
Chapter 4

Transcriptome analysis of CD8 T cells to
inform a targeted CRISPR screen

4.1 Introduction

TCR stimulation triggers naive CD8 T cells to differentiate into effector CTL. This causes a
small and quiescent naive cell to undergo rapid clonal expansion, substantially increase in
size and acquire effector functions (de la Roche et al., 2016). The genome will be identical
between a naive CD8 T cell and its corresponding differentiated effector CTL version, but
the genes that are actively expressed will likely differ. In this chapter, RNA-seq was used to
understand what genes are differentially expressed between naive and effector CD8 T cells.
RNA-seq allows measurement of the complete set of transcripts of a cell (Wang et al., 2009)
and therefore allowed me to determine which genes are upregulated in response to activation.
Some of these upregulated genes will be necessary for CTL effector functions, such as target
cell killing. The result of this RNA-seq project formed the basis of a subsequent screen
to investigate how CD8 T cells are regulated at the genetic level. Targeting hits from the
RNA-seq dataset using the CRISPR technology, as optimised in chapter 3, allowed me to
determine whether the upregulated genes affect CTL killing function.

4.1.1 Study design

The experimental approach was to compare the transcriptome of naive CD8 T cells freshly
isolated from spleens of WT mice ("day 0" samples) to the transcriptome of effector CD8
T cells that were activated on aCD3e and aCD28 antibody-coated plates for two days,
followed by 5 days of expansion ("day 7" samples) (Figure 4.1A). This experimental design
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was identical to the standard procedure used to activate WT mouse T cells in vitro. Day 7
was chosen as the end time point as cells are typically used for functional assays, such as
degranulation or killing assays, around this time. At the time that the RNA-seq experiment
was performed the plan was to use T cells derived from Cas9 hom mice for the screen. As
the Cas9 hom mice were on a C57BL/6 background, WT C57BL/6 mice were used for the
RNA-seq study. The study included cells from 10 different mice (4 males and 6 females,
all ⇠16 weeks old). While the main question of interest was what genes are differentially
expressed in day 7 vs day 0 samples, the RNA-seq dataset could additionally be used to
investigate differentially expressed genes between males and females.

4.1.2 Chapter aims

• Determine the differences in gene expression between naive and activated CD8 T cells.
The hypothesis is that there are substantial changes in gene expression between these
two states of CD8 T cells.

• Explore the functional association of the differentially expressed genes using bioinformatic
tools.

• Test the effect of targeting differentially expressed genes by CRISPR in phenotypic
assays (degranulation and killing assays).

• Explore what genes are differentially expressed in CD8 T cells derived from male and
female mice.

4.2 Results

4.2.1 RNA sample preparation and quality control

CD8 T cells were purified from spleens derived from WT mice to ensure that the RNA-
seq data was predominantly derived from CD8 T cells. In order to have a record of the
CD8 purity of each sample, the percentage of CD8 positive cells was determined by flow
cytometry on the same day as freezing cell pellets for RNA extraction. CD8 positive cells
constituted >94.7% of all samples except for one sample where the percentage of CD8s
was slightly lower (Sample 33 day 7: 87.5%) (Figure 4.1B). After RNA extraction with the
RNeasy Mini Kit (Qiagen), the quality of RNA was tested using a Bioanalyser (Agilent).
High quality RNA is critical to ensure successful library preparation for sequencing. The
Bioanalyser determined RNA quality by estimating a RNA integrity number (RIN) (Schroeder
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et al., 2006). The Bioanalyser electrophoretically separated RNA fragments and visualised
their size and distribution via laser-induced fluorescence (see Figure 4.1C and D for a
representative bioanalyser gel and electrophoretic trace). The RIN algorithm takes the entire
electrophoretic trace into account before allocating a score between 1 and 10 to the sample,
with 10 indicating highest quality RNA (Schroeder et al., 2006). Library preparation and
sequencing was performed by the Illumina bespoke team at the Sanger Institute. For library
preparation the Illumina bespoke team required the RNA samples to have a RIN value higher
than 8. All RNA samples in this study had a RIN score between 8.2 and 9.6 (Figure 4.1E).
The Illumina bespoke team performed a stranded library prep with oligodT pulldown. The
20 samples (10 samples for day 0 and 10 samples for day 7) were pooled across 3 paired-end
lanes of an Illumina Hi-Seq and 75 bp reads were sequenced.
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Fig. 4.1 RNA-seq study design and sample preparation.
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Fig. 4.1 RNA-seq study design and sample preparation. A CD8 T cells were purified from
spleens derived from C57BL/6N WT mice (10 biological replicates, 4 males and 6 females)
across two spleen collection dates. After purification, 6 million cells per sample were frozen
as "day 0" naive cells. The remaining cells were stimulated for two days on 0.5 µg/ml aCD3e
and 1 µg/ml aCD28 coated plates. On day 3 cells were removed from the stimulus, washed
and expanded for a further 5 days. At day 7 post in vitro stimulation 6 million cells per
sample were frozen as "day 7" activated cells. RNA from matched day 0 and day 7 samples
was extracted on the same days. B The percentage of CD8 positive cells was determined
by flow cytometry on the same day as cell pellets were frozen for RNA extraction. C A
representative bioanlayser gel showing the typical banding pattern for a high quality RNA
sample. The two prominent bands correspond to the 28S and 18S ribosomal RNA. D The
bioanalyser electrophoretic trace corresponding to sample 79 day 7 shown in C. The trace
is used to derive the RIN number. E RIN numbers for all samples included in the RNA-seq
experiment as determined by the bioanalyser.

4.2.2 Read mapping, fragment count and quality control

The subsequent bioinformatic analysis steps were performed with Martin Del Castillo
Velasco-Herrera (PhD student in David Adams’ team) following a previously published
workflow (Anders et al., 2013). Reads were aligned to the reference genome (version
GRCm38) using the splice-aware mapper tool STAR (Dobin et al., 2013) guided by version
84 of the Ensembl mouse annotation. Next, the number of read pairs (fragments) that uniquely
aligned to a particular region in the genome were counted using Htseq-count (Anders et al.,
2015). Between 21,786,497 and 49,939,333 reads were mapped per sample, 85.84 - 88.71%
of which mapped uniquely to the reference genome. In order to estimate transcript expression
levels, read counts were normalised by calculating the FPKM (see chapter 2, section 2.7)
(Garber et al., 2011). Pairwise comparisons were performed with the log2-transformed
FPKM values by calculating the pearson correlation coefficient of all possible comparisons.
Hierarchical clustering showed that the samples clustered together according to which group
(i.e. day 0 or day 7) they belonged to (Figure 4.2A), indicating that the gene expression
differs between these two states of cells.

To further identify sources of variance in my dataset a PCA was performed (see chapter 2,
section 2.7). In PCA, data points are projected onto a 2D plane. The x-axis represents the first
principal component (PC1), which explains the greatest variance in the dataset. The y-axis
represents the second principal component (PC2), which is independent from PC1 (Figure
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Fig. 4.2 RNA-seq quality control.
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Fig. 4.2 RNA-seq quality control. RNA-seq was performed on RNA from CD8 T cells derived
from 10 WT mice (4 males, 6 females) before stimulation and 7 days after stimulation. A
Heatmap comparing samples pairwise in terms of the log2(FPKM) of all protein coding
genes. White indicates a higher pearson correlation coefficient (samples on x and y axis are
similar to one another), blue indicates a lower pearson correlation coefficient (samples on x
and y axis are comparatively different from one another). The hierarchical clustering of the
samples, as shown by the dendrogram, separates the samples by whether they belong to the
day 0 group or the day 7 group. Samples were derived from ⇠16 week old male or female
mice and collected on two different spleen collection dates (SCD, orange = SCD 1, green =
SCD 2) as indicated. B PCA was performed using the top 2000 most variable transcripts
with regularised log transformed expression values for each sample. The percent of the total
variance associated with each principal component is printed on the axis label. Samples
are colour coded according to which group they belong to. C PCA plot where samples are
colour coded according to which group they belong to, as well as which date the spleen was
collected on and whether the spleen was derived from a female or male mouse. The plots
in this figure were prepared with the help of Martin Del Castillo Velasco-Herrera. PC =
principal component. SCD = spleen collection date.

4.2B,C). In agreement with the data in Figure 4.2A, colour coding the samples showed that
the group (i.e. whether a sample belongs to the group day 0 or day 7) is the biggest source of
variance in my dataset. Expanding the colour code to include details such as spleen collection
date and whether the samples were derived from males or females showed that samples also
clustered together due to these factors. This demonstrated that all these factors affected gene
expression, meaning that the spleen collection date should be accounted for in subsequent
analyses.

4.2.3 Comparing gene expression in activated and naive CD8 T cells

The DESeq2 package (Love et al., 2014) was used to identify differentially expressed genes.
DESeq2 tests for differential expression using a negative binomial distribution model (Anders
and Huber, 2010). The spleen collection date was included as a covariate to accommodate
this as a potential confounding factor. P-values were corrected for multiple testing using the
Benjamini-Hochberg correction, giving an adjusted p-value (padj) (see chapter 2, section
2.7). In order to focus on genes with big changes in expression, genes were only considered
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Table 4.1 Top 10 activated differentially expressed genes when comparing day 7 T cells to
day 0 T cells.

Gene Log2(FoldChange) p-value B-H adjusted p-value

Spp1 11.793 0.00E+00 0.00E+00
Lif 10.579 0.00E+00 0.00E+00
Lrrc32 9.477 0.00E+00 0.00E+00
Gzmb 9.103 0.00E+00 0.00E+00
Cdkn1a 9.072 0.00E+00 0.00E+00
Tubb6 8.654 0.00E+00 0.00E+00
Il2ra 7.490 0.00E+00 0.00E+00
Galnt3 7.407 0.00E+00 0.00E+00
Slc16a3 7.397 0.00E+00 0.00E+00
Adam8 7.214 0.00E+00 0.00E+00

to be differentially expressed when the padj was smaller than 0.01 and the log2(fold change)
was larger than 2 (upregulated genes) or smaller than -2 (downregulated genes).

The volcano plot in Figure 4.3A gives an overview of the number of differentially
expressed genes. The fact that there were many significantly up and down regulated genes
upon activation demonstrated how large the effect of activation is on the transcriptome of
CD8 T cells. Genes that are highlighted in blue were detected as differentially expressed
at 1% false discovery rate (FDR) and passed the log2(fold change) cut off. In total, there
were 1803 activated and 2584 repressed significantly differentially expressed genes when
comparing day 7 to day 0. From here on I will focus on the upregulated differentially
expressed genes when comparing day 7 to day 0 samples, as this dataset should include
the genes required for CTL effector functions. The top 10 upregulated genes, as ordered
by the log2(fold change), are shown in Table 4.1. These included Gzmb and Il2ra, which
encode granzyme B and the a-subunit of the high affinity IL2 receptor, respectively. These
two proteins are known to be important for effector CTL function (de la Roche et al., 2016;
Zhang and Bevan, 2011). The complete list of the 1803 upregulated differentially expressed
genes is included digitally on a CD alongside this thesis (Appendix B).

To gain a better overall understanding of what biological pathways are enriched in the
upregulated gene list, I used the Functional Interpretation of Differential Expression Analysis
(FIDEA) server (D’Andrea et al., 2013). FIDEA mapped the genes in my dataset to functional
categories in publicly available databases, such as Gene ontology (GO) (Gene Ontology
Consortium et al., 2012) categories and Kyoto Encyclopaedia of Genes and Genomes (KEGG)
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Fig. 4.3 Differential expression analysis between activated and naive CD8 T cells.
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Fig. 4.3 Differential expression analysis between activated and naive CD8 T cells. A
Volcano plot showing the -log10 of the p-value (y-axis) vs the log2 of the fold change of
expression (x-axis) for each gene. Dotted lines indicate the log2(fold change) cut off at
-2 and + 2. The blue colour is used to highlight genes that passed the log2(fold change)
cut off and were detected as differentially expressed at 1% FDR when using the Benjamini-
Hochberg multiple testing adjustment. Some genes encoding members of the granzyme
protein family (Gzmd, Gzme, Gzmf and Gzma) are highlighted on the plot. B Word cloud
derived from FIDEA mapping the significantly upregulated gene set to the KEGG pathway
database. Words are sized according to enrichment using the FIDEA calculated p-value
corrected for multiple testing. C Word cloud derived from FIDEA mapping the significantly
upregulated gene set to the GO database. Words are sized according to enrichment using the
FIDEA calculated p-value corrected for multiple testing. D Annotation cluster derived from
the DAVID functional annotation tool that includes terms related to vesicle fusion, which
could be relevant to CTL function. The heatmap shows the overlap between genes in my
upregulated dataset (y-axis) and genes in the annotation cluster terms (x-axis). Green colour
indicates that a gene is contained within the term, black colour indicates that a gene is not
found in the term. FIDEA = Functional Interpretation of Differential Expression Analysis,
DAVID = Database for Annotation, Visualization and Integrated Discovery, KEGG = Kyoto
Encyclopaedia of Genes and Genomes, GO = Gene ontology.

pathways (Kanehisa et al., 2012). These provide curated gene sets classified according to
participation in common biological processes and can therefore be used to identify enriched
biological themes in large gene lists. The gene sets are largely manually curated based on
available experimental evidence and are therefore limited to published scientific knowledge
(Gene Ontology Consortium et al., 2012). As each database has its own methods for assigning
genes to categories it can be useful to compare the results obtained from separate curations.
The results of the FIDEA analysis using KEGG and GO Slim databases are represented
in word clouds (Figure 4.3B,C). The GO Slim database contains a smaller subset of the
GO terms and is useful for broadly classifying which biological processes a set of genes
is associated with (Gene Ontology Consortium, 2012). The size of the writing for each
functional category in the word clouds corresponds to how enriched the particular category is
in my dataset (D’Andrea et al., 2013). The word clouds particularly showed an enrichment of
genes belonging to the "cell cycle" term of GO Slim and KEGG databases (Figure 4.3B,C).
Other enriched pathways were pathways that are needed to replicate and make bigger cells,
such as DNA replication and metabolism-related pathways (Figure 4.3B,C).
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Using a different functional annotation tool, the Database for Annotation, Visualization
and Integrated Discovery (DAVID) version 6.8 (Huang et al., 2009a,b) for functional
enrichment analysis revealed 192 annotation clusters, representing biological processes,
as enriched in the protein coding genes in my dataset. Annotation clusters group functionally
similar terms together, with each term containing a list of genes associated with the term.
DAVID determined whether these clusters were statistically overrepresented (enriched) in
my dataset of upregulated genes. As for FIDEA, the sources of the functional annotation
are databases such as KEGG and GO. One of the enriched clusters included terms related
to vesicle fusion, which is a key event for CTL killing via the degranulation pathway
(Dieckmann et al., 2016). The heatmap in Figure 4.3D visualises the overlap between
upregulated genes in my dataset and the gene lists in the vesicle fusion annotation cluster.
Ten genes were chosen from this list to target using CRISPR. These genes were Ppfia3,
Anxa1, Anxa2, Anxa3, Anxa4, Tns2, Cav2, Cpne5, Dysf and Unc13a. Additionally, three
other genes, Slc7a5, Hif1a and Nfil3, that were significantly upregulated in my activated
gene list were added as further CRISPR targets. These three genes were previously found to
have interesting phenotypes in CD8 T cells. Lack of SLC7A5 protein was shown to result
in failure of CD8 T cells to differentiate into CTL (Sinclair et al., 2013) and HIF-1a and
NFIL3, also known as E4BP4, depleted CD8 T cells were shown to lack perforin (Rollings
et al., 2018). As these studies used mouse models, it would be interesting to test if these
genes are also crucial for effector functions when only knocked out at day 4 post in vitro
stimulation, as in my experimental set up. An overview of how differentially expressed the
genes chosen for the targeted screen were can be seen in Table 4.2.

4.2.4 Targeted CRISPR screen

The genes of interest were targeted by CRISPR as explained in detail in chapter 3. In short,
at day 4 post in vitro activation CTLs derived from OT-I mice were nucleofected with 3
crRNAs against the genes of interest, in addition to the tracrRNA reagent and Cas9 protein.
Subsequently, CTLs were expanded for four days before measuring their degranulation and
killing ability. As can be seen in Figure 4.4A, no degranulation defect was observed in
response to targeting the genes of interest using CRISPR. Instead, some targets, most notably
Nfil3, showed a trend towards increasing degranulation upon CRISPR treatment (Figure
4.4A). Two genetic targets, Nfil3 and Hif1a , seemed to decrease CTL killing reproducibly
after being targeted by CRISPR (Figure 4.4B).
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Table 4.2 Differentially expressed genes chosen for the targeted CRISPR screen.

Gene Log2(FoldChange) p-value B-H adjusted p-value

Nfil3 5.450 0.00E+00 0.00E+00
Anxa2 4.143 0.00E+00 0.00E+00
Slc7a5 3.591 0.00E+00 0.00E+00
Hif1a 2.446 0.00E+00 0.00E+00
Unc13a 4.223 4.01E-202 1.19E-200
Anxa4 3.115 6.03E-191 1.60E-189
Anxa3 5.661 1.12E-138 1.82E-137
Anxa1 4.261 6.69E-117 8.39E-116
Cav2 5.133 5.14E-40 2.39E-39
Tns2 2.940 2.61E-27 9.64E-27
Cpne5 2.878 1.29E-20 4.16E-20
Ppfia3 2.963 4.34E-14 1.19E-13
Dysf 2.162 0.000626692 0.001118686
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Fig. 4.4 Screening RNA-seq target genes using CRISPR. CTLs were tested for their ability
to degranulate and kill in response to exposure to EL4 target cells loaded with OVA-peptide.
A The degranulation and B the killing readout of the combined degranulation and killing
assays were analysed following the gating strategy and calculations described in chapter 2,
section 2.5.1 and 2.5.2. E:T ratio = 2.5:1, assay duration = 180 min. The bar graphs show
the average of 3 independent experiments, error bars show the SD. During each independent
repeat the experiment was performed in technical duplicates.

Based on the screening results, the effect of Nfil3 and Hif1a CRISPR was investigated
further. This confirmed that Nfil3 CRISPR significantly increased degranulation (n=5, p<0.05,
paired t-test) and decreased killing (n=5, p<0.01, paired t-test) as shown using two different
killing assays (Figure 4.5A-C).
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Fig. 4.5 Targeting Nfil3 by CRISPR resulted in a CTL killing defect.
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Fig. 4.5 Targeting Nfil3 by CRISPR resulted in a CTL killing defect. OT-I CTL were
nucleofected at day 4 after in vitro stimulation and tested in functional assays at day 8.
CTLs were tested for their ability to degranulate and kill in response to exposure to EL4
target cells loaded with OVA-peptide. A The degranulation and B the killing readout of the
combined degranulation and killing assays were analysed following the gating strategy and
calculations described in chapter 2, section 2.5.1 and 2.5.2. E:T ratio = 2.5:1, assay duration
= 180 min. The bar graphs show the average of 5 independent experiments, error bars
show the SD. During each independent repeat the experiment was performed in technical
duplicates, *p<0.05, **p<0.01, ***P<0.001 as calculated by paired t-test. Samples were
paired by day of experiment to account for day-to-day fluctuations. C Incucyte killing assay
readout showing % lysis of red EL4 target cells. One representative plot for 3 independent
experiments is shown. E:T ratio = 10:1 Each datapoint corresponds to the mean ± SD of
3-4 technical repeats. D Representative WB showing NFIL3 and Lamin B1 (loading control)
protein expression four days after nucleofection. E Quantification of the NFIL3 protein level.
In each repeat the NFIL3 protein level was expressed relative to the nucleofection control
and normalised to the loading control, n=3 independent experiments, **p<0.01 calculated
by one-sample t-test. F Representative WB showing perforin and b -actin (loading control)
protein expression four days after nucleofection. G Quantification of the perforin protein
level. In each repeat the perforin protein level was expressed relative to the nucleofection
control and normalised to the loading control, n=3 independent experiments, ns = not
significant, ***p<0.001 calculated by one sample t-test. All bar graphs show the mean ±
SD.

Hif1a CRISPR also significantly decreased the ability of CTLs to kill (n=5, p<0.01,
paired t-test), but only showed a trend towards increasing degranulation (Figure 4.6A-C). To
validate CRISPR efficiency I tested for target protein expression by WB. Decreased NFIL3
protein levels were observed in Nfil3 CRISPR samples (n=3, p<0.01, one sample t-test)
(Figure 4.5D,E). HIF-1a protein could initially not be detected by WB, most likely because
the samples were unstimulated and kept under normoxic conditions (Nakamura et al., 2005).
When stimulated with aCD3e for 4 h in hypoxic conditions (1% O2) HIF-1a could be
detected by WB, and HIF-1a levels were found to be reduced in Hif1a CRISPR samples
(n=1) (Figure 4.6D). Additionally, Hif1a CRISPR samples were shown to have decreased
NFIL3 protein levels (n=2) (Figure 4.6E,F), which was in agreement with a study where
Hif1a was deleted in all Vav-expressing cells using the Cre-lox system in mice (Rollings
et al., 2018).
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Fig. 4.6 Decreased killing in response to targeting Hif1a by CRISPR.
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Fig. 4.6 Decreased killing in response to targeting Hif1a by CRISPR. OT-I CTL were
nucleofected at day 4 after in vitro stimulation and tested in functional assays at day 8. CTLs
were tested for their ability to degranulate and kill in response to exposure to EL4 target cells
loaded with OVA-peptide. A The degranulation and B the killing readout of the combined
degranulation and killing assays were analysed following the gating strategy and calculations
described in chapter 2, section 2.5.1 and 2.5.2. E:T ratio = 2.5:1, assay duration = 180
min. The bar graphs show the average of 5 independent experiments, error bars show the
SD. During each independent repeat the experiment was performed in technical duplicates,
**p<0.01 as calculated by paired t-test. Samples were paired by day of experiment to account
for day-to-day fluctuations. C Incucyte killing assay readout showing % lysis of red EL4
target cells. One representative plot for 3 independent experiments is shown. E:T ratio = 10:1
Each datapoint corresponds to the mean ± SD of 3-4 technical repeats. D WB showing HIF-
1a and b -actin (loading control) protein expression four days after nucleofection of CRISPR
reagents and 4 h after aCD3e stimulation under hypoxic conditions, n=1. E Representative
WB showing NFIL3 and Lamin B1 (loading control) protein expression four days after
nucleofection. F Quantification of the NFIL3 protein level. In each repeat the NFIL3 protein
level was expressed relative to the nucleofection control and normalised to the loading
control, n=2 independent experiments. G Representative WB showing perforin and b -actin
(loading control) protein expression four days after nucleofection. H Quantification of the
perforin protein level. In each repeat the perforin protein level was expressed relative to the
nucleofection control and normalised to the loading control, n=3 independent experiments,
ns = not significant, *p<0.05 calculated by one sample t-test. All bar graphs show the mean
± SD.

The phenotype of increased degranulation and decreased killing was reminiscent of the
phenotype observed upon perforin CRISPR (Figure 3.8). Other studies showed that deleting
components of the HIF-1 complex or NFIL3 in mice resulted in decreased perforin expression
(Finlay et al., 2012; Rollings et al., 2018). I therefore investigated the effect of Hif1a and
Nfil3 CRISPR on perforin protein levels by WB, which confirmed that perforin was decreased
in Hif1a (n=3, p<0.05, one sample t-test) and Nfil3 CRISPR samples (n=3, p<0.001, one
sample t-test) (Figure 4.5F,G and Figure 4.6G,H).
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4.2.5 Comparing gene expression in activated CD8 T cells derived from
males and females

As the PCA plot in Figure 4.2 indicated that some of the variance in my dataset was
due to differences between sexes, I investigated which genes were differentially expressed
between CD8 T cells derived from males and females. For this, I compared male and
female samples derived from the day 7 group and applied the same significance thresholds as
before to identify differentially expressed genes (padj<0.01, log2(fold change) >2 or <-2).
Differentially expressed genes that passed these stringent selection criteria were limited to
Ddx3y, Kdm5d, Eif2s3y and Uty, all of which are located on the Y chromosome according to
the NCBI website (Table 4.3). Not taking into account the stringent log2(fold change) cut-off
revealed 79 significantly up- or down regulated genes (all with padj<0.01). Interestingly, this
gene list included Nfil3, as well as genes that encode several different granzymes (Table 4.3).

Table 4.3 Differentially expressed genes when comparing activated T cells derived from
males to activated T cells derived from females.

Gene Log2(FoldChange) p-value B-H adjusted p-value

Ddx3y 4.231 0.00E+00 0.00E+00
Kdm5d 3.348 0.00E+00 0.00E+00
Eif2s3y 3.081 0.00E+00 0.00E+00
Uty 2.478 1.18E-206 4.07E-203
Eif2s3x -0.649 7.24E-29 2.00E-25
Kdm5c -0.481 2.10E-23 4.81E-20
Kdm6a -0.627 1.85E-22 3.64E-19
Il10 -0.651 1.93E-17 3.32E-14
Pbdc1 -0.477 6.07E-14 9.29E-11
Gm29650 0.333 3.93E-13 5.41E-10
Fosb -0.519 3.29E-11 4.12E-08
Gldc 0.379 8.06E-11 9.25E-08
Esm1 -0.414 5.19E-10 5.49E-07
Eng -0.488 1.24E-09 1.22E-06
Gm5861 -0.471 1.37E-09 1.26E-06
Cdh17 -0.456 1.10E-08 9.46E-06
Gzma -0.377 1.47E-08 1.16E-05
Tcrg-C2 -0.447 1.51E-08 1.16E-05
Maf 0.425 3.14E-08 2.17E-05
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Table 4.3 continued from previous page

Gene Log2(FoldChange) p-value B-H adjusted p-value

Gzmf -0.39 3.13E-08 2.17E-05
5530601H04Rik -0.424 3.69E-08 2.31E-05
Epas1 -0.426 3.59E-08 2.31E-05
Xist -0.211 8.06E-08 4.82E-05
Pkhd1l1 -0.388 1.41E-07 8.11E-05
Gzmc -0.384 2.63E-07 0.000145102
Cyp11a1 -0.248 3.82E-07 0.000202287
Pparg -0.297 4.70E-07 0.000239877
Epsti1 0.282 6.22E-07 0.000295237
Gm8897 -0.373 6.17E-07 0.000295237
Ms4a4c 0.37 8.01E-07 0.000367891
Csgalnact1 -0.304 9.44E-07 0.000406428
Slc16a10 -0.395 9.19E-07 0.000406428
She 0.334 9.76E-07 0.000407425
Batf3 -0.332 1.01E-06 0.000407867
Cxcr6 0.381 1.08E-06 0.000411676
Btla 0.378 1.08E-06 0.000411676
Spry2 -0.385 1.70E-06 0.000632598
Il24 -0.293 2.09E-06 0.000757181
Speer1 -0.337 2.29E-06 0.000809682
Nfil3 -0.299 3.90E-06 0.001343211
Procr -0.266 4.08E-06 0.001369305
Scin -0.307 6.21E-06 0.002035039
Fcgrt 0.271 7.35E-06 0.002355526
Avil -0.353 7.72E-06 0.002416567
Trp53inp1 0.335 8.60E-06 0.002576152
Prss12 0.317 8.56E-06 0.002576152
Map1a 0.324 8.92E-06 0.002613249
Arhgap4 0.212 9.15E-06 0.002625824
Mxd4 0.343 9.63E-06 0.002678748
Mcpt8 -0.27 9.72E-06 0.002678748
Spire1 -0.292 1.21E-05 0.003170046
Gm8890 -0.3 1.22E-05 0.003170046
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Table 4.3 continued from previous page

Gene Log2(FoldChange) p-value B-H adjusted p-value

Atf3 -0.349 1.20E-05 0.003170046
Jdp2 -0.327 1.39E-05 0.0035429
Gm19705 0.341 1.57E-05 0.003862068
Gm8879 -0.299 1.57E-05 0.003862068
Il6ra 0.28 1.72E-05 0.00402067
Loxl2 -0.244 1.71E-05 0.00402067
Gzmg -0.265 1.67E-05 0.00402067
Cd7 0.285 1.90E-05 0.004372669
Trgv2 -0.341 1.95E-05 0.004401909
Il2ra -0.222 2.21E-05 0.004918823
Cxcr3 0.326 2.35E-05 0.005068284
Pisd-ps1 -0.291 2.35E-05 0.005068284
Fkbp11 -0.285 2.43E-05 0.005098991
Lag3 -0.339 2.44E-05 0.005098991
Epdr1 -0.238 2.61E-05 0.005361774
Fcer1g -0.331 2.76E-05 0.005581624
Vipr1 0.297 3.16E-05 0.006255572
Tcrg-C4 -0.327 3.18E-05 0.006255572
Dgka 0.264 3.31E-05 0.006429906
Myo1e -0.314 3.68E-05 0.007031746
Nt5e 0.331 3.84E-05 0.007150566
Plcg2 -0.267 3.81E-05 0.007150566
Nod1 0.292 4.79E-05 0.008801724
Tmem37 0.319 4.98E-05 0.00902281
Slc22a21 -0.247 5.06E-05 0.00905477
Chd3 0.263 5.66E-05 0.009986283
Slc4a7 -0.3 5.73E-05 0.009986283

4.3 Discussion

The RNA-seq study set up was designed to show differences between the transcriptome of
naive CD8 T cells and effector CD8 T cells that were stimulated and kept in culture for 7
days (Figure 4.1A). The heatmap and PCA plots in Figure 4.2 demonstrated that samples
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were mainly separated according to whether the RNA was derived from naive cells (day 0) or
effector cells (day 7), indicating that the gene expression differs between these two states of
cells. The PCA plots further revealed that some variance in the dataset was due to the spleen
collection date and whether samples were derived from males or females (Figure 4.2C). The
former was accounted for during subsequent analysis steps.

Differential expression analysis using the DESeq2 package revealed 1803 differentially
expressed genes where gene expression is upregulated, and 2584 differentially expressed
genes where gene expression is downregulated. Subsequently, I focussed on the 1803
activated differentially expressed genes, as this dataset should include genes that are required
for CTL killing. However, this dataset will additionally also include genes that are required
for other processes in T cell differentiation to cytolytic effectors, such as cell proliferation
and switching glucose metabolism from oxidative phosphorylation to glycolysis to fuel cell
growth (Fox et al., 2005). Using the functional annotation tool FIDEA confirmed that most
of the genes in my activated dataset associated with pathways related to proliferation (e.g.
cell cycle) (Figure 4.3B,C). This was reproducible using two different curations, KEGG and
GO, for the analysis (Figure 4.3B,C).

While I could have taken the approach to target the top upregulated genes in my dataset
(Table 4.1), a more targeted approach to isolate genes that may affect CTL killing was chosen
instead due to the concerns mentioned above. The DAVID functional annotation tool was
used in order to identify annotation clusters of genes related to what is known to be important
for CTL killing function. An annotation cluster was identified that was enriched in my
dataset and contained gene lists associated with vesicle fusion (Figure 4.3D). Vesicle fusion
is known to be important during the degranulation mechanism of CTL killing. 10 genes were
chosen from this list with a focus on genes that had not been studied extensively in CTL.
Additionally, 3 other genes were included that were identified as interesting targets from the
literature (Finlay et al., 2012; Rollings et al., 2018; Sinclair et al., 2013).

The screen was performed in primary mouse CTL derived from OT-I mice as these had
been used successfully with the CRISPR technology (chapter 3) and were readily available in
the Griffiths lab. The results of the RNA-seq study should be applicable to the OT-I system,
as these mice are bred on a C57BL/6 background. T cells derived from OT-I mice express
the OT-I TCR, which specifically recognises the OVA peptide presented by the H-2Kb MHC
class I molecule (Hogquist et al., 1994). Out of the 13 genes that were targeted by CRISPR
(Table 4.2), only Hif1a and Nfil3 showed a reproducible phenotype across three independent
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repeats (Figure 4.4). Due to time constraints, the other 11 genes were not followed up further.
However, I can not conclude that these genes have no effect on CTL degranulation or killing
without validating that the genes were successfully targeted by CRISPR. Since not all of these
genes have commercially available antibodies against their protein, the effect of CRISPR
could instead be confirmed by sequencing the DNA or by looking at the mRNA levels using
qRT-PCR. While these techniques would show if a cut occurred at the DNA level, or if there
is a decrease in mRNA, respectively, neither approach would be guaranteed to reflect the
expression of functional protein.

The killing defect observed in response to Nfil3 and Hif1a CRISPR was confirmed
using two different in vitro killing assays (Figure 4.5B,C and Figure 4.6B,C). Western
blotting confirmed that NFIL3 protein levels were decreased upon Nfil3 CRISPR (Figure
4.5D,E). HIF-1a protein levels were only detectable by WB after samples were stimulated
with aCD3e under hypoxic conditions (Figure 4.6D). Other studies have shown that while
HIF-1a cannot be detected by WB when effector CTL are kept under normoxic conditions,
HIF-1a levels are increased after switching cells to hypoxic conditions and in response
to TCR stimulation (Doedens et al., 2013; Nakamura et al., 2005; Palazon et al., 2017;
Rollings et al., 2018). In agreement with the literature, NFIL3 levels were reduced in Hif1a
CRISPR samples, providing further evidence that the Hif1a gene was successfully targeted
by CRISPR (Figure 4.6E,F). Furthermore, perforin protein levels were decreased in both
Nfil3 and Hif1a CRISPR samples (Figure 4.5F,G and Figure 4.6G,H). This has previously
been observed in a study using the Cre-lox system, with Cre expression under the control
of the vav-promoter, to delete Nfil3 and Hif1a in hematopoietic cells (Rollings et al., 2018).
However, HIF-1 regulation of perforin was found to be indirect, as the perforin promoter
did not contain HIF-1 complex binding sites (Finlay et al., 2012). In future experiments,
it would be interesting to investigate whether the Nfil3 promoter contains HIF-1a binding
sites, to determine whether Nfil3 is directly regulated by HIF-1a . Additionally, it would be
interesting to overexpress NFIL3 in Hif1a KO cells. If this rescues the killing phenotype it
could suggest that the killing defect in Hif1a KO CTLs is mediated via NFIL3.

Although the exact mechanism by which Hif1a and Nfil3 KO lead to a decrease in perforin
is not understood, this explained at least in part why targeting these genes by CRISPR resulted
in a CTL killing defect at the molecular level. In agreement with my findings, other studies
showed that deletion of the HIF-1 complex in CTL resulted in decreased production of other
effector molecules (IFNg , TNFa and granzyme B) as well as reduced tumour cell killing
in vivo (Finlay et al., 2012; Palazon et al., 2017). Meanwhile, increased Hif1a expression,
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achieved through the loss of one of the main negative regulators of the HIF transcription
factors (the von Hippel-Lindau complex), resulted in increased effector function of CTL, as
measured by an increase in the expression of effector molecules, such as granzyme B and
perforin, and in an in vivo cytotoxicity assay (Doedens et al., 2013). Additionally, Nfil3 KO
mice were found to have severely reduced levels of peripheral NK cells and impaired NK
cell cytotoxicity (Gascoyne et al., 2009).

In addition to comparing the transcriptome of effector and naive CD8 T cells, my RNA-
seq dataset also allowed me to compare effector CD8 T cells derived from male and female
mice. Only Y-linked genes passed the log2(fold change)>2 or <-2 and padj<0.01 cut offs
(Table 4.3). This was expected, as females do not have Y chromosomes. Looking at the genes
that were significantly differentially expressed (padj<0.01), but had a smaller effect size
(log2(fold change)>-2 and <2), interestingly identified that CD8 T cells derived from males
had less mRNA encoding several members of the granzyme family, IL2RA and NFIL3 (Table
4.3). It would therefore be interesting to compare expression of NFIL3 protein between
males and females, to see if this transcriptional effect is also present at the protein level.
Furthermore, it could be investigated whether this also translates to a better killing capability
in cells derived from female mice.

In summary, my data, together with published studies, convincingly showed that HIF-1a
and NFIL3 are crucial for CTL killing function. The data in this chapter demonstrated that
loss of NFIL3 and HIF-1a showed an effect even when these genes are only knocked out
in effector CTL. This indicated that the phenotype is not dependent on HIF-1a and NFIL3
being absent during T cell development or effector CTL differentiation. Furthermore, the
RNA-seq dataset revealed interesting differences in expression of mRNAs encoding NFIL3
and several cytotoxic effector molecules between CTLs derived from male and female mice.

4.3.1 Summary and evaluation of aims

• Determine the differences in gene expression between naive and activated CD8 T cells.
The hypothesis is that there are substantial changes in gene expression between these
two states of CD8 T cells.

– Significant differences in gene expression were observed: 1803 significantly
activated differentially expressed genes with padj<0.01 and log2(fold change)>2
were identified using DESeq2.
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• Explore the functional association of the differentially expressed genes using bioinformatic
tools.

– Using FIDEA and DAVID bioinformatic tools identified that upregulated genes in
my dataset predominantly associated with pathways related to cell proliferation,
which was not unexpected as CD8 T cells undergo rapid clonal expansion upon
stimulation.

• Test the effect of targeting differentially expressed genes by CRISPR in phenotypic
assays (degranulation and killing assays).

– Hif1a and Nfil3 were identified as interesting genetic targets that decreased killing
but not the degranulation capability of CTL. Hif1a and Nfil3 have previously been
identified as affecting CD8 T cell cytotoxicity in KO mouse models (Doedens
et al., 2013; Finlay et al., 2012; Rollings et al., 2018). Here I show that loss of
these genes also had an effect on cytotoxicity when expression of these genes is
only lost in differentiated effector CTL in vitro, as opposed to in naive T cells or
during T cell development in vivo. This suggested a more immediate importance
of these genes in CTL killing.

• Explore what genes are differentially expressed in CD8 T cells derived from male and
female mice.

– Highly differentially expressed genes (log2(fold change)>2) were limited to Y-
linked genes when comparing males to females. Interestingly, genes that were
significantly differentially expressed, but that did not pass the stringent log2(fold
change) cut-off, included genes known to be important for CTL function (such as
Gzma and Il2ra), as well as Nfil3.

Chapter 3 and chapter 4 make up the portion of the thesis that focuses on primary mouse T
cells. One of the main conclusions from this aspect of the PhD project is that gene expression
in primary mouse CTLs can be efficiently disrupted using the CRISPR Cas9-RNP approach
as optimised in the last two chapters. Importantly, this approach can be used in cells derived
from any mouse line, regardless of the genetic background. This provides an effective and
versatile tool to study the function of genes in primary mouse T cells.

Additionally, the newly established assay that simultaneously measures degranulation
and killing can be used to identify phenotypes of interest, as demonstrated using an arrayed
CRISPR screen. The readout of the assay was reliable, as comparable results were obtained
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using a separate phenotypic assay, the Incucyte killing assay. In combination with the
optimised CRISPR technology, the assay enables to identify genes important for CTL killing
and/or degranulation.

In hindsight, the experimental design of the RNA-seq study could have been more
targeted to the overall aim of the thesis, which was to identify regulators of CTL killing.
Instead, the RNA-seq study more broadly identified genes that are implicated in CD8 T cell
activation. While some of the genes upregulated in response to activation are necessary for
CTL killing, they are overshadowed by genes important for other biological functions, such
as the proliferation response. A possible alternative approach would have been to incorporate
purified CD4 T cells in the study design. Comparing the transcriptome of activated CD4 and
CD8 T cells would have allowed to filter out genes associated with proliferation in response
to activation, and would have revealed genes relevant for CD8 T cell specific functions.
Nonetheless, the RNA-seq dataset presented in this chapter is a useful resource, as it presents
a comprehensive readout of all genes that are expressed in primary mouse naive and activated
CD8 T cells.




