription binding

motif (TFBM). I annotated variants as TFBM-disrupting or TFBM-creating using

the approach described by Huang et al. (2015), who test for variants that are likely

to affect a highly conserved position in a TFBM. How conserved a position is can

be determined using the information content (IC): this can be calculated using

Equation 3.1, where fb,i is the frequency of base b at position i (D’haeseleer, 2006).

Ii = 2 +
∑

b

fb,i log2 fb,i (3.1)

I considered all ENCODE transcription factor ChIP-seq motifs (Kheradpour and

Kellis, 2014) that had an overall information content ≥ 14 bits (which is equivalent

to 7 perfectly conserved positions), and checked if a given variant created or

disrupted that motif at a high-information site (IC ≥ 1.8).

Each test was repeated separately for UC, CD and IBD, resulting in 121, 848 tests,

with an average of 2.27 variants contributing to each test (Table 3.8).
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Table 3.8: The number of enhancer-based burden tests performed for each combination of

annotation set and phenotype, with the average number of variants contributing to each of those

tests given in parentheses.

Test All variants Affecting a TFBM Total

UC 28,292 (2.64) 11,532 (1.29) 39,824 (2.25)

CD 29,628 (2.75) 12,403 (1.31) 42,031 (2.32)

IBD 28,453 (2.62) 11,540 (1.29) 39,993 (2.24)

No individual enhancer contains a significant burden of rare variation (Figures 3.9

and 3.10) and passes manual quality control. It is also worth noting that, even for

those variants that appear amongst the ‘froth’ of suggestively significant p-values,

at this stage it is very difficult to draw meaningful conclusions from these individual

enhancer burden tests. For the majority of enhancers in the human genome, it

is not known how they are likely to affect the expression of a given gene, or even

which gene they are likely to act upon.

A common approach to try and derive this information is to map expression

quantitative trait loci (eQTLs), which are genomic regions statistically associated

with the expression level (mRNA abundance) of a given gene (Albert and Kruglyak,

2015). Alternatively, enhancer-gene interactions can be detected directly, using

conformation capture methods such as Hi-C. These methods take advantage of

the fact that, during transcription, the enhancer and promoter need to be brought

into close physical proximity to chemically fix chromosomal contacts. This causes

fragments of DNA that are not necessarily close in the linear genome to be linked

prior to sequencing, allowing long-range spatial contacts to be resolved (Belton

et al., 2012).

However, regardless of the method used, identifying the role of a given enhancer

requires testing in the correct cell type and under the correct conditions. For

example, Fairfax et al. (2014) discover a number of important immune eQTLs that

only occur in monocytes after application of specific stimuli. To try and capture

some of this cell-specific expression, studies such as the GTEx consortium are

mapping eQTLs across a range of tissues in multiple individuals (GTEx Consortium,



3.4. Rare variation 89

2015), while others are undertaking similar endeavours using Hi-C (Mifsud et al.,

2015). As these resources continue to grow, refining of enhancer variant sets to test

and interpretation of individual enhancer results may be improved in the future.

Cell- and tissue-specific enhancer set tests

Although extensive catalogues of enhancer activity across cell types and conditions

are still under development, FANTOM5 does provide an estimate of cell- and/or

tissue-type specific expression across 69 cell types and 41 tissues (Table 3.9). I

therefore combined the individual enhancer tests into sets based on these expression

patterns, looking to both improve power in an analogous fashion to the gene set

tests above, and increase the interpretability of any rare variant burden that may

be uncovered.

Enhancers were assigned to groups using the definition of ‘positive differential

expression’ provided by Andersson et al. (2014). This considers the union of all

significantly expressed enhancers from all samples within a given cell or tissue

type (a ‘facet’), and performs pair-wise comparisons between each of the facets

(assessing cells and tissues separately). An enhancer is considered differentially

expressed in a given facet if it has at least one pair-wise significant differential

expression, plus overall positive standard linear statistics. This means that positive

differential expression is therefore not the same as exclusive expression in a given

cell or tissue. I obtained lists of these differentially expressed enhancer sets from

http://enhancer.binf.ku.dk/presets/.

None of these cell- or tissue-specific enhancer sets had a significant burden of rare

variation after correction for multiple testing (Table 3.10).
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Table 3.9: The 69 cell types and 41 tissue types for which FANTOM5 defines preferentially

expressed enhancer sets.

Cell types

neuronal stem cell endothelial cell of lymphatic vessel

myoblast epithelial cell of Malassez

osteoblast lens epithelial cell

ciliated epithelial cell epithelial cell of prostate

blood vessel endothelial cell epithelial cell of esophagus

mesothelial cell mammary epithelial cell

T cell preadipocyte

mast cell keratocyte

sensory epithelial cell trabecular meshwork cell

astrocyte respiratory epithelial cell

mesenchymal cell enteric smooth muscle cell

fat cell kidney epithelial cell

chondrocyte amniotic epithelial cell

melanocyte cardiac fibroblast

hepatocyte fibroblast of choroid plexus

skeletal muscle cell fibroblast of the conjuctiva

macrophage fibroblast of gingiva

keratinocyte fibroblast of lymphatic vessel

vascular associated smooth muscle cell fibroblast of periodontium

tendon cell fibroblast of pulmonary artery

dendritic cell hair follicle cell

stromal cell intestinal epithelial cell

neuron iris pigment epithelial cell

reticulocyte placental epithelial cell

corneal epithelial cell retinal pigment epithelial cell

monocyte bronchial smooth muscle cell

acinar cell smooth muscle cell of the esophagus

natural killer cell smooth muscle cell of trachea

hepatic stellate cell uterine smooth muscle cell

pericyte cell skin fibroblast

urothelial cell gingival epithelial cell

cardiac myocyte fibroblast of tunica adventitia of artery

basophil endothelial cell of hepatic sinusoid

neutrophil smooth muscle cell of prostate

lymphocyte of B lineage

Continued on next page
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Table 3.9 – Continued from previous page

Tissue types

lymph node submandibular gland

large intestine parotid gland

blood blood vessel

throat placenta

testis thyroid gland

stomach lung

heart skin of body

brain spleen

eye liver

penis small intestine

female gonad gallbladder

uterus kidney

vagina spinal cord

adipose tissue umbilical cord

esophagus meninx

salivary gland prostate gland

skeletal muscle tissue thymus

smooth muscle tissue tonsil

urinary bladder olfactory region

pancreas internal male genitalia

tongue

Table 3.10: Enhancer set-based tests with P < 0.005. ‘TFBM’ refers to set tests performed only

using rare variants predicted to create or disrupt a transcription factor binding motif, while ‘All’

includes all rare variants within the relevant enhancer region. No set test reaches significance

after multiple correction testing for the 660 tests performed.

Cell/tissue type P -value Disease Annotation # enhancers # variants

skeletal muscle tissue 0.00058 CD All 67 222

skeletal muscle tissue 0.00068 IBD All 61 188

skeletal muscle cell 0.00253 IBD TFBM 293 397

melanocyte 0.0039 CD All 379 1, 241

stromal cell 0.00398 IBD TFBM 272 401

cardiac fibroblast 0.00425 UC TFBM 192 278



94 Chapter 3. The role of rare and low frequency variation in IBD risk

3.5 Low frequency variation

To investigate the role of low frequency variation in this sequencing dataset, we

tested 13 million SNPs and small indels with MAF ≥ 0.1% for association. It was

noted that quality control had successfully controlled for systematic differences due

to sequence depth (λ1000 UC = 1.05, λ1000 CD = 1.04, λ1000 IBD = 1.06, Figure 3.11),

while still retaining power to detect known associations.

Figure 3.11: QQ plots of genome-wide association studies for variants with MAF ≥ 0.1% in

the sequencing dataset. λ1000 values are reported for the ulcerative colitis, Crohn’s disease

and inflammatory bowel disease analyses. Grey shapes show 95% confidence intervals. Figures

produced by Yang Luo.

However, while it was estimated that this stringent quality control produced well

calibrated association test statistics for more than 99% of sites, there were also

many extremely significant p-values at SNPs outside of known loci (for example,

there were ∼7,000 sites with P < 1× 10−15). 95% of these extremely significant

sites had an allele frequency below 5%. In contrast to GWAS, where basic quality

control can almost completely eliminate false positive associations, the biased

sequencing depths in this study makes it difficult to identify true associations from

this data alone.
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3.5.1 Imputation into GWAS

As was also observed by a previous study of type 2 diabetes with a similar design

(Fuchsberger et al., 2016), our sequencing dataset alone is not well powered to

identify new associations, even if all samples were sequenced at the same depth

(Figure 3.12).

Figure 3.12: Relative power of this study compared to previous GWAS. The black line shows the

path through frequency-odds ratio space where the latest International IBD Genetics Consortium

(IIBDGC) meta-analysis (Liu et al., 2015) had 80% power, and the green line shows the same for

this study. The earlier study had more samples but restricted their analysis to MAF > 1%.

We therefore sought to increase power by using imputation to leverage both new

and existing IBD GWAS. As previous data has shown that expanded reference

panels can significantly improve the imputation accuracy of low frequency variants

(McCarthy et al., 2016), we built a phased reference panel of 10,971 individuals
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by combining our low coverage whole genomes with the 1000 Genomes Phase 3

haplotypes (1000 Genomes Project Consortium et al., 2015).

I then collected all available UK IBD GWAS data, including samples from two

previous studies that did not overlap with those in our sequencing dataset (The

Wellcome Trust Case Control Consortium, 2007; Barrett et al., 2009), and a novel

UK IBD Genetics Consortium cohort. This new UK IBD GWAS consisted of

8,860 IBD patients without previous GWAS data and 9,495 UK controls from the

Understanding Society project (www.understandingsociety.ac.uk), all genotyped

using the Illumina HumanCoreExome v12 chip. I shall discuss the variant calling

and quality control procedures I applied to this dataset in Chapter 4.

These genotyped samples were all imputed using the PBWT software (Durbin,

2014) and the IBD-enriched reference panel described above. We combined these

imputed genomes with our sequenced genomes to create a final dataset of 16,267

IBD cases and 18,841 UK population controls (Table 3.11).

Table 3.11: Sample counts of the imputed GWAS cohorts.

Cohort Case Control Total

WTCCC1 1, 206 2, 918 4, 124

WTCCC2 1, 921 2, 776 4, 697

GWAS3 CD 4, 264 9, 495 13, 759

GWAS3 UC 4, 072 9, 495 13, 567

GWAS3 IBD 8, 860 9, 495 18, 355

Sequencing CD 2, 513 3, 652 6, 165

Sequencing UC 1, 767 3, 652 5, 419

Sequencing IBD 4, 280 3, 652 7, 932

Total 16, 267 18, 841 35, 108
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3.5.2 Quality control and association testing

I tested each GWAS cohort separately for association to UC, CD and IBD using

a likelihood score test as implemented in SNPTEST v2.5 (Marchini and Howie,

2010), conditioning on the first ten principal components as computed for each

cohort when excluding the MHC region (chromosome 6:28-34Mb). I then filtered

all output to sites with MAF ≥ 0.1%, and INFO ≥ 0.4, before using METAL

(Willer et al., 2010) to perform a standard error weighted meta-analysis of all three

GWAS cohorts with our sequencing cohort (which was also pre-filtered to MAF

≥ 0.1% and INFO ≥ 0.4).

The output of the fixed-effects meta-analysis was then further filtered to remove

sites with:

– INFO< 0.8 in at least 1/3 (CD,UC) or 2/4 (IBD) of the cohorts included in

the meta-analysis

– High evidence for heterogeneity (I2 > 0.90) or deviations from HWE in

controls (PHWE < 1× 10−7) in any of the cohorts

– A meta-analysis p-value higher than all of the cohort-specific p-values

– No evidence of association with IBD in these datasets, but present in the

Immunochip or IIBDGC datasets

This produced high quality genotypes at 12 million variants, which represented

more than 90% of the sites with MAF > 0.1% that we could directly test in our

sequences. Compared to the most recent meta-analysis by the IIBDGC (Liu et al.,

2015), which used a reference panel almost ten times smaller than ours, we tested

an additional 2.5 million variants for association to IBD. Furthermore, because the

GWAS cases and controls were genotyped using the same arrays, they should be

not be differentially affected by the variation in sequencing depths in the reference

panel, and thus not susceptible to the artifacts observed in the sequence-only

analysis. Indeed, compared to the thousands of false-positive associations present

in the sequence-only analysis, the imputation based meta-analysis revealed only

four previously unobserved genome-wide significant IBD associations. Three of
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these had MAF > 10%, so were carried forward to a meta-analysis of our data and

published IBD GWAS summary statistics as will be discussed in Chapter 4.

3.5.3 p.Asp439Glu in ADCY7 doubles risk of ulcerative

colitis

The fourth new association (P = 9×10−12) was a 0.6% missense variant (p.Asp439Glu,

rs78534766) in ADCY7 that doubles risk of ulcerative colitis (OR=2.19, 95%

CI =1.75-2.74), and is strongly predicted to alter protein function (SIFT=0,

PolyPhen=1, MutationTaster=1). This variant was associated (P = 1× 10−6) in a

subset of directly genotyped individuals, suggesting the signal was unlikely to be

driven by imputation errors. However, to further validate this finding we obtained

two replication cohorts:

– 450 UC cases and 3,905 controls (p=0.0009)

We genotyped an additional 450 UK ulcerative colitis cases and obtained

3,905 population controls (Dupuytren’s contracture cases) from the British

Society for Surgery of the Hand Genetics of Dupuytren’s Disease consortium,

both genotyped using the Illumina Human Core Exome v12 array. I applied

the same quality control procedure to this replication dataset as the new UK

IBD GWAS dataset (see Chapter 4).

– 982 UC cases and 136,464 controls from the UK Biobank (p=0.0189)

We extracted an additional 982 additional UC samples and 136,464 con-

trols from the UK Biobank, genotyped on either the UK Biobank Ax-

iom or UK BiLEVE array. Standard Biobank quality control was used

(http://biobank.ctsu.ox.ac.uk/crystal/docs/genotyping qc.pdf), and non-British

or Irish individuals were excluded from further analysis. Cases were defined

as those with self-reported ulcerative colitis or an ICD10 code of K51 in their

Hospital Episode Statistics (HES) record. Controls were defined as those

individuals without a self-diagnosis or hospital record of ulcerative colitis or

Crohn’s disease (HES = K50).
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Logistic regression conditional on 10 principal components was carried out in both

replication cohorts. A meta-analysis of all three directly genotyped datasets showed

genome-wide significant association (p = 1.6× 10−9), no evidence for heterogeneity

(p = 0.19) and clean cluster plots (Table 3.12, Figure 3.13).

Figure 3.13: Cluster plots are shown for rs78534766 (chr16:50335074, ADCY7 p.Asp439Glu) for

the A) new UK IBD GWAS, B) replication and C) UK Biobank samples that passed quality

control. The SNP genotypes have been assigned based on cluster formation in scatter plots of

normalized allele intensities X and Y. Each circle represents one individual’s genotype. Blue and

red clouds indicate homozygote genotypes for the SNP (CC/AA), green heterozygote (CA) and

grey undetermined. Figures generated by Daniel Rice.
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A previous study described an association between an intronic variant in ADCY7

and Crohn’s disease (Li et al., 2015), but our signal at this variant (P = 2.9× 10−7)

vanishes after conditioning on the nearby associations at NOD2, (conditional P =

0.82). By contrast, we observed that p.Asp439Glu shows nominal association with

Crohn’s disease after conditioning on NOD2 (P = 7.5 × 10−5, OR=1.40), while

the significant signal remains for ulcerative colitis (Figure 3.14). Thus, one of the

largest effect alleles associated with UC lies, apparently coincidentally, only 300

kilobases away from a region of the genome that contains multiple large effect CD

risk alleles (Figure 3.14).

Figure 3.14: Association analysis for the NOD2/ADCY7 region of chromosome 16. Results from

the single variant association analysis are presented in gray, and results after conditioning on

seven known NOD2 risk variants in blue. Results for Crohn’s disease (CD) are shown in the top

half, and ulcerative colitis (UC) in the bottom half. The dashed red lines indicate genome-wide

significance, at α = 5× 10−8. Figure produced by Loukas Moutsianas.

ADCY7 encodes adenylate cyclase 7, part of a family of ten enzymes responsible

for the conversion of ATP to the ubiquitous second messenger cAMP. Our asso-

ciated variant, p.Asp439Glu, affects a highly conserved amino acid within a long

cytoplasmic domain that lies immediately downstream of the first of two active

sites, and may affect the function of the enzyme by causing misalignment of these

active sites (Pierre et al., 2009).
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Each adenylate cyclase has distinct tissue-specific expression patterns, with ADCY7

being expressed in haemopoietic cells (Figure 3.15). Here, cAMP has an important

role in the modulation of both innate and adaptive immune functions, including

the inhibition of the pro-inflammatory cytokine TNFα, which is the target of

the most potent current therapy in IBD (Dahle et al., 2005). In human THP-1

(monocyte-like) cells, siRNA knockdown of ADCY7 has been shown to increase

TNFα production (Risøe et al., 2015). While constitutive Adcy7 knockout mice

die in utero, myeloid-specific knockouts have been shown to be viable. These mice

exhbit higher production of TNFα by macrophages upon stimulation, as well as

impairment of both B cell function and T cell memory, increased susceptibility

to lipopolysaccharide-induced endotoxic shock, and a prolonged inflammatory

response (Duan et al., 2010; Jiang et al., 2013).

Figure 3.15: An overview of the role of ADCY7 in the inflammatory response, where it is

responsible for the conversion of ATP to cAMP in haemopoietic cells. A subset of the immune-

related functions performed by the secondary signalling molecule cAMP are depicted here (Rossi

et al., 1998; Tiemessen et al., 2007; Duan et al., 2010; Boyman and Sprent, 2012; Raker et al.,

2016; Rueda et al., 2016).
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3.6 Discussion

In this chapter I have described an investigation into the role of rare and low

frequency variants in IBD risk, using a combination of low coverage whole genome

sequencing and imputation into GWAS data (Figure 3.16). The sole low frequency

association uncovered by this study was a missense variant in ADCY7 that, with an

odds ratio of 2.19, represents one of the strongest ulcerative colitis risk alleles outside

of the major histocompatibility complex. One possible mechanistic explanation

for this association is that a loss of ADCY7 function leads to reduced production

of cAMP in haemopoietic cells, leading to an excessive inflammatory response.

Interestingly, a previous study has investigated the use of general cAMP-elevating

agents as a potential therapy for intestinal inflammation, with results suggesting

that action upon multiple adenylate cyclases in this way may in fact worsen IBD

(Zimmerman et al., 2012). Others have looked into targeting specific members of

the adenylate cyclase family as potential therapeutics in different contexts (Pierre

et al., 2009), but specific upregulation of ADCY7 has not been attempted. Our

association between ADCY7 and ulcerative colitis raises an intriguing question

as to whether altering cAMP signalling in a leukocyte-specific way may be of

therapeutic benefit in inflammatory bowel disease.

Although we collected low coverage whole genome sequences specifically to investi-

gate both coding and non-coding variation, our sole new association is a missense

variant. This is not particularly surprising: the only previously discovered IBD

risk variants with similar odds ratios (Figure 3.16) are all protein-altering changes

(affecting the genes NOD2, IL23R and CARD9 ). The observation that the alleles

with the largest effect sizes at any given frequency tend to be coding has been

made more generally (Huang et al., 2015), explaining why coding variants are often

the first to be discovered when novel technologies allow for new areas of the minor

allele frequency spectrum to be explored.

We observe this same pattern when investigating the role of rare variation in IBD

risk, where a significant burden of very rare coding variants is seen in previously

implicated IBD genes, but no signal is observed across the enhancer regions tested.

Although our results imply that rare variants are likely to play an important role in
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Figure 3.16: The frequency-odds ratio space investigated by this study, comparing the latest

IIBDGC meta-analysis (black line) to the sequencing (green) and imputed GWAS (purple) used in

this study. The earlier study had more samples but restricted their analysis to MAF > 1%. Purple

density and points show known GWAS loci, with our novel ADCY7 association (p.Asp439Glu)

highlighted as a star. Green points show a subset of our sequenced NOD2 rare variants, and the

green star shows their equivalent position when tested by gene burden, rather than individually.

IBD risk, making real progress on rare variant association studies will require much

larger numbers of deeply sequenced exomes or whole genomes. Extrapolating for

IL23R, the known IBD gene with the most significant coding burden (p=0.0005) af-

ter NOD2, we would require roughly 20,000 cases to reach genome-wide significance

(Zuk et al., 2014).

The challenge of detecting a burden of variation in regulatory regions is further

compounded by our current inability to clearly distinguish likely functional variation
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from neutral mutations in non-coding sequence. The importance of being able to

make this distinction is highlighted when considering a burden test across known

IBD genes: if we include all rare coding variants (MAF ≤ 0.5% in controls, N=136)

in IBD genes the p-value is 0.2291, compared to P = 0.0045 when using just

the subset of 54 coding variants predicted to have a damaging effect. Therefore,

identifying the role of rare variation in the non-coding genome is likely to not

only require the sequencing of tens of thousands of samples, but also much better

discrimination between functional and neutral variants in regulatory regions.

During the course of this work, we noted a number of complexities associated with

analysing sequencing data, and in particular with combining data from different

studies. The most obvious issue was that, in order to maximise the number of

IBD patients that could be sequenced, our cases were sequenced at lower depth

that the UK10K control samples. Although very careful joint analysis of the

datasets was able to largely overcome this bias, it became clear that the analysis of

sequencing datasets at scale will require the development of many novel tools and

techniques. Furthermore, these challenges are not just restricted to low coverage

whole-genome sequencing designs: the Exome Aggregation Consortium recently

noted that variable exome capture technology and sequencing depth across their

60,000 exomes required a joint analysis of such computational intensity that it

would be impossible to carry out using the limited resources available to most

research centres (Lek et al., 2016).

Therefore, if sequence-based rare variant association studies are to be as successful as

common variant GWAS, computationally efficient methods and accepted standards

for combining these novel datasets need to be developed. An example of one such

effort is the Haplotype Reference Consortium (HRC), which has collected whole

genome sequences from more than 32,000 individuals (including the IBD samples

discussed here) in order to create a reference panel that can be used for imputation

of low frequency and common variants (McCarthy et al., 2016). Imputation into

GWAS using this large HRC panel is as accurate as low-coverage sequencing down

to MAF ∼0.05% (McCarthy et al., 2016), suggesting that in the future the most

effective way to discover low frequency variants associated with complex disease will

be to impute the huge resources of existing GWAS data with large new reference
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panels. Thus, while projects such as this one provide valuable resources in the form

of publicly available reference panels, it is unlikely that there will be much need for

low coverage whole genome sequencing in the future. Together, our results suggest

that a combination of continued GWAS imputed using substantial new reference

panels and large scale deep sequencing projects will be required in order to fully

understand the genetic basis of complex diseases like IBD.


