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ABSTRACT

In vitro cell lines derived from the early embryo retain the identity and lineage
restrictions of their embryonic counterparts: embryonic stem cells (ESCs) are pluripotent
and similarly to ICM contribute to all tissues in the embryo proper, being generally
excluded from the extraembryonic layer. On the other hand, trophoblast stem cells
(TSCs) resemble TE and are restricted to the extra-embryonic lineage. Despite the efforts
of several groups, it is still not possible to completely convert ESCs to TSCs. The
molecular players that underpin this restriction in ESCs remain largely unknown. |
therefore proposed to identify suppressors of ESC differentiation to trophoblast in an
unbiased approach, using CRISPR/Cas9 genome-wide loss of function screening.

| developed a reporter cell line that constitutively expressed Cas9 from the Rosafé
locus, and was engineered with knock-in of T2A-Venus into the E/f5 locus (E/15:Venus
ESCs). E/f5is a stringent TSC marker that fails to be activated in most published methods
for ESC conversion to TSC. Proof-of-concept experiments used Oct4 knockout via
CRISPR/Cas9 to validate this line for both efficient gene editing and faithful tracking of
TSC differentiation. E/f5::Venus ESCs were then transduced with a genome-wide
lentiviral gRNA library for CRISPR/Cas9 genetic screen. Mutant cells were differentiated
in TSC media for fourteen days, at which point Venus positive and negative populations
were sorted. gRNA representation was subsequently analysed by next generation
sequencing. At a false discovery rate of 10%, | could identify 42 genes whose loss of
function allowed ESC conversion to TSC. | could validate 22 genes with different
phenotype strength, implicated in the maintenance of the first cell lineage decision.
Importantly, the screen identified four components of the non-canonical Polycomb
Repressive Complex 1.1 as strong lineage regulators. The role of two of these genes,
Beor and Anf2 was further explored in ESCs for their differentiation profile as well as
transcriptional changes that underline their mechanism. Preliminary data for /n vivo
chimera assays showed that derivatives of ESCs deficient for Bcor or Anf2 could be
found within extraembryonic tissues in chimeric embryos. Further studies however will
be necessary to assess both reproducibility and cell identity, and evaluate if this lineage
restriction is indeed impaired /7 vivoin knockout ESCs.

Overall, my studies demonstrate the power of CRISPR/Cas9 screen, highlighting new
layers of regulation for the first cell lineage decision and its maintenance in ESCs. |
believe further characterisation of remaining screen hits will continue to elucidate the
molecular mechanisms of TE and ICM segregation in early embryos.
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