
 

 

 

 

 

 

 

Chapter 2 
Deciphering signatures of mutational processes from mutational 

catalogues of cancer genomes 
 

2.1 Introduction 

 The first chapter of this thesis defined somatic mutations as any change of 

DNA that is present in the genome of a somatic cell and has occurred after 

conception. Building upon this well-known definition, the chapter introduced several 

important concepts. A somatic mutational process was defined as a mixture of DNA 

damaging and repair mechanisms that act collectively and have the ability to cause 

mutations in somatic cells. A mutational signature was described as a characteristic 

pattern of somatic mutations exhibited by an operative mutational process in a 

genome of a cell. Lastly, a mutational catalogue of a cancer genome was defined as 

the conglomeration of all detected somatic mutations. 

The main focus of the present chapter is to mathematically connect these 

biological terms and provide both the theoretical model and computational approach 

for examining and deciphering mutational signatures from sets of mutational 

catalogues of cancer genomes. The approach is evaluated extensively with simulated 

data, demonstrating that the developed computational framework is robust to a large 

range of different parameters and can be applied to both genome and exome 

sequences.  

 

 

 



2.2 Theoretical model of mutational processes operative in cancer genomes 

The mutational catalogue of a cancer genome is the cumulative result of all 

somatic mutational mechanisms, including DNA damage and repair processes, which 

have been operative during the cellular lineage of the cancer cell. Since the cellular 

lineage of the cancer cell can be traced back to the zygote, the mutational catalogue 

reflects the activity of all processes operative from the very first division of the 

fertilized egg (Stratton, 2011). The large majority of mutations in cancer genomes are 

believed to be passengers, and by definition their patterns are largely unmodified by 

selection (Rubin and Green, 2009). Thus, the mutational catalogue derived from a 

cancer cell may be treated as a representative archaeological record bearing the 

combined imprints (or signatures) of the mutational processes that have been 

operative. 

 

2.2.1 Alphabets of mutation types 

A mutational catalogue can include a diverse set of mutation classes including 

base substitutions, insertions/deletions, structural rearrangements and copy number 

changes. Each class of mutation can then be further subclassified. For example, base 

substitutions can be subclassified according to the six types of single base 

substitutions (using the pyrimidine of the Watson-Crick base pair as the reference, 

C>T, C>A, C>G, T>A, T>C, T>G) or the classification can be further elaborated to 

include a variety of mutational features such as the sequence context of the mutated 

base and the transcriptional strand on which the substitution has arisen. 

For the purpose of mathematical modelling, a limited number of features of a 

mutational catalogue need to be selected. The choice of features may be influenced by 

prior biological knowledge. The choice is also often constrained by statistical 

considerations and the available data. Mathematically, a set of mutational features can 

be expressed as a finite alphabet  with  letters, where each letter corresponds to a 

mutation feature. The simplest alphabet in this case,  contains  letters, and is 

based on the 6 types of single base substitution. The letters of this  alphabet are 

C>A, C>T, C>G, T>A, T>C, and T>G. It should be noted that this alphabet of 

mutation types could be easily extended by, for example, including other mutation 

types such as double substitutions.  



In this thesis, mutational catalogues as well as the mutational signatures that 

contribute to these catalogues are examined predominantly using five distinct 

alphabets termed , , , , and . These five alphabets are discussed in 

further detail below as well as in Appendix I. 

The  alphabet is perhaps the simplest possible alphabet as it considers only 

the six types of somatic substitutions. This alphabet will not be used in any analysis 

but, rather, its simplicity will be leveraged to provide examples and visual 

representations clarifying the developed mathematical model and computational 

approach.  

The  alphabet provides greater resolution for examining the six types of 

single nucleotide variants (i.e., the  alphabet) by including the immediate sequence 

context of each mutated base. In this alphabet, a mutation type contains a somatic 

substitution and both the 5’ and 3’ base next to the somatic mutation. For example, a 

C>T mutation can be characterized as …TpCpG…>…TpTpG… (mutated base 

underlined and presented as the pyrimidine partner of the mutated base pair) 

generating 96 possible mutation types – (6 types of substitutions) * (4 types of 5’ 

bases) * (4 types of 3’ bases). 

The  further extends  by including two bases 5’ and 3’ to the mutated 

base resulting in 1,536 possible mutated pentanucleotides - (6 types of substitutions) * 

(16 types of the two immediate 5’ bases) * (16 types of the two immediate 3’ bases). 

For example, using the  alphabet, one of the 256 subclasses of a C>T mutation is 

…ApTpCpGpC… > …ApTpTpGpC… 

The  alphabet extends  by including three additional mutation types, 

viz.,  (i) double nucleotide substitutions, (ii) small insertions or deletions at short 

tandem repeats, and (iii) small insertions or deletions overlapping with 

microhomologies at breakpoints.  

Lastly,  elaborates  by considering the transcriptional strand on which 

a substitution resides. In contrast to all previously discussed alphabets,  is defined 

only in the regions of the genome where transcription occurs, which in these analyses 

has been limited to the genomic footprints of protein coding genes. Thus, the 

previously defined 96 substitution types are extended to 192 mutation types. For 



example, the C>T mutations at TpCpA are split into two categories: the C>T 

mutations at TpCpA occurring on the untranscribed strand of a gene and the C>T 

mutations at TpCpA occurring on the transcribed strand. In general, one would expect 

that these two numbers are approximately the same unless the mutational processes 

are influenced by the activity of the transcriptional machinery. This could happen, for 

example, due to recruitment of the transcription-coupled component of nucleotide 

excision repair (NER). For example, if a mutational process has a higher number of 

C>A substitutions on the transcribed strand compared to C>A substitutions on the 

untranscribed strand (note that a C>A mutation on the untranscribed strand is the 

same as a G>T mutation on the transcribed strand), this could indicate that the 

mutations caused by this process are being repaired by NER, although other 

explanations are not excluded. A known example of such strand-bias due to interplay 

between a mutational process and a repair mechanism is the formation of photodimers 

due to ultraviolet light exposure that are repaired by NER resulting in a higher 

number of C>T mutations on the untranscribed strand (van Zeeland et al., 2005). 

 

2.2.2 Mathematical definition of a signature of a mutational process 

A signature of a mutational process is mathematically defined in the context of 

a pre-selected mutational alphabet. A mutational signature is defined as a discrete 

probability density function with a domain of mutation features based on a pre-

selected alphabet  . Thus, by definition, a mutational signature is a 

lexicographically ordered k-tuple;  ...,  where is the probability of 

process  to cause the mutation feature corresponding to the -th letter of the pre-

selected alphabet , and since  are probabilities: 

 

Examples of four mutational signatures defined over  and two mutational 

signatures defined over  are given respectively in panels A and B of Figure 2.1. In 

the four examples of mutational signatures defined over , the mutational probability 

for each alphabet letter is displayed. For example, it can be seen that 35% of the 

mutations attributed to Signature 1 are C>G while only 3% of the mutations are T>G. 



Further, while Signatures 1 through 4 are defined over , Signature 2 does not 

generate any C>T, T>A, and T>C mutations as the probability for each of these 

mutation types is equal to zero. Signatures 1 and 4 are defined both over  and 

to illustrate that, while a mutation type based on a given alphabet can be similar in 

two signatures (e.g., C>A mutations are respectively 12% and 14% in these two 

signatures). Extending this alphabet may reveal an intrinsic internal structure making 

these mutation types significantly different.  

Geometrically, a mutational signature can be examined as a vector in a K

dimensional space. Since a mutational signature is modelled as a discrete probability 

density function defined over a given alphabet (see equation 2.1), all its components 

Figure 2.1: Simulated examples of mutational signatures defined over different mutational 
alphabets. (A) Four mutational signatures defined over  and (B) two mutational signatures 
defined over .  



are nonnegative and this vector belongs to the first hyperoctant of this K dimensional 

space, .  Further, as the sum of the vector components equals one, this vector is 

constrained by K-1 dimensional hyperplane. Examining two mutational signatures as 

vectors in a high dimensional space allows a convenient way for comparing these 

signatures based on the angle between the vectors. Thus, comparison between two 

mutational signatures  and  each defined over an alphabet  with K mutation 

types, is done using a cosine similarity: 

Since the elements of  and  are nonnegative, the cosine similarity has a range 

between 0 and 1. When a cosine similarity between two signatures is 1, these 

signatures are 

exactly the same. In 

contrast, when the 

similarity is 0, the 

mutation types of 

these signatures are 

completely independent. The cosine similarity is a commutative function as

. Two signatures should be compared only if they are defined 

over the same mutational alphabet. For example, one cannot compare a signature 

defined over with a signature defined over . Lastly, one can also define a

cosine distance between two mutational signatures as .  

Table 2.1 contains the similarities between the simulated mutational processes 

displayed in Figure 2.1A. The two signatures that are most similar are Signatures 1 

and Signature 4 with a cosine similarity of 0.88 while the signatures that are most 

different are Signatures 2 and 3 with a similarity of only 0.43. As expected, the 

similarity of Signatures 1 and Signature 4 is not the same when the signatures are 

defined and compared over different mutational alphabets. While Signatures 1 and 

Signature 4 have a similarity of 0.88 when defined over , they have a similarity of 

only 0.53 when defined over . As previously mentioned, this is due to the 

existence of an internal structure. In this simulated example, all C>X mutations 

Table 2.1: Similarities between simulated mutational signatures. The 
values of the cosine similarities between the signatures displayed in panel 
A of Figure 2.1 are shown in this table. 



belonging to Signature 4 are in ApCpN sequence context while Signature 1 has no 

specific sequence context (Figure 2.1). 

2.2.3 Mathematical definition of a mutational catalogue of a cancer genome 

Quantitatively, a mutational catalogue of a cancer genome is a vector, , 

containing the number of somatic mutations of a genome, , defined over a finite 

alphabet of mutation types . Mathematically, a mutational catalog is a morphism 

between the pre-defined finite alphabet,  and 

a set of K nonnegative integers, , i.e., 

 Thus, for a given genome, its 

mutational catalogue can be expressed as a K-

tuple of natural numbers,  ..., 

. A simulated example of a cancer 

genome defined over the mutational alphabet 

 is provided in Figure 2.2. This cancer 

genome has a total of 3,315 somatic 

substitutions and does not have any specific mutational features. 

Comparing the mutational catalogues of two cancer genomes, 

...  and  ... , requires that both mutational catalogues are 

defined over the same mutational alphabet . The similarity of two mutational 

catalogues can be evaluated in two distinct ways. The first comparison is based on 

Euclidean distance and examines whether mutational catalogues  and are 

exactly the same: 

With this comparison, a distance of zero is equivalent to the two mutational 

catalogues being exactly the same. Further, the larger the distance the more different 

the mutational catalogues.  

Figure 2.2: Simulated example of a 
mutational catalogue of cancer 
genome. The mutational catalogue is 
defined over the alphabet.



While two mutational catalogues can have different numbers of somatic 

mutations (and therefore a large Euclidean distance between them) they can have 

exactly the same patterns of somatic mutations. Thus, a correlation distance is used to 

compare whether the patterns of mutations of two mutational catalogues are similar. 

The simplest correlation distance is based on the Pearson product-moment correlation 

coefficient. However, this correlation coefficient is very sensitive to outliers and it 

might be misleading if a small subset of mutation types have significantly larger 

values when compared to the rest of the mutation types (Abdullah, 1990). More 

robust measurements of correlations are Spearman’s rank correlation coefficient and 

Kendal’s rank correlation coefficient (Croux and Dehon, 2010). These two rank 

correlations usually produce very similar results and rarely is there a reason to choose 

one over the other (Croux and Dehon, 2010). In this work, I make use of Spearman’s 

correlation coefficient to compare the patterns of mutations in two mutational 

catalogues. Spearman’s correlation is defined as the Pearson’s correlation coefficient 

between the ranked variables. Thus, the patterns of mutations in mutational catalogues 

 and  can be compared by the formula: 

 

where  is the rank of the -th letter of the pre-selected alphabet  in ,  is the 

rank of the -th letter in ,  is the mean of , and  is the mean of 

. 

In general, the Euclidean distance will be used to compare two mutational 

catalogues when one wants them to be as similar as possible. For example, a 

Euclidean distance will be used when extracting mutational signatures and evaluating 

the accuracy of the extraction. In contrast, the correlation distance will be used to 

compare the similarity of the patterns of somatic mutations between two mutational 

catalogues. For example, a correlation distance will be used when performing 

clustering of cancer genomes in order to identify distinct groups of mutational 

patterns. 

 

 



2.2.4 Modelling mutational processes operative in a cancer genome 

 In the previous sections of this chapter, I provided mathematical definitions 

for mutation types, mutational signatures, and mutational catalogues. In this section, I 

make use of these definitions to provide a linear model of mutational processes 

operative in cancer genomes. 

Different cancer genomes can be exposed to a particular mutational process at 

different intensities. For example, a mutational process could cause 1,000 mutations 

in one cancer genome while causing 20,000 in another. I will refer to this number of 

mutations as a mutational exposure (or simply exposure) of a signature of a 

mutational process in a cancer genome. Hence, one may say that a mutational process 

with a signature  has an exposure corresponding to the number of mutations 

caused by this process, in a mutational catalogue  of a given cancer genome.  

Multiple mutational processes can be operative in a single cancer genome 

(Stratton, 2011) and each of these processes can have a distinct mutational exposure. 

In this section, I model a cancer somatic mutational catalogue as a linear combination 

of the signatures and intensities of the exposure of the mutational processes active at 

some point in the lineage of cells leading to the cancer cell, plus added noise vector 

accounting for non-systematic sequencing or analysis errors. Thus, the mutational 

catalogue of a cancer genome defined over the mutation 

alphabet  with  letters, is a superposition of the signatures of the operative 

mutational processes  ... each defined over the mutation 

alphabet , with their respective exposures , and non-systematic noise . 

In particular, the number of the -the mutation type in  is: 

 

Note that in this definition, , , and  are vectors, while is expressed as a 

matrix. Indeed, a set of signatures of  mutational processes, can be represented by a 

nonnegative matrix  with size where  is the 



number of mutation types and  is the number of signatures. The subscript index 

indicates the signature, while the superscript index corresponds to the mutation type. 

A simulated example illustrating this model is provided in Figure 2.3. Each of 

the signatures has a specific pattern over the six base substitutions. The first signature 

has a substantial proportion of C>T mutations and contributes, in total, 1,000 

mutations to the cancer genome. The second process has a high proportion of C>A 

mutations while contributing 1,500 mutations. The third process generates substantial 

numbers of T>C mutations and contributes 750 mutations (Figure 2.3). The 

mutational catalogue of the cancer genome formed by these three processes, however, 

does not have any notable or specific features and does not obviously resemble any of 

the mutational signatures that are operative in it. This simulated mutational catalogue

contains, in total, 3,315 mutations, 3,250 (~98%) contributed by the three mutational 

processes and the remaining 65 (~2%) by white noise corresponding to minor 

processes or experimental errors in generating the mutation catalogue of the genome. 

2.3 Deciphering mutational signatures from a set of cancer genomes 

In the previous section of this chapter, I described a mutational catalogue of a 

cancer genome as a linear combination of the signatures of the underlying mutational 

processes active in this cancer genome. A single mutational catalogue does not allow 

identification of the operative mutational signatures since there are many ways to 

decompose a single mutational catalogue into multiple mutational signatures. 

However, the availability of hundreds and even thousands of mutational catalogues of 

cancer genomes can address this limitation, as mutational signatures will have 

Figure 2.3: Simulated example of three mutational signatures active in a single cancer 
genome. The three mutational signatures were defined over the  alphabet. The mutational 
catalogue of the cancer genome is modelled as a linear superposition of the signatures of three 
processes and the respective number of mutations contributed by each signature, plus added non-



different exposures in different catalogues, constraining the number of solutions and 

thus allowing deconvolution of the signatures.  

In summary, the approach developed here is used to identify the signatures of 

mutational processes from a large number of mutational catalogues. In order to do 

this, I will start by introducing matrix notations for mutational signatures, mutational 

catalogues, exposures of mutational signatures, and noise terms. These matrix 

notations are necessary to alleviate and shorten the description of the developed 

algorithm for deciphering mutational signatures. 

 

2.3.1 Matrix notations for deciphering mutational signatures 

The signature of a mutational process, defined over an alphabet  with K 

letters, can be expressed as a nonnegative K-tuple,  ... , where 

 and  is the probability of the mutational processes  to cause the 

mutation type corresponding to the -th letter of the alphabet . As previously 

described, a set of  mutational signatures can be expressed as a nonnegative 

mutational signature matrix  with size where  

is the number of mutation types and  is the number of signatures. The subscript 

index indicates the signature, while the superscript index corresponds to the mutation 

type. 

The mutational catalogue of a cancer genome, defined over the alphabet of 

mutation types , is represented by a morphism , where  For a given 

genome its mutational catalogue can be expressed as a nonnegative K-tuple, 

 ... . Hence, the mutational catalogues of  cancer genomes can 

be expressed as a nonnegative matrix of mutational catalogues 

 of size . In this case, the mutational 

catalogues form the columns of the matrix, where  is the number of mutation types 

and  is the number of genomes. The subscript index indicates the mutational 

catalogue while the superscript index corresponds to the mutation type. 



The exposure to a mutational process with a signature  ...  is 

a scalar describing the number of mutations,  , attributed to that signature in a 

given mutational catalogue. In this notation, the product  is the number of 

mutations of type corresponding to the 2nd letter of alphabet  caused by the 

mutational process  in a cancer genome with number . Hence, one can define a set 

of exposures of  genomes to a set of  processes as a nonnegative matrix 

 with size . Here, the subscript index indicates the 

genome while the superscript index corresponds to the signature. 

In addition to the signatures of the operative mutational processes, the 

mutational catalogue of a cancer genome also reflects the effect of random error 

processes, which may occur due to the used experimental approach (e.g., DNA 

sequencing) and/or bioinformatics methods (e.g., algorithms for identifying somatic 

mutations from next-generation sequencing data). To reflect the existence of such 

errors, a random noise term is introduced in equation 2.5.  This noise term  reflects 

an additive white Gaussian noise that occurs due to non-systematic errors. The noise 

term is specific to each mutational catalogue and it is defined over the alphabet  of 

the mutational catalog, where . Hence, for a set of mutational catalogues of 

 cancer genomes, the noise term can be expressed as a matrix 

  of real numbers with size . The subscript index 

indicates the noise term for the mutational catalogue while the superscript index 

corresponds to the mutation type. It should be noted that systematic sequencing and 

analysis errors are considered as “synthetic mutational processes” with specific 

profiles present in some (or all) genomes. A whole subsection in chapter 4 is devoted 

to examining such systematic sequencing and analysis errors across a large set of 

cancer genomes. 

2.3.2 Defining the mutational signatures deciphering problem 

The signatures of different mutational processes and their respective 

exposures need to be extracted from the mutational catalogues of  cancer genomes 

(Figure 2.4). Using the introduced matrix notation, this could be expressed as: 



           

or one can simplify equation 2.6 in a matrix form as: 

In practice, one knows only the mutational catalogues in the matrix  and the 

goal is to identify and such that these matrices best describe the original matrix 

without over-fitting the data. Figure 2.4 provides a graphic representation of the 

problem for deciphering signatures of mutational processes from a set of mutational 

catalogues. 

2.3.3 Examining the problem as a blind source separation 

The examined problem can be considered as a specific case of the classic 

“cocktail party” problem, where multiple people attending a party are speaking 

simultaneously while several microphones placed at different locations are recording 

Figure 2.4: Simulated example of mutational signatures deciphered from a set of mutational 
catalogues. The mutational catalogues of G cancer genomes are used to decipher the signatures 
of N mutational processes as well as the number of mutations caused by each of the processes in 
each of the genomes. The extracted signatures and contributions do not allow an exact 
reconstruction of the original set, thus resulting in genome-specific reconstruction error. 



the conversations. Each microphone captures a mixture of all sounds and the problem 

is to decipher the individual conversations from the recordings. This becomes 

possible because each microphone captures each conversation with a different 

intensity depending on the distance between the microphone and the conversation. 

Analogously, the provision of a catalogue of somatic mutations from a cancer genome 

only provides the final mixture of the signatures of all mutational processes operative 

in a cancer sample, and the goal is to decipher these signatures from a set of available 

mixtures (Figure 2.4). Thus, the mutational processes and their signatures are the 

“conversations,” the exposure to a process is the “loudness of the conversation,” the 

cancers themselves are the “microphones,” and the final mutational catalogues are the 

“recordings.” 

The “cocktail party” problem is a type of blind source separation (BSS) 

problem that involves unscrambling latent (not observed) signals from a set of 

mixtures of these signals, without knowing anything about the mixing. To be able to 

”unmix” and reconstruct the original sources from the records, a BSS algorithm is 

needed for best possible extraction of the original signals from the mixtures. These 

BSS algorithms are capable of revealing hidden features and dependencies in large 

sets of observed data, and, based on these features, building a representation of the 

data that can contribute to understanding the biological mechanisms behind these 

data. The unmixing and reconstruction of the original signals is usually based on 

some constrained and/or regularized optimization procedure minimizing an objective 

(cost) function together with a few imposed constraints, such as: maximum 

variability, statistical independence, nonnegativity, smoothness, sparsity, simplicity, 

etc. The choice of the optimization constraints is usually based on a priori knowledge 

about the processed data, and hence the constraints could be different for every 

particular case. 

The main difficulty in solving a BSS problem is that it is usually an under-

determined (ill-posed) problem. There are two main/widely-used methods for 

resolving the under-determination of BSS: Independent Component Analysis (ICA) 

and Nonnegative Matrix factorization (NMF) (Comon, 2010; Roberts and Everson, 

2001). Below, I briefly describe the basic principles of ICA and NMF. 



ICA estimates the source and the mixing matrices by maximizing the 

statistical independence of the retrieved source signals (i.e., the matrix columns are 

expected to be statistically independent). Typically, the source independence is 

achieved by maximizing some high-order statistics for each source signal, such as the 

kurtosis or negentropy (negative entropy). The main idea behind ICA is that while the 

probability distribution of a linear mixture of sources is expected to be close to a 

Gaussian (according to the Central Limit Theorem), the probability distribution of the 

original independent sources is expected to be non-Gaussian. As a result, ICA aims to 

maximize the non-Gaussian characteristics in the estimated sources with the goal of 

finding statistically independent non-Gaussian sources that reproduce the 

experimental data.  

In contrast to ICA, NMF does not seek statistical independence or constrain 

any other statistical property. Thus, nonnegative matrix factorization allows the 

estimated sources to be partially or entirely correlated. Instead, NMF enforces a 

nonnegativity constraint on the original sources and their mixing components (i.e., all 

the estimated matrix elements are greater than or equal to zero).  

The differences between NMF and ICA have important implications for 

choosing one method over another. In general, ICA is used when one is looking for 

statistically independent signals. However, in practice, there are many cases where the 

ICA assumption of statistical independence contradicts the biological reality. For 

example, two distinct mutational processes may be reliant on the same components of 

the cellular machinery making them (at least partially) statistically dependent and, as 

such, these signals cannot be deciphered with an algorithm whose basis is to seek 

statistical independence. In contrast to ICA, NMF focuses purely on part-based 

decomposition (Lee and Seung, 1999). The part-based decomposition is particularly 

useful as it allows describing the original data only by additive signals that cannot 

cancel one another. This part-based decomposition results in “natural sparseness” of 

the underlying processes and it has been shown to extract meaningful components 

from complex datasets (Lee and Seung, 1999). 

The nonnegative nature of the developed model in equation 2.7 requires a 

method that assumes (at the very least) nonnegativity of the original sources. The 

elegance, simplicity, and ability to extract meaningful processes make NMF the 



method of choice in this thesis. It should be noted that there are different algorithms 

that can be used for nonnegative matrix factorization. The results presented in this 

study are exclusively based on the multiplicative update algorithm (Lee and Seung, 

1999). 

 

2.3.4 Approach for deciphering signatures of mutational processes 

For a given mutational catalogue  that contains  cancer genomes defined 

over an alphabet  with  letters corresponding to mutation types (i.e.,  has a size 

), the algorithm extracts  mutational signatures defined over the same alphabet 

. The algorithm has the following steps: 

STEP 1 (Dimension Reduction): Reduce the dimensions of the original matrix  by 

removing any mutation types that together account for of the mutations in all 

genomes, i.e. remove the maximum set of rows  in  for which:  

 

and the cardinality of the set R, , is maximized. The matrix  is transformed into a 

new matrix  with dimensions , where . 

STEP 2 (Bootstrap): Apply Monte Carlo bootstrap resampling to avoid over-fitting 

the extracted mutational signatures. The dimensionally reduced matrix  resulting in 

a new matrix , where the probability for getting a mutation of type corresponding to 

the letter in the alphabet  in a genome  is  while the total 

number of mutations in each genome  remains unaffected, i.e.,  

STEP 3 (NMF): Apply the multiplicative update algorithm (Lee and Seung, 1999) 

for nonnegative matrix factorization to the bootstrapped data by finding the solution 

to  : 

I. Initialize matrices  and  as random nonnegative matrices with 

respective sizes  and , where N is the number of signatures. 



II. Iterate until convergence, defined as 10,000 iterations without change, or 

until the maximum number of 1,000,000 iterations is reached: 

 

 

The notation  is equivalent to the  element of the matrix , 

where . 

III. Store the identified signatures  and their respective exposures . 

STEP 4 (Iterate): Perform steps 2 and 3 for  iterations. I is determined by evaluating 

the convergence of the iteration-averaged signature matrix  (see below for deriving 

). I is selected in such a way that performing  iterations (i.e., doubling the 

iterations) does not significantly change . In most cases between 400 and 500 

iterations are needed, however, in some cases solutions could be found for  

while in rare cases more than 1,000 iterations might be required. In general, the value 

of  is strongly dependent on the size and type of the initial matrix . 

STEP 5 (Cluster): The iterations performed in step 4 result in two sets of matrices, 

and  that correspond respectively to the mutational 

signatures and their exposures generated over the I iterations. A partition-clustering 

algorithm is applied to the set of matrices  to cluster the data into  clusters. A 

variation of k-means (Jain, 2010), where each signature for  is assigned to 

exactly one cluster, is used to partition the data. Similarities between mutational 

signatures are evaluated using a cosine similarity while the  centroids are calculated 

by averaging the signatures belonging to each cluster. The iteration-averaged matrix  

is formed by combining the  centroid vectors ordered by their reproducibility (see 

Step 6). The error bars reported for each mutation type in each signature in  are 

calculated as the standard deviations of the corresponding mutation type in each 

centroid over the I iterations. Note that clustering the data in effectively results in 

clustering  as each signature unambiguously corresponds to exactly one exposure, 

thus allowing derivation of . 



STEP 6 (Evaluate): The reproducibility of the derived average signatures  is 

evaluated by examining the tightness and separation of the clusters used to form the 

centroids in  (see Step 5). More specifically, using cosine similarity, the average 

silhouette width for each of the  clusters is calculated. An average silhouette width 

of 1.00 is equivalent to consistently deciphering the same mutational signature, while 

a low silhouette width indicates a lack of reproducibility of the solution. The average 

silhouette width (Rousseeuw, 1987) of the  clusters is used as a measure of 

reproducibility for the whole solution. In addition to reproducibility, the average 

Frobenius reconstruction error is used to evaluate the accuracy with which the 

deciphered mutational signatures and their respective exposures describe the original 

matrix , i.e., , where a lower Frobenius reconstruction error 

corresponds to a better description of the original matrix. There is some association 

between the reproducibility of a solution and its reconstruction error. For example, 

solutions with very low reproducibility usually have high Frobenius reconstruction 

errors.  

The developed framework for deciphering signatures of mutational processes 

relies on two input parameters, the original matrix  (size ) and the number of 

mutational signatures  to be deciphered from . However, in most cases, the value 

of  is unknown and needs to be determined from . The model selection framework 

relies on applying the framework for deciphering signatures of mutational processes 

for values of  between  and  The reproducibility and average 

Frobenius reconstruction error is evaluated for each , and the value of N is selected 

such that the extracted mutational signatures are reproducible and the reconstruction 

error is low. 

 

2.3.5 Computational implementation of the algorithm 

The framework for deciphering signatures of mutational processes —

including its source code, brief documentation, and several examples of applying it to 

mutational catalogues — is freely available for download from: 

http://www.mathworks.com/matlabcentral/fileexchange/38724 

 



2.4 Evaluating the computational framework using simulated data 

In the previous section of this chapter, I introduced a theoretical model of 

signatures of mutational processes operative in a cancer genome. Based on this 

model, I mathematically introduced the problem of deciphering mutational signatures 

from a set of mutational catalogues of cancer genomes. Further, I proposed an 

algorithm and developed a computational framework that allows to decipher these 

signatures. In this section, I focus on evaluating the developed approach with 

simulated data. The application of the approach to experimental data is performed in 

chapters 3 and 4. 

 

2.4.1 Generating the simulation data 

Signatures of mutational processes with different exposures are randomly 

generated and used to simulate mutational catalogues of cancer genomes. The 

simulated mutational catalogues are leveraged to assess the ability of the developed 

approach to decipher the mutational signatures with which the data are simulated. In 

most cases (unless specified otherwise in the text), the signatures of mutational 

processes are stochastically generated over the alphabet  with similarities between 

them comparable to those previously observed in breast cancer genomes (Nik-Zainal 

et al., 2012). Similarly, unless specified otherwise, the exposures to mutational 

processes are uniformly distributed across the set of simulated cancer genomes while 

the total number of mutations in each mutational catalogue is drawn from a 

distribution comparable to the distribution of the total substitutions found in many 

human cancer genomes (Greenman et al., 2007; Nik-Zainal et al., 2012; Stratton, 

2011; Wood et al., 2007). For every mutational process with signature  ... 

, defined over an alphabet  with K letters, contributing mutations in a cancer 

genome , each mutation is assigned to one of the K mutation types according to the 

discrete probability density function of  Poisson noise and additive white Gaussian 

noise are added to every simulated mutational catalogue. Lastly, each simulation 

scenario is repeated 100 times and the standard deviations of the results over these 

100 repeats are reported as error bars in the respective figures. 

 



2.4.2 Extracting mutational signatures from 100 simulated cancer genomes 

An example of applying the developed theoretical approach to a set of 100 

simulated mutational catalogues of cancer genomes is shown in Figure 2.5. Similar to 

many human cancer genomes (Greenman et al., 2007; Nik-Zainal et al., 2012; 

Stratton, 2011; Wood et al., 2007), every simulated genome contains between 500 and 

Figure 2.5: Deciphering mutational signatures from a set of 100 simulated mutational catalogues. (A) 

Identifying the number of processes operative in a set of 100 simulated cancer genomes based on 

reproducibility of their signatures and low error for reconstructing the original catalogues. (B) Comparison 

between the ten deciphered signatures and the ten signatures used to simulate the catalogues. Signature 

recognition, measured using cosine similarity, and signature reproducibility, measured using average 

silhouette width, is given for each mutational signature. (C) Comparison between deciphered and simulated 

contributions of one of the ten mutational processes in all cancer genomes. (D) Comparison between 

deciphered and simulated contributions of all signatures in a typical cancer genome. (E) Comparison 

between the profiles of typical deciphered and simulated signature. (F) Comparison between the mutational 

catalogues of a typical deciphered (red line) and simulated (dark blue line) cancer genome.  



50,000 substitutions. The simulated mutations are generated using 10 mutational 

processes with distinct signatures each with 96 mutation types (i.e., signatures are 

defined over ).  

Identifying the number, N, of mutational processes operative in a set of cancer 

genomes is required prior to deciphering their signatures. The developed model 

selection approach identifies N by applying the method for different values of N (see 

section 2.3.4). For every N, the similarity between the extracted processes (i.e., 

process reproducibility) is evaluated from the stochastically initialized iterations. 

Further, for every N, the model selection approach assesses the average Frobenius 

reconstruction error of the averaged deciphered signatures  and their exposures , 

i.e., . Low reconstruction error is indicative of an accurate description 

of the original cancer genome catalogues. N is selected such that the extracted 

processes are reproducible and the reconstruction error is low. Over-fitting the 

mutational signatures is avoided by bootstrapping the data (in each iteration) before 

applying NMF to them (see section 2.3.4). 

For the 100 simulated cancer genomes, the approach is able to identify 

reproducible solutions for N between 2 and 10 (Figure 2.5A). Increasing the number 

of signatures from 2 to 10 substantially reduces the reconstruction error, but 

increasing beyond 10 does not further reduce it (Figure 2.5A). This indicates that the 

computational approach can optimally distinguish the signatures of 10 mutational 

processes, precisely the number originally used to simulate the mutational catalogues 

of these 100 cancer genomes. The 10 deciphered signatures are very reproducible 

(average silhouette width ) as well as extremely similar (average cosine 

similarity ) to the ones used to generate the 100 mutational catalogues (Figure 

2.5B). Further, the computational approach is able to accurately identify the number 

of mutations contributed by each of the 10 processes in each of the genomes. 

Comparison between original and deciphered exposures of one of the signatures in all 

genomes is shown in Figure 2.5C and a comparison of the contributions of all 10 

signatures in a single genome is shown in Figure 2.5D. A typical comparison between 

an original and deciphered signature is shown in Figure 2.5E and a typical 

comparison between an original and reconstructed mutational catalogue of a genome 

is depicted in Figure 2.5F. In summary, the applied approach is able to accurately 



identify the underlying mutational signatures and their respective exposures in this set 

of 100 simulated mutational catalogues. 

2.4.3 Identifying factors that influence extraction of mutational signatures 

To identify factors that affect the ability to extract mutational signatures, 

signatures of mutational processes 

and their respective exposures are 

simulated under a number of 

different scenarios. The original 

signatures used to simulate the data 

are compared to the deciphered 

signatures in order to evaluate both 

the limitations and robustness of the 

developed computational 

framework. All comparisons 

between mutational signatures are

done using a cosine similarity as 

previously described in section 

2.2.2.  

To evaluate how the degree of similarity between mutational signatures affects 

their extraction, sets of four randomly generated signatures are simulated; two of the 

signatures are very different from any of the other signatures, while the similarity of

the remaining two to each other is varied (Figure 2.6). Hence, Signatures I and II are

Figure 2.6: Design for simulating four mutational 

signatures with different similarities between them. 

Signatures I and II differ significantly from each other 

as well as from the other two Signatures (cosine 

similarity between 0.00 and 0.20). Signatures III and 

IV are simulated with varying similarities between 

them. 

Figure 2.7: Deciphering mutational signatures with different similarities between them. (A) 

Different numbers of mutational catalogues are examined while Signatures III and IV are simulated 

with very similar profiles. (B) The mutational catalogues of 20 cancer genomes are simulated while 

the similarity between Signatures III and IV is varied. 



simulated such as the cosine similarity between each of these signatures and any other 

signature is always within the range of 0.00 and 0.20 (i.e., signatures with very 

different mutational profiles) while the similarity range between Signatures III and IV 

is varied, as described below.  

Sets of Signatures III and IV are simulated with a cosine similarity ranging 

between 0.90 and 1.00 (i.e., signatures with extremely similar profiles). In addition, 

different numbers of mutational catalogues are examined (Figure 2.7A). The 

performed simulations indicate that 30 mutational catalogues are sufficient for 

adequately identifying the four mutational signatures, while 50 or more cancer 

genomes allow to perfectly decipher signatures that are extremely similar (Figure

2.7A). Further simulations are carried out in which sets of mutational catalogues of 20 

Figure 2.8: Deciphering mutational signatures from different sets of cancer genomes. 

Evaluating the effect of deciphering between two and thirty mutational signatures from sets of 

mutational catalogues derived from 10, 20, 30, 50, 70, 100, and 200 cancer genomes. 

Figure 2.9: Dependencies between mutational signatures and mutational catalogues of cancer 

genomes. (A) Exponential dependency between accurately deciphered signatures (i.e., cosine 

similarity between simulated and deciphered signature ) and the number of mutational 

catalogs needed to decipher these signatures. (B) Identification of the maximum number of 

accurately deciphered signatures (cosine similarity between simulated and deciphered signature 

shown in the legend) from sets of mutational catalogues simulated using the signatures of 20 

mutational processes. 



cancer genomes are evaluated with a varied distance range between Signatures III and 

IV. Interestingly, even though 20 mutational catalogues are insufficient to decipher 

the profiles of very similar looking signatures, they are suitable for effectively 

extracting signatures that have similarities  (Figure 2.7B).  

The number of available cancer genomes mathematically limits the number of 

signatures that can be extracted from the mutational catalogues of these genomes. For 

example, accurately deconvoluting signatures of 15 mutational processes from the 

mutational catalogues of only 10 cancer genomes is ineffective. To evaluate the effect 

of the number of mutational catalogues on extracting mutational signatures, 

simulations with different numbers of cancer genomes generated using a varying

number of mutational signatures are performed. Between 10 and 200 sets of 

mutational catalogues are simulated using up to thirty mutational signatures (

. Interestingly, the number of mutational catalogues required to accurately 

decipher the signatures operative in them increases exponentially with the number of 

signatures (Figure 2.9A). Thus, while mutational catalogues from 100 cancer

genomes are necessary to extract the signatures of fifteen mutational processes, at 

least 200 cancer genome catalogues are required to deconvolute twenty signatures 

(Figure 2.8). Nevertheless, it is possible to decipher at least some of the 20 mutational 

signatures from a set of 100 or fewer mutational catalogues (Figure 2.9B).  

The number of somatic mutations in each cancer genome affects the ability to 

decipher the signatures of the operative mutational processes. In all previous 

Figure 2.10: Dependencies between mutational signatures and numbers of somatic mutations. 

(A) Evaluating the effect of deciphering different number of mutational signatures from sets of 

mutational catalogues derived from 50 cancer genomes. The catalogues are simulated with different 

average number of mutations in a cancer genome. (B) Evaluating the effect of deciphering 2, 3, 5, or 

7 mutational signatures from large sets of mutational catalogues containing small number of average 

mutations per cancer genome. The line colours correspond to the ones in the legend of panel A. 



simulations, it is assumed that the distributions used to simulate the number of 

somatic mutations in cancer genomes are similar to those of some common cancers 

such as breast and prostate cancer. However, recent studies have demonstrated that 

there is substantial heterogeneity between the mutational burdens across major cancer 

types (Alexandrov et al., 2013a; Lawrence et al., 2013). In this section, simulations of 

50 mutational catalogues with different average numbers of somatic mutations are 

performed. Each mutational catalogue is simulated using between two and ten 

mutational signatures. Obviously, having more somatic mutations (i.e., more data for 

each sample) allows to better distinguish the profiles of the mutational signatures. As 

such, the focus of these simulations is to examine how lower average numbers of 

mutations (i.e., between 48 and 7,200 mutations) affect the ability of the approach to 

identify mutational signatures. The results indicate that two or three signatures can be 

effectively extracted from 

catalogues with less than a 

hundred somatic mutations 

(Figure 2.10A). In contrast, 

extracting seven or more 

mutational signatures 

requires an average of at 

least 1,000 mutations per 

catalogue.  

The combined 

protein coding exons (the 

“exome”) constitute only 

~1% of the human genome. 

The analysis of exomes 

compared to whole-genome 

sequences is often perceived 

as advantageous because of 

lower costs and because a 

substantial proportion of cancer-causing driver somatic mutations may be found using 

this strategy. As a result, many more exome sequences of cancers have currently 

being generated than whole-genomes. To further evaluate the applicability of the 

Figure 2.11: Deciphering mutational signatures with 

different contributions in mutational catalogues. Fifty 

mutational catalogues are simulated using mutational 

signatures with different contributions. Signature I’s 

contributions are fixed to contribute a fixed percentage of all 

mutations in either the whole set of mutational catalogues (i.e., 

the overall contribution is fixed but different genomes can have 

different contributions of Signature I; blue bars) or in each 

individual cancer genome (i.e., Signature I’s contributions are 

fixed in every single mutational catalogue; red bars). 



approach to only parts of the genome (and more specifically exome sequences), large 

sets of mutational catalogues simulated with small average numbers of somatic 

mutations are examined. The results reveal that at least 500 mutational catalogues

with an average of 96 mutations per catalogue (a total of ~50,000 mutations) are 

needed to decipher five mutational processes (Figure 2.10A), but these five 

mutational processes can be more easily deciphered from 50 cancer genomes 

containing an average of 480 mutations (a total of ~25,000 mutations, Figure 2.10B). 

This result indicates that it is more effective to decipher mutational signatures from a 

small number of catalogues containing many mutations than from many catalogues

containing few mutations.  

The strength of exposure of a mutational process in a set of genomes also

influences the ability to decipher its signature. Two types of simulations of seven 

signatures operating with different strengths in 50 mutational catalogues are

performed. In the first type, the percentage of exposures of Signature I in all samples

is simulated as a constant parameter with values between 5% and 95% of all 

mutations (Figure 2.11). In contrast, in the second type of simulation, the exposures to 

Signature I are kept as a constant parameter in every sample, again, with values 

between 5% and 95% of all mutations (Figure 2.11). The results demonstrate that 

signatures contributing <5% 

of all mutations can be 

difficult to distinguish. 

Similarly, deciphering the 

members of a set of 

mutational signatures that 

have similar exposures with 

respect to each other over a 

set of cancer genomes is 

challenging (Figure 2.11). 

To overcome this problem, 

it may be advantageous to 

combine sets of mutational 

catalogues in which 

mutational processes are 

Figure 2.12: Deciphering errors of exposures and accuracy 

of mutational signatures. Comparison, across all previously 

performed simulations, between the accuracy of the deciphered 

mutational signatures and the deciphering error for identifying 

the contributions of these signatures. The deciphering 

Frobenius reconstruction error is calculated and averaged for 

each contribution and normalized based on the numbers of 

mutations in the respective mutational catalogue. 



more likely to be active in different proportions (e.g., from different cancer types). 

However, combining sets of mutational catalogues in this way ought to be considered

with caution as the number of cancer genomes required for the extraction of 

signatures increases exponentially with the number of operative signatures and more 

cancer types may well entail more signatures (Figure 2.8 and Figure 2.9). 

In addition to deciphering mutational signatures, the developed computational 

approach identifies the number of somatic mutations that each signature contributes to 

each mutational catalogue. In general, one would expect that the developed algorithm 

is, at least to some degree, symmetrical. Thus, when the algorithm correctly identifies 

the mutational signatures, it should also accurately estimate the contributions of these 

signatures (see section 2.3.4 in regards to the symmetric clustering of the data 

extracted in the sets of signatures, , and the sets of exposures, ). Evaluating the 

average deciphering error for identifying contributions, for all previously performed 

simulations, confirms that the majority of accurately deciphered mutational signatures 

(i.e., cosine similarity between simulated and extracted signatures ) are 

associated with a low error (i.e., normalized Frobenius error rate ) for their 

respective signature contributions (Figure 2.12). Further examination reveals that only 

very few of the accurately extracted signatures are associated with a normalized 

Frobenius error rate  (Figure 2.13A). Interestingly, the analysis indicates that 

the contributions of signatures generating large numbers of mutations ( are 

generally associated with lower error rates (Figure 2.13B). 



2.5 Discussion 

In this chapter, I have modelled the signatures of somatic mutational processes 

in cancer genomes as a blind source separation problem and introduced a 

computational framework that extracts these mutational signatures from the 

mutational catalogues obtained from cancer genome sequences. To identify these 

signatures, the intrinsic nonnegativity of mutations mandates employment of a 

method incorporating a nonnegative constraint. The extensive evaluations of the 

approach with simulated data demonstrate that the developed algorithm is effective in 

deciphering mutational signatures from mutational catalogues. 

The efficiency of the algorithm could be further improved by incorporating 

additional constraints. For example, the current implementation of the computational 

framework relies on nonnegative matrix factorization, which has a natural weak 

sparsity constraint; however, a strong sparsity constraint could be applied to the 

exposure matrix . This would guarantee that the mutational catalogue of a cancer 

genome is described by a minimum number of processes. Algorithms implementing 

this and other constraints have been previously developed (Berry et al., 2007; Gao and 

Church, 2005; Peharz and Pernkopf, 2012; Zheng et al., 2006) and could be applied to 

cancer genomics data. Nonetheless, this study demonstrates that an approach based on 

the simplest (i.e., without additional constraints) NMF algorithm is sufficient to 

decipher both the signatures of the mutational processes operative in a set of cancer 

genomes as well as the number of mutations each signature contributes to the 

mutational catalogue of each cancer genome. 

Parameters to which solutions are sensitive include the number of operative 

mutational processes, the strength of their exposures, the degree of difference between 

mutational signatures, the number of analysed cancer genomes, the number of 

mutations per cancer genome, and the number of mutation types that are incorporated 

into the model (Figures 2.6 through 2.13). These factors will determine the manner in 

which the method will be applied in the next chapters of this thesis. Importantly, the 

results show that, despite relatively few mutations present in each case, the approach 

can be applied to exome data, extracting at least some of the signatures of the 

operative processes.  



It should be noted that when the number of samples in a dataset is too low or 

when the mutational burden is insufficient, the developed approach will lack the 

power to decipher the signatures of all operative mutational processes. Thus, in some 

cases, the extracted signatures will represent mixtures of multiple independent 

patterns of mutations and only additional samples will allow further differentiating 

these mutational signatures.  

Diverse mutation classes can be included in this type of analysis. Thus the 

application of the developed approach can, if desired, be limited to single base 

substitutions or be widened to include double nucleotide substitutions, insertions, 

deletions, geographically localized forms of mutation and mutation features such as 

transcriptional strand-bias. Following this principle, rearrangements and copy number 

changes (and potentially even epigenetic modifications) could be incorporated in 

order to derive a comprehensive overview of operative mutational processes. 

The complexity of the mutational processes operative in some cancers and the 

inherent challenges in extracting their attendant mutational signatures should not be 

underestimated. For example, tobacco smoke contains around 7,000 chemicals from 

which over 60 are known to be mutagenic (Rodgman and Perfetti, 2008). Thus, the 

mutational pattern of a lung cancer in a tobacco smoker will reflect the activity and 

potency of (at least) several of these chemicals. Each of these chemicals may have its 

unique mutational signature. A group of smokers loyal to the same brand will be 

simultaneously exposed to the same combination of mutagens. Analysis of tumours 

from this group of individuals therefore may not allow the mutagens to be 

distinguished from one another and the developed computational approach will 

extract only a single signature that encompasses the combined mutational activity of 

the most mutagenically potent chemicals. However, as different cigarette brands may 

contain different combinations and amounts of mutagens, analysis of mutational 

catalogues from cancers due to different tobacco brands could allow differentiation 

between the signatures of each of the different chemicals. An ambitious aspiration of 

this nature would, however, probably only be feasible with data from thousands of 

cases, coupled to the statistical power and resolution provided by whole-genome 

mutational catalogues. 


