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From transcription to translation: global translational 

properties of fission yeast mRNAs and integration 
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From transcription to translation: global translational 

properties of fission yeast mRNAs and integration 

with other genome-wide data sets on gene expression 

 

This chapter will provide a global view of translational efficiency of mRNAs in 

vegetatively growing fission yeast cells measured by translational profiling. 

Furthermore, other genome-wide data sets on various aspects of gene expression 

regulation such as mRNA steady-state levels, poly(A) tail length of mRNAs, mRNA 

half-lives and transcriptional efficiency and the connections between these diverse 

layers of gene expression regulation will be presented. Data from this chapter have 

been published in Molecular Cell (Lackner et al. 2007). 

 

Introduction 

It is important to recognize that gene expression can be regulated at multiple levels, 

and cells need to coordinate different regulatory processes to function properly. 

Transcriptional rates, mRNA features such as poly(A) tail length, association with 

RNA-binding proteins and mRNA half-lives as well as translational rates all make a 

contribution to regulating gene expression in the cell (Hieronymus and Silver 2004; 

Mata et al. 2005). There is increasing evidence that these processes at the complex 

interplay between DNA, RNA and the regulatory apparatus are integrated with each 

other (Maniatis and Reed 2002; Orphanides and Reinberg 2002; Proudfoot et al. 2002; 

Moore 2005). Most data supporting this idea have been generated through numerous 

in-depth studies focussing on single genes which are regulated at several levels. 

Complementary to the single gene approach, large-scale approaches have given us 

new insights into gene expression regulation from a genome-wide perspective. For 

many of these studies, microarrays were mostly used to measure mRNA steady-state 

levels for expression profiling (Lockhart and Winzeler 2000). Recently, sophisticated 

variations of microarray-based approaches made genome-wide measurements of 

additional aspects of gene expression possible (Hieronymus and Silver 2004; Mata et 

al. 2005). Many of these approaches were pioneered in the budding yeast 

Saccharomyces cerevisiae. Examples include genome-wide studies on mRNA half-
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lives (Wang et al. 2002; Grigull et al. 2004), RNA-binding proteins (Gerber et al. 

2004), and translation (Arava et al. 2003; Preiss et al. 2003; MacKay et al. 2004). 

These global data sets provide supplementary and unique views on specific aspects of 

gene expression and allow the discovery of unexpected connections; for example, 

translational profiling revealed that long mRNAs are less densely associated with 

ribosomes than are short mRNAs (Arava et al. 2003). 

While traditional studies can address multiple aspects of regulation for one or a few 

genes, genome-wide studies typically are restricted to one aspect of regulation. It is 

not clear to what degree different regulatory levels of gene expression are inter-

connected at a global scale, and whether any global patterns are conserved during 

evolution. For a comprehensive understanding of gene expression, it will be important 

to obtain and integrate global data sets covering as many regulatory aspects as 

possible, given that the cell itself regulates and coordinates multiple levels of gene 

expression. 

This work was aimed at gaining insights into key aspects of gene expression in the 

fission yeast Schizosaccharomyces pombe on a genome-wide scale with a focus on 

translation. To this end, a detailed analysis of genome-wide translational properties 

was complemented by a range of other large-scale data for context and comparisons. 

Besides using established methods to determine translational profiles, mRNA steady-

state levels and mRNA half-lives, novel microarray-based approaches were applied to 

estimate poly(A) tail lengths and transcription rates. The integrated analyses further 

incorporated publicly available data on S. pombe ORF lengths (Wood et al. 2002) and 

protein levels (Matsuyama et al. 2006).  The systematic and quantitative data sets 

from this multi-dimensional approach, all acquired using a standardized growth 

condition and coherent methodology, helped to uncover global connections and trends 

that would not be apparent from studies involving only a few genes, and they revealed 

remarkably widespread relationships between multiple layers of gene expression. 

Furthermore, these data provided us with a valuable basis for the measurement of 

changes in translation efficiency in cells under different conditions such as after the 

exposure to stress (see Chapters 4 and 5). 
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Establishing polysome fractionation 

To obtain data on translation in fission yeast, we wanted to determine the association 

of ribosomes with mRNAs on a global scale. To this end, polysome profiling 

combined with microarray analysis was used: Cycloheximide is added to the cells, 

which blocks translation and "freezes" the ribosomes on the mRNA. Cell lysates are 

then subjected to ultracentrifugation on a sucrose gradient to resolve mRNA-ribosome 

particles according to density, which corresponds to the number of bound ribosomes. 

The gradient is then fractionated by upward displacement with 55% sucrose and RNA 

absorbance is measured at 254 nm. RNA can then be extracted from the collected 

fractions, which correspond to mRNAs with increasing numbers of bound ribosomes, 

and probed on microarrays. 

At the early stages of this study, 5-45% sucrose gradients were used to fractionate 

mRNA-ribosome particles and ultracentrifuge runs were done at 39,000 rpm for 160 

min. A representative polysome profile is depicted in Figure 3.1A. To confirm that the 

peaks in Figure 3.1A correspond to the indicated ribosomal subunits (40S, 60S), 

monosome (80S) and polysome fractions (2 and more bound ribosomes), the 

distribution of ribosomal RNA (rRNA) along the profile was determined. 
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Figure 3.1 Polysome profile of ribosomes isolated from S. pombe and resolved by 
velocity sedimentation through a 5-45% sucrose gradient 
(A) The positions of free small (40S) and large (60S) ribosomal subunits, monosomes (80S), 
and polysomes (2–4 ribosomes and above) are indicated in the profile. 
(B) RNA was extracted from each fraction and an aliquot of each fraction was resolved using 
a 1% agarose gel and stained with ethidium bromide. The 2 most prominent bands 
correspond to 25S and 18S ribosomal RNA. 
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RNA was extracted from 14 fractions equally spaced along the profile (see Chapter 

2), and equal amounts of RNA from each fraction were loaded onto a 1% agarose gel 

and stained with ethidium bromide, which is sufficient to visualize rRNAs given that 

they are the most abundant RNA species in growing cells. The occurrence of 18S 

RNA, which is part of the 40S ribosomal subunit, and 25S RNA, which is part of the 

60S ribosomal subunit corresponded well with the peaks in the polysome profile 

(Figure 3.1B). 

It was also important to confirm that mRNA was efficiently extracted from these 

fractions and that the amount of a given mRNA in the individual fractions would 

correspond to its translational efficiency. Actin is a very abundant protein in the cell 

(Futcher et al. 1999; Lu et al. 2007), and it could be assumed that actin mRNA is 

efficiently translated and most of its mRNA should be associated with the heavy 

polysome fractions. To test this, aliquots of mRNA extracted from each fraction were 

resolved on a 1% formaldehyd-agarose gel and analyzed by Northern blotting with a 

probe specific for act1 mRNA (see Chapter 2). As expected, most act1 mRNA was 

associated with fractions 12-14 of the polysome profile (Figure 3.2). 
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Figure 3.2 Association of actin mRNA across the polysome profile 
Aliquots of each fraction were resolved on a 1% formaldehyd-agarose gel and analysed by 
Northern Blotting with a probe specific for actin. Most act1 mRNA could be found associated 
with polysomal fractions. The 2 bands of different size probably belong to 2 transcripts with 
alternative 3’ UTRs (Mertins and Gallwitz 1987). 

 

In the 5-45% sucrose gradients, we were able to obtain single peak resolution of up to 

4 ribosomes bound to mRNA in the polysome fractions (Figure 3.1A, Figure 3.3 top 

panel). To enhance this resolution, we used various gradients with differing sucrose 

concentrations for the polysome profiling and also varied the time and speed for the 

ultracentrifugation step.  Best results were obtained using a 10-50% sucrose gradient 

and running the gradients at 35,000 rpm for 160 min. Using these conditions, we 

could resolve up to 8 ribosomes bound to mRNA as a singleton peak (Figure 3.3).  

Thus, unless otherwise indicated, polysome profiling in this study was done using 

these conditions. 
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Figure 3.3 Comparison of polysome profiles obtained using sucrose gradients with 
different concentrations 
Polysome profile of ribosomes isolated from S. pombe and resolved by velocity sedimentation 
through a 5-45% sucrose gradient run at 39,000 rpm for 160 minutes (top panel) or a 10-50% 
sucrose gradient run at 35,000 rpm for 160 minutes (bottom panel). The positions of free 
small (40S) and large (60S) ribosomal subunits, monosomes (80S), and polysomes (2–8 
ribosomes and above) are indicated in the profile. 

 

Genome-wide translational profiling  

To determine the translational characteristics of mRNAs in fission yeast at a genome-

wide scale, we prepared polysome profiles and hybridized microarrays with twelve 

mRNA fractions representing different numbers of associated ribosomes (Figure 

3.4A). Normalization of the microarray data was done based on spiked-in bacterial 

mRNAs to correct for different RNA amounts in each fraction (see Chapter 2). Using 

this approach, we obtained high-resolution translational data for vegetative S. pombe 

cells growing exponentially in minimal medium at 32ºC.  

Figure 3.4B provides examples of translation profiles from three independently 

repeated experiments. There was high reproducibility between these experiments. We 

verified that transcripts peaked in the expected fractions. For instance, the non-coding 

rrk1 RNA (RNase P K-RNA; Krupp et al. 1986) peaked in fraction 2, reflecting an 

absence of associated ribosomes as expected for an RNA that is not translated. The 

fba1 mRNA, encoding fructose-bisphosphate aldolase, peaked in fraction 11, 

reflecting an association with many ribosomes for most of the mRNA. Consistent 

with this, Fba1p is highly expressed and within the top 1% with respect to protein 
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levels (Hwang et al. 2006). The 78-nucleotide rpl4101 is the shortest mRNA in S. 

pombe and is therefore not expected to be associated with many ribosomes; 

accordingly, it peaked around fraction 6, which corresponds to the binding of a single 

ribosome (Figure 3.4A,B). Actin mRNA showed a similar distribution throughout the 

fractions measured using microarrays (Figure 3.4B) or Northern blotting (Figure 3.2). 

Furthermore, these profiles obtained by microarrays corresponded well with 

independent profiles obtained by quantitative PCR in another study (Bachand et al. 

2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 High-resolution polysome profiling 
(A) Polysome profile of ribosomes isolated from vegetatively growing S. pombe cells and 
resolved by velocity sedimentation through a 10-50% sucrose gradient. The positions of free 
small (40S) and large (60S) ribosomal subunits, monosomes (80S), and polysomes (2–8 
ribosomes and above) are indicated in the profile. RNA extracted from 12 fractions equally 
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spaced throughout the profile (bottom) was labelled and hybridized against a total RNA 
reference on microarrays containing all S. pombe genes. 
(B) Translation profiles for selected transcripts obtained by microarray analysis, showing the 
relative RNA amounts for a given transcript contained in each of the 12 fractions. Fractions 
associated with ribosomes are indicated. Different transcripts are colour-coded, and polysome 
profiles from three independent biological repeats are shown for rrk1 (RNase P K-RNA), 
rpl4101 (encoding ribosomal protein), htb1 (encoding histone H2B), fba1 (encoding fructose-
biphosphate aldolase) and act1 (encoding actin). 

 

Figure 3.5A shows average translational profiles for selected groups of transcripts. 

The profile of all mRNAs that provided translational data showed a peak in fraction 3 

(reflecting free mRNA) along with a broad peak covering fractions 7-11 (reflecting 

polysomes of different sizes). Introns that were included on the microarrays peaked in 

fraction 3, which is not associated with ribosomes, as expected given that translation 

occurs on spliced mRNA. Conversely, mRNAs associated with Gene Ontology (GO) 

terms for translational regulation were associated with many ribosomes as expected 

for these highly expressed genes (Hwang et al. 2006). A list of 377 mRNAs encoding 

secreted proteins, which are translated on the endoplasmic reticulum membrane, 

showed an almost identical average translation profile to the one for all mRNAs 

(Figure 3.5B), indicating that the ribosome distribution for this specialized group is 

similar. 
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Figure 3.5 Average translation profiles for selected groups of RNAs 
(A) Average translation profiles for selected groups of RNAs, plotted as in Fig. 3.4B for one 
experiment. All mRNAs, the 3505 high-confidence mRNAs with complete profiles in this 
experiment; Introns, 11 long introns included on the microarray; and Translation, 62 mRNAs 
associated with the GO terms “translational intiation,” “translational elongation,” or 
“translational termination”. 
(B) Average translation profiles from the same experiment as in (A) for 377 mRNAs encoding 
secreted proteins. 
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Global translational properties of mRNAs 

Although polysome profiles for almost all mRNAs were obtained, for further analysis 

we focussed on a conservative, high-confidence set of 3598 (72.5%) out of the 4962 

nuclear encoded protein-coding genes. For a mRNA to be included in the high-

confidence it had to fulfil the following criteria: (1) microarray data had to be 

available for at least 2 out of the 3 experiments for all 12 fractions, and (2) there had 

to be a minimum correlation of the profiles from different repeats (see Chapter 2 for 

details). Most of the excluded mRNAs were not or only weakly expressed under the 

condition used, which could be seen by looking at the disribution of these excluded 

genes according to relative expression levels measured using Affymetrix chips 

(Figure 3.6). These genes were also most enriched for GO terms related to meiosis (P 

< 4e
-24
). From the translation profiles of the mRNAs included in the analysis, we 

determined different properties reflecting translational efficiency (see Chapter 2); 

these data on translational properties described below are provided in supplementary 

Table S1, which can be downloaded from 

http://www.sanger.ac.uk/PostGenomics/S_pombe/projects/translation/. 

Ribosome occupancy indicates the percentage of a given type of mRNA that is 

associated with one or more ribosomes as opposed to free mRNA. The average 

ribosome occupancy was 77.3% with a relatively small standard deviation (SD) of 

7.0%. This suggests that during exponential growth the majority of high-confidence 

mRNAs from most genes are engaged in translation, although a substantial fraction of 

>20% of mRNAs is not associated with any ribosomes.  

The mean number of ribosomes bound to a given mRNA was calculated based on a 

weighted average by using the relative amount of the mRNA associated with each 

fraction and the number of ribosomes corresponding to that fraction. Only fractions 

associated with ribosomes were included for this (Figure 3.4A, B; fractions 5-12) so 

that the mean ribosome number is independent of ribosome occupancy. On average, 

4.1 ribosomes were associated with mRNAs with a surprisingly small SD of 0.6. If 

the mRNAs not associated with ribosomes were also taken into account, this value 

was lowered to 3.6 ribosomes. As expected, the mean number of associated ribosomes 

generally increased as a function of open reading frame (ORF) length (Figure 3.7A), 

but this correlation breaks down for mRNAs with a length of over ~1.2 kilobases (kb) 
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and is more pronounced for shorter mRNAs such as mRNAs encoding ribosomal 

proteins (Figure 3.7B). 

 

 

 

 

Figure 3.6 Distribution of mRNA levels for protein-coding genes included or excluded 
from high-confidence translational profiling data 
Histogram showing the mRNA levels for 4818 protein-coding genes that provided signal data 
on Affymetrix chips. The average of two independent experiments is shown. Green: genes 
included in the high-confidence data set from the translational profiling experiments (3567 
genes with measurable chip signals). Red: genes not included in the high-confidence data set 
(1251 genes with measurable chip signals). 
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Figure 3.7 Correlation between ORF length and mean number of associated ribosomes 
(A) Graph showing moving averages (100-gene window) of mean ribosome number as a 
function of genes ranked by ORF length (n = 3598), along with the corresponding Spearman 
rank correlation. 
(B) Scatter plot of ORF length against mean number of associated ribosomes for mRNAs 
encoding ribosomal proteins (n = 134). The red line represents the linear trend-line for this 
correlation. The corresponding Spearman rank correlation between ORF length and mean 
ribosome number is also shown. 

 

Arguably, the ribosome density is a better measure than the mean ribosome number to 

estimate translational efficiency as it normalizes for different mRNA lengths that 

influence the numbers of bound ribosomes (Figure 3.7A) (Arava et al. 2003; Beyer et 

al. 2004). The average ribosome density for all mRNAs was 4.5 ribosomes per 

kilobase of ORF, with a relatively large SD of 3.1 ribosomes per kb. On average, the 



 

 74 

mRNAs thus contained one ribosome roughly every 222 nucleotides. Given that a 

eukaryotic ribosome occupies ~35 nucleotides of mRNA (Wolin and Walter 1988), 

the average density determined here is only about 1/6 of the maximal packing density. 

This is consistent with initiation being the rate-limiting factor during translation.  

The sequence context of the AUG start codon influences the rate of translational 

initiation (Kozak 1991). To corroborate that high ribosome occupancy and density in 

our data reflect efficient translational initiation rather than slow elongation or 

ribosome stalling, we compared ribosome occupancy and density with the "AUG 

context adaptation index" (AugCAI), a measure for the effectiveness of the AUG 

context to promote translational initiation (Miyasaka 1999; Miyasaka 2002). Data for 

the AugCAI in fission yeast were calculated by Samuel Marguerat. Basically, mRNAs 

are assigned a score depending on the overlap with a consensus sequence around the 

AUG start codon derived from the 100 most abundant mRNAs, with a higher score 

for higher translation initiation efficiency. This analysis provided a consensus 

sequence for optimal translational initiation in S. pombe and revealed significant 

correlations between the AugCAI on one hand and ribosome occupancy and density 

on the other (Figure 3.8). This provides independent evidence that the translational 

profiling data are measures of translational efficiency. 

We next looked for poorly and strongly translated mRNAs. Of the 3598 high-

confidence mRNAs, only 57 showed ribosome occupancies of less than 60%, and 99 

showed densities of less than one ribosome/kb on average. Just one mRNA (urb2, 

predicted role in ribosome biogenesis) was present in both of these groups. The 20% 

of mRNAs showing the highest ribosome occupancy were most enriched for 

transcripts repressed during stress (P ~ 8e
-30
; Chen et al. 2003) and for those 

associated with the GO terms ‘metabolism’ and ‘biosynthesis’ (P ~ 1e
-30
-2e

-31
). The 

20% of mRNAs with the lowest ribosome occupancy were diverse and showed no 

strong enrichment for any particular GO terms or functional groups. The 20% of 

mRNAs showing the highest ribosome density were most enriched for GO terms such 

as ‘ribosome’, ‘organelle’, and several terms related to mitochondria (P ~ 1e
-12
 - 7e

-42
) 

and for transcripts containing introns (P ~ 5e
-17
), which is notable given that introns 

can enhance translation in mammals (Nott et al. 2003). The 20% of mRNAs showing 

the lowest ribosome density were most enriched for genes with GO terms such as 

‘ATP-binding’, ‘hydrolase activity’, ‘signal transduction’, and related terms (P ~ 2e
-

10
-4e

-26
). The mRNAs with low ribosome density were also strongly enriched for the 
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longest mRNAs, while those with high ribosome density were enriched for the 

shortest mRNAs. This suggested a connection between mRNA length and ribosome 

density as analysed below. 
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Figure 3.8. Correlations of AugCAI values with translation efficiency 
(A) Consensus sequence for optimal translation initiation derived from the 100 most abundant 
mRNAs. The WebLogo tool was used for visualization (weblogo.berkeley.edu). Based on this 
consensus sequence, AugCAI values were calculated for all mRNAs. 
(B) Graph showing moving averages (100-gene window) of ribosome occupancy as a 
function of genes ranked by AugCAI values (n = 3593), along with the corresponding 
Spearman rank correlation. 
(C) Graph showing moving averages (100-gene window) of ribosome density as a function of 
genes ranked by AugCAI values (n = 3593), along with the corresponding Spearman rank 
correlation. 
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Short mRNAs are more efficiently translated 

Whereas the mean ribosome numbers varied by less than 4 fold (1.8 to 6.8 ribosomes 

per mRNA), the ORF lengths varied more than 180 fold (78 to 14154 bp; Wood et al. 

2002). Accordingly, the ribosome numbers showed only modest increase relative to 

ORF length, and they did not increase above ~4.3 ribosomes on average for mRNAs 

longer than ~1200 bp (Figure 3.7). Consistent with this, the group of mRNAs with the 

lowest ribosome densities was highly enriched for the longest mRNAs, and the SD for 

ribosome density was much larger than for ribosome numbers (see above). These 

observations indicate that the range of associated ribosomes does not keep up with the 

range of ORF lengths, and ORF length is therefore expected to be a major factor 

determining ribosome density. There was indeed a strong inverse correlation between 

ORF length and ribosome density (Figure 3.9A). Short mRNAs were much more 

tightly packed with ribosomes than were long mRNAs. This inverse correlation was 

evident over the whole range of ORF sizes and ribosome densities. A similar inverse 

correlation was obtained when using mRNA lengths instead of ORF lengths based on 

198 mRNAs for which untranslated regions (UTRs) are available from S. pombe 

GeneDB (r = -0.9; P < 2e
-16
). 

We were concerned that this inverse correlation might reflect a systematic artefact of 

the translational profiling approach. A bias could arise from underestimating the 

numbers of ribosomes in the more poorly resolved higher fractions where single-peak 

resolution for polysomes cannot be achieved (Figure 3.4A). We observed a similar 

negative correlation, however, when using only the relatively short mRNAs encoding 

ribosomal proteins (Figure 3.9B; Figure 3.7B); these mRNAs showed defined peaks 

in the well-resolved fractions of the polysome profiles where ribosome numbers can 

be determined with confidence (Figure 3.4A, fractions 6-10). To further exclude a 

possible error due to underestimating ribosomes, we associated double the originally 

estimated number of ribosomes associated with fraction 12 (~20 ribsomes instead of 

10), which slightly increased the ribosome number for transcripts that stronlgy peaked 

in this very heavy polysome fraction. This re-analysis resulted in a similar negative 

correlation between ribosome density and ORF length (Figure 3.10), suggesting that 

underestimation of ribosome numbers for long and strongly translated mRNAs is not 

the cause of the negative correlation between ORF length and ribosome density. 

Moreover, there was a significant inverse relationship between the AugCAI and ORF 
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length (r = -0.15; P < 2e
-16
), providing independent evidence for a link between ORF 

length and translational efficiency. 

 

 

Figure 3.9 Inverse correlation between ribosome density and ORF length 
(A) Scatterplot of ribosome density plotted against ORF length for the high-confidence set of 
protein-coding genes (n = 3598). The small inset graph shows moving averages (100-gene 
window) of ribosome density as a function of genes ranked by ORF length. The 
corresponding Spearman rank correlation between ribosome density and ORF length is also 
shown. 
(B) Scatterplot of ribosome density plotted against ORF length as in (A) but showing only the 
mRNAs encoding ribosomal proteins (n = 134), along with the corresponding Spearman rank 
correlation. 

 

We also observed a significant inverse correlation between ORF length and ribosome 

occupancy, although much less pronounced than for ribosome density (r = -0.27; P < 

2e
-16
). Together, these data raise the possibility that ORF length is a major factor for 

translational efficiency. We therefore expected that long proteins should be present in 

lower levels in the cell than short proteins due to differences in translational 

efficiency. To test this hypothesis, we took advantage of recent data on expression 

levels of nearly all S. pombe proteins (Matsuyama et al. 2006). For this study, all 

ORFs were cloned into the same vector, integrated into the same genomic site, and 

transcribed under the control of the same promoter. These data should therefore be 

minimally affected by differences in transcription or by differences in regulation of 

mRNA stability and translation via UTR sequences, as the lengths and sequences of 
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the ORFs are the only remaining factors that could influence translational efficiency, 

which (along with protein turnover) will determine protein levels. Protein levels in 

this study were then determined using a protein-based array technique, where tagged 

proteins were detected with an anti-His-tag antibody, and as internal reference α-

tubulin was simultaneously quantified with an anti-α-tubulin antibody. The ribosome 

densities showed a significant positive correlation with protein levels from this study, 

while ORF length negatively correlated with protein levels on a global scale as 

predicted from our translational profiling data (Figure 3.11). For proteins present at 

lower levels, the correlations with ribosome density and ORF length were less 

evident, possibly due to increased noise. The protein levels also showed a significant 

correlation with ribosome occupancy (r = 0.31; P < 2e
-16
) and a weak correlation with 

ribosome numbers (r = 0.17; P < 2e
-16
). This is consistent with the intuition that 

ribosome density and ribosome occupancy are better measures for translational 

efficiency than the number of ribosomes associated with mRNAs. We conclude that 

ORF length is an important factor for translational efficiency and protein levels.  
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Figure 3.10 Overestimation of ribosome number for fraction 12 does not affect negative 
correlation between ribosome density and ORF length 
Histogram using bins of different ribosome densities (upper bin limits given on X axis). Blue: 
distribution of ribosome densities calculated as described in Chapter 2. Purple: distribution of 
ribosome densities calculated the same way, except that the number of ribosomes associated 
with mRNAs in fraction 12 were 2 fold overestimated. The corresponding Spearman rank 
correlations between ORF length and ribosome densities calculated in both ways are also 
shown. 



 

 79 

 

 

 

 

 

 

Figure 3.11 Correlations between ORF length/ribosome density and protein level 
Graph showing moving averages (100-gene window) of ribosome density (black) and ORF 
length (red) as a function of genes ranked by protein level (n = 3265). The corresponding 
Spearman rank correlations between protein level and ribosome density (n = 3265) and 
between protein level and ORF length (n = 4434) are also shown. 

 

Genome-wide measurement of poly(A) tail length 

The lengths of the poly(A) tails of mRNAs are thought to determine the efficiency of 

translational initiation based on single-gene studies (Preiss and Hentze 1998; Sachs 

2000; Wickens et al. 2000; Stevenson and Norbury 2006). We therefore wondered 

whether translational efficiency might be reflected in poly(A) tail lengths on a 

genome-wide scale. To obtain global data on polyadenylation we used a technique 

called polyadenlyation state array (PASTA) analysis: mRNAs are fractionated using a 

poly-U sepharose column and eluted at five different temperatures. The resulting five 

fractions correspond to mRNAs with different ranges of poly(A) tail length and were 

then hybridized to microarrays using total eluate as a reference (Figure 3.12). The 

fractionation of the mRNAs according to their length was done in collaboration with 

Traude Beilharz and Thomas Preiss (Victor Chang Cardiac Research Institute, 

Sydney, Australia), who have established this technique in the budding yeast 

Saccharomyces cerevisiae (Beilharz and Preiss 2007). The five fractions contained 

distinct, but partially overlapping distributions of poly(A) tail lengths (Figure 3.13). 
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Sizes of the poly(A) tail length ranged from ~10 to 80 nucleotides (nt) with the 

following peak sizes for each fraction: 12°C, ~10 nt; 25°C, ~22 nt; 30°C, ~30 nt; 

35°C, ~40 nt; and 45°C, ~57 nt. These polyadenylation data revealed a continuous 

distribution of poly(A) tail lengths, both for specific mRNAs and between different 

mRNAs. There was minor cross-contamination of long-tailed mRNAs in the first 2 

elution fractions. These transcripts may have bound non-specifically to the matrix or 

through poly(A) runs within the body of the transcript. Furthermore, short A-tract 

fragments were inefficiently precipitated in the bulk end-labelling experiment and as a 

consequence there is only weak signal on the gel from the first fraction (Figure 3.13). 

Nevertheless, the poly(A) profiles for different mRNAs were enriched for distinct 

sizes. 

 

 
Figure 3.12 Experimental layout for polyadenylation state array (PASTA) mRNAs are 
fractionated using a poly(U) sepharose column and eluted at different temperatures. The 
resulting fractions contain mRNA with increasing poly(A) tail length, which are then hybridized 
onto a DNA microarray against total eluate as reference. Figure adapted from Beilharz et al. 
(2007). 
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Figure 3.13 mRNAs fractionated using poly(U)-sepharose chromatography 
Gel of poly(A) tail length tracts for mRNAs eluted from a poly(U) sepharose column at 
increasing temperatures as indicated on top, showing mRNAs with increasing poly(A) tail 
length from S. pombe. Aliquots of each mRNA fraction were end labeled with [

32
P]-pCp, 

digested with RNases A and T1n, and poly(A) fragments analyzed by denaturing PAGE. 
Nucleotide numbers corresponding to the 100 bp ladder are indicated at right. 

 

 

A modified RT-PCR assay, termed ligation–mediated poly(A) test (LM-PAT) (Salles 

and Strickland 1995; Beilharz and Preiss 2007) was used to verify the poly(A) profiles 

derived from the PASTA analysis (Figure 3.14). In this assay, PCR products between 

a gene-specific primer at the end of the ORF or within the 3' UTR and an anchored 

primer at the end of the poly(A) tail are generated. These PCR products reflect the 

poly(A) tail length of a specific mRNA. It should be mentioned that the use of 

oligo(dT)12-18 mix and (dT)12-anchor primes introduces a certain laddering of the 

products. Especially the shortest band represents all short tails (~7-22 nt) that can be 

bound by a (dT)12-anchor but that cannot accommodate additional oligo(dT)12-18 

primers. 

The distribution of poly(A) tails for mRNAs representing different tail lengths showed 

good agreement between the PASTA analysis and the LM-PAT-assay (Figure 3.15): 

for3 mRNA, encoding formin, was enriched for short poly(A) tails in the PASTA 

analysis (Figure 3.15A), and consequently PCR products from the LM-PAT assay 
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could only be detected in the first fractions (Figure 3.15B). mRNAs encoding the 

ribosomal proteins rps27 and rpl14 showed peaks in the fractions enriched for 

poly(A) tails of medium length in both assays (Figure 3.15A,B). Hhf1 and hhf2, two 

almost identical mRNAs encoding histones, peaked in the fractions enriched for long 

poly(A) tails (Figure 3.15A,B). Note that histone mRNAs in yeast are polyadenylated 

in contrast to most higher eukaryotes (Fahrner et al. 1980; Butler et al. 1990). 

Moreover, mitochondrially encoded mRNAs, which lack long poly(A) tails in fission 

yeast (Schäfer et al. 2005), showed the expected peak in the first fraction in the 

PASTA analysis (Figure 3.16). 

 

Figure 3.14 Experimental layout of LM-PAT assay 

mRNAs are incubated with oligo(dT)12-18 primers in the presence of T4-DNA ligase at 42°C 
followed by ligation of an oligo dT12-anchor primer, thus covering the full length of poly(A) tails 
of mRNAs. cDNA is then synthesised from the ligated primers. Aliquots of this cDNA are used 
in PCR reactions to amplify a region between a site at the 3' end of the ORF of the mRNA 
under study and the anchor region. This figure is taken from Beilharz et al. (2007). 
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Figure 3.15 Examples of poly(A) tail length determination by LM-PAT assays and 
PASTA analysis 
(A) Profiles of poly(A) tail length distribution for 5 mRNAs as determined by microarray-based 
PASTA analysis: hhf1 and hhf2 (almost identical mRNAs encoding histones, enriched for long 
poly(A) tails), rpl14 and rps27 (mRNAs encoding ribosomal proteins, enriched for poly(A) tails 
of medium length), and for3 (mRNA encoding formin, enriched for short poly(A) tails). The 
curves show the relative amounts of RNA for a given mRNA in each of the five fractions as an 
average for two independent biological repeats. Different mRNAs are colour-coded. 
(B) Distribution of poly(A) tail length determined using LM-PAT assays for the same mRNAs 
as in (A). Fractions eluted from poly(U) sepharose column at increasing temperatures 
(corresponding to increasing tail lengths) as indicated on top. 
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Figure 3.16 Poly(A) tail profiles for mitochondrially encoded mRNAs determined by 
PASTA analysis 
Profiles of poly(A) tail length distribution for 11 mitochondrially encoded mRNAs (SPMIT.01, 
SPMIT.02, SPMIT.03, SPMIT.04, SPMIT.05, SPMIT.06, SPMIT.07, SPMIT.08, SPMIT.09, 
SPMIT.10, SPMIT.11) as determined by microarray-based PASTA analysis. The curves show 
the relative amounts of RNA for a given mRNA in each of the five fractions as an average of 
two independent biological repeats. 



 

 84 

mRNAs with long poly(A) tails are more efficiently translated 

For the further analyses, only mRNAs for which data could be obtained in all five 

fractions of two repeated experiments in the PASTA analysis were included. In total, 

2795 protein-coding mRNAs fulfilled these criteria of which 2575 were also included 

in the translational profiling data set. The 20% of mRNAs with the longest tails were 

most enriched for transcripts repressed during environmental stress (P ~ 1e
-15
; Chen et 

al. 2003) and for GO terms such as ‘biosynthesis’, ‘cytoplasm’, and ‘ribosome’ (P ~ 

2e
-16 
- 2e

-27
). The 20% of mRNAs with the shortest tails were most enriched for genes 

containing predicted nuclear localisation signals (P ~ 1e
-18
) and for GO terms such as 

‘nuclear lumen’, ‘nucleolus’, ‘RNA metabolism’, and ‘ribosome biogenesis and 

assembly’ (P ~ 3e
-8 
- 3e

-13
).  

The mRNAs were ranked by relative poly(A) tail length using a weighted average of 

the relative amounts of mRNA associated with each fraction (Table S1; Chapter 2). 

Integration of these data with the translational data revealed that poly(A) tail lengths 

significantly increased with increasing ribosome density (Figure 3.17). Moreover, 

poly(A) tail lengths increased with decreasing ORF lengths (Figure 3.17), consistent 

with the strong inverse correlation between ORF length and ribosome density (Figure 

3.9). These data were corroborated by genome-wide binding data for the poly(A) 

binding protein Pab1p using RIP-chip: Pab1p tended to be most enriched in 

precipitated mRNAs with long poly(A) tails according to the PASTA analysis, and 

ORF lengths showed a strong inverse correlation with Pab1p enrichment (Juan Mata, 

unpublished data; see also Beilharz and Preiss 2007). Poly(A) tail lengths also 

correlated with ribosome occupancy (r = 0.27; P < 2e
-16
) and with protein levels (r = 

0.21; P < 2e
-16
). Together, these data reveal a genome-wide connection between ORF 

length, poly(A) tail length, and translational efficiency: short mRNAs tend to have 

long poly(A) tails and are more efficiently translated than longer mRNAs that tend to 

have shorter poly(A) tails. These connections are ultimately reflected at the protein 

levels and are most evident for the highly expressed proteins (Figure 3.11). 
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Figure 3.17 Correlations between ORF length and ribosome density and poly(A) tail 
length Moving averages (100-gene window) of ribosome density (black) and ORF length 
(red) as a function of 2576 genes ranked by poly(A) tail length.  The Spearman rank 
correlations between poly(A) tail length and ribosome density (n = 2576) and between poly(A) 
tail length and ORF length (n = 2714) are also shown. 

 

Abundant mRNAs are more efficiently translated 

Steady-state mRNA levels are another important determinant of gene expression. 

mRNA levels in exponentially growing cells were estimated from the absolute 

hybridization signal intensities using Affymetrix chips (Table S1). These signal 

intensities should reflect mRNA abundance quite accurately, given that there are 

several different probes for each mRNA on the array, which should minimize the 

influence of differential efficiencies of hybridization to different probes. Furthermore, 

these data were in good agreement with independent data for mRNA levels obtained 

by hybridizing mRNA against a genomic DNA reference on our in-house DNA 

microarrays (data not shown). The 10% most abundant mRNAs were most enriched 

for transcripts repressed during environmental stress (P ~ 2e
-86
; Chen et al. 2003) and 

for GO terms such as ‘ribosome’, ‘protein biosynthesis’, ‘cellular metabolism’, and 

related terms (P ~ 2e
-55
 to 1e

-128
). The 10% least abundant mRNAs were most 

enriched for transcripts induced during meiosis and stress (P ~ 3e
-15
 to 7e

-19
; Mata et 

al. 2002; Chen et al. 2003), for S. pombe specific transcripts (P ~ 1e
-34
; Mata and 

Bähler 2003), and for GO terms such as ‘meiosis’, and ‘M-phase’ (P ~ 1e
-18
 to 1e10

-

25
). Note, that mRNA levels did not correlate with ORF lengths (r = -0.02; P = 0.11) 

and there was also no correlation when transcript length was used instead of ORF 
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length (r = -0.06; P = 0.41; calculated using the 198 mRNAs for which 5’ and 3’ UTR 

length data are available in S. pombe GeneDB 

(www.genedb.org/genedb/pombe/index.jsp) (Figure 3.18). mRNA levels significantly 

correlated, however, with poly(A) tail lengths, with the most abundant mRNAs 

showing a tendency for longer tails (Figure 3.19A). 

We then checked for relationships between mRNA levels and translational efficiency. 

The mRNAs with the lowest expression levels tended to be associated with fewer 

ribosomes than the mRNAs with the highest levels (Figure 3.19B). This raised the 

possibility that mRNA abundance is somehow coordinated with translational 

efficiency. Consistent with this, ribosome densities showed some correlation with 

mRNA levels (r = 0.14; P < 2e
-16
). Stronger correlations throughout the entire 

population of mRNAs were apparent between ribosome occupancy and mRNA levels 

(Figure 3.19C). There was also a significant correlation between the AugCAI and 

mRNA levels (r = 0.22; P < 2e
-16
). Taken together, these findings indicate a genome-

wide coordination between mRNA levels and translational efficiency: more abundant 

mRNAs tend to be more efficiently translated as reflected by their higher ribosome 

occupancy and, to a lesser extent, higher ribosome density. 

 

r = -0.02; P = 0.11

0

0.5

1.0

1.5

2.0

0 1000 2000 3000 4000

Genes ranked by mRNA level

O
R
F
 l
e
n
g
th
 (
k
b
)

 

Figure 3.18 No correlation between mRNA levels and ORF length 
Graph showing moving averages (100-gene window) of ORF length as a function of genes 
ranked by mRNA level (n = 4818).  The corresponding Spearman rank correlation between 
ORF length and mRNA level is shown within the graph. 
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Figure 3.19 Correlations between mRNA level and poly(A) tail length and ribosome 
occupancy 
(A) Graph showing moving averages (100-gene window) of poly(A) tail length as a function of 
genes ranked by mRNA level (n = 2688), along with the corresponding Spearman rank 
correlation. 
(B) The curves show the average translation profiles of the mRNAs with the 500 highest (red) 
or 500 lowest (blue) levels. Curves are plotted as in Figure 3.4B. 
(C) Graph showing moving averages (100-gene window) of ribosome occupancy as a 
function of genes ranked by mRNA level (n = 3567), along with the corresponding Spearman 
rank correlation. 
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Stable and highly transcribed mRNAs are more efficiently 

translated  

The steady-state level of a given mRNA is determined by the rate of transcription and 

the rate of decay, both of which are controlled at genome-wide level (Mata et al. 

2005). The correlation between translational efficiency and mRNA abundance could 

therefore reflect a connection between translation and mRNA stability and/or between 

translation and transcription. 

Abundant mRNAs are expected to be more stable on average than less abundant 

mRNAs. To test whether mRNA stability is linked to translation, global mRNA half-

lives were estimated by blocking transcription and measuring mRNA levels at 

different times after transcriptional shut-off. These experiments were performed by 

Samuel Marguerat. Cells were treated with the transcriptional inhibitor 1,10-

phenanthroline, and mRNA was isolated before and at 4, 12, and 28 min after 

transcriptional shut-off and mRNA levels were measured using microarrays. Two lists 

of genes with short and long half-lives were generated from these data (see Chapter 2) 

(Figure 3.20; Table S1). These experiments provided reliable estimates on relative 

half-lives for the 868 least stable mRNAs, with half-lives ranging from ~10 to 96 min 

and a median of ~33 min. This group of unstable mRNAs is significantly enriched for 

genes with periodic expression during the cell cycle (P ~ 6e
-15
; Rustici et al. 2004; 

Marguerat et al. 2006); these mRNAs peak in levels during a short phase of the cell 

cycle and are therefore expected to have short half-lives. The unstable mRNAs were 

also enriched for genes associated with the GO terms ‘regulation of biological 

process’, ‘cell communication’, ‘signal transduction’, and ‘cell septum’ (P ~ 1e
-5
 - 2e

-

8
). This probably reflects that mRNAs encoding regulatory proteins or proteins only 

required during a defined stage such as septation need to be tightly controlled. We 

also selected a similarly sized group of bona fide stable mRNAs whose expression 

levels were not altered 30 min after transcriptional shut-off (Figure 3.20). This group 

was most enriched for genes with the GO terms ‘cytoplasm’ and ‘mitochondrial part’ 

(P ~ 5e
-5
 - 9e

-8
). As expected, mRNAs with short half-lives were significantly less 

abundant on average than mRNAs with longer half-lives (Figure 3.21A). 
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Figure 3.20 Determination of mRNAs with short and long half-lives 
To estimate mRNA half-lives, cells were treated with the transcriptional inhibitor 1,10-
phenanthroline, and mRNA was isolated before and at 4, 12, and 28 min after transcriptional 
shut-off. Two lists of genes with short and long half-lives were created from these data. The 
figure shows heat maps of these two gene lists, clustered using the Spearman correlation. 
Data from three independent biological experiments are shown. The columns represent 
experimental time points, and rows represent genes. The data of each array were normalized 
to the 50

th
 percentile of the measurements taken from that array and colour-coded according 

to the ratios between experimental samples vs sample before transcriptional shut-off. 

 

We then checked for relationships between mRNA stability and translational 

efficiency. The mRNAs with long half-lives showed significantly higher ribosome 

occupancies and densities on average than mRNAs with short half-lives (Figure 

3.21B,C). Thus, stable mRNAs seem to be more efficiently translated than less stable 

mRNAs. Although translational efficiency correlated with both poly(A) tail length 

and mRNA stability, we did not detect any correlation between mRNA stability and 

poly(A) tail length (Figure 3.21D). 
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Figure 3.21 Correlations between mRNA half-lives and other gene expression 
properties  
Boxplot showing mRNA levels (A), ribosome occupancies (B), ribosome densities (C), poly(A) 
tail lengths (D), and RNA polymerase II occupancies (E) for two groups of mRNAs with either 
long (long HL) or short (short HL) half-lives. 
The box contains the middle 50% of the data. The upper edge (hinge) of the box indicates the 
75th percentile of the data set, and the lower hinge indicates the 25th percentile. The range of 
the middle two quartiles represents the inter-quartile range. The thick black line indicates the 
median of the data. The ends of the vertical lines or "whiskers" indicate the minimum and 
maximum data values, unless outliers are present in which case the whiskers extend to a 
maximum of 1.5 times the inter-quartile range. The points outside the ends of the whiskers 
are outliers or suspected outliers. 
The significance of the difference between the means of the two mRNA groups is given for 
each panel. 

 

The relationship between mRNA stability and translational efficiency is consistent 

with data on single genes that indicate a connection between mRNA stability and 

translation (Sachs 2000; Wickens et al. 2000). This raises the possibility that mRNA 

stability may be the main determinant for the observed correlation between mRNA 

levels and translation (Figure 3.19). To test this, we needed to also estimate 

transcriptional efficiency, the other determinant of mRNA levels. The relative amount 

of RNA polymerase II associated with a given ORF provides an estimate for 

transcriptional efficiency (Sandoval et al. 2004). We therefore established a 

systematic approach to measure RNA polymerase II (Pol II) occupancy for all fission 

yeast ORFs using a chromatin immunoprecipitation followed by analysis on 

microarrays (Figure 3.22, Table S1; Material and Methods). These experiments were 

performed by Samuel Marguerat. Functional analysis of the 10% of genes that were 

either most or least associated with RNA polymerase II showed highly similar 
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enrichments for GO terms and functional groups as the 10% most or least abundant 

mRNAs, respectively. The mitochondrially encoded genes were a notable exception; 

they showed high mRNA levels but were strongly under-enriched in the polymerase II 

precipitations, consistent with these genes being transcribed by a different RNA 

polymerase (Schäfer et al. 2005). Transcriptional efficiency did not show any 

significant correlation with mRNA stability (Figure 3.21E). As expected, however, it 

was correlated with mRNA levels (Figure 3.23A). 

DNA labelling

and hybridisation

polymerase II occupancy

Immunoprecipitation 

of DNA fragments bound 

to RNA polymerase II 

Extraction of cross-linked

chromatin and sonication

Figure 3.22 Experimental layout for estimating Pol II occupancy on a genome-wide 
scale 
DNA and protein-complexes are crosslinked with formaldehyde, chromatin is extracted from 
the cells and sonicated. An immunoprecipitation using an antibody recognizing Pol II is 
performed. Immunoprecipitated DNA is labelled and probed on a microarray against input 
DNA. Genes that are more efficiently transcribed will have more Pol II bound and will be more 
strongly enriched in the immunoprecipitates. 
 

We next checked for relationships between transcriptional and translational 

efficiencies. Pol II occupancy showed a correlation with ribosome occupancy (Figure 

3.23B) and a marginal, albeit significant, correlation with ribosome density (r = 0.11; 

P ~ 3e
-11
). Thus, both transcription and mRNA turnover are reflected at the level of 

translation: efficiently transcribed and stable mRNAs tend to be more efficiently 

translated. 
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Surprisingly, transcriptional efficiency was also correlated with poly(A) tail lengths 

(Figure 3.23C). This is in contrast to the apparent absence of any connection between 

mRNA stability and poly(A) tails (Figure 3.21D), but it is consistent with the 

correlation between mRNA levels and poly(A) tails (Figure 3.19A). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.23 Correlations between Pol II occupancy and other gene expression 
properties 
(A) Moving averages (100-gene window) of relative mRNA level as a function of 4724 genes 
ranked by Pol II occupancy, along with corresponding Spearman rank correlation. 
(B) Moving averages (100-gene window) of ribosome occupancy as a function of 3598 genes 
ranked by Pol II occupancy, along with corresponding Spearman rank correlation. 
(C) Moving averages (100-gene window) of poly(A) tail length as a function of 2713 genes 
ranked by Pol II occupancy, along with corresponding Spearman rank correlation. 
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Changes in mRNA polyadenylation in response to 

transcriptional switch-on 

Given the correlation between poly(A) tail length and transcription (Figure 3.23C) 

and the finding that the carboxy-terminal domain (CTD) of Pol II is important for 3' 

end processing of the mRNA (Proudfoot and O'Sullivan 2002; Proudfoot et al. 2002), 

it was tempting to hypothesize that poly(A) tail lengths are actually determined by 

transcription rates. To test this hypothesis, we used LM-PAT assays to analyse 

polyadenylation for specific mRNAs that were transcribed at different rates using 

regulatable promoters. At first, pom1 (Bähler and Nurse 2001) and rpb4 (Sharma et 

al. 2006) were used as reporter genes. Pom1p is a cell cycle regulated kinase and 

essential for cell symmetry, Rpb4p is a subunit of RNA polymerase II. Both genes 

were regulated using nmt1 promoters of different strength integrated into the genomic 

locus of the two genes. Expression from the nmt1 promoter is induced by removal of 

thiamine from the medium. 3nmt1 is the strongest promoter, 41nmt1 is the 

intermediated promoter, and 81nmt1 is the weakest promoter (Basi et al. 1993). 

mRNAs before induction as well as 16 and 21 hours after induction were analyzed for 

poly(A) tail length by LM-PAT assays (Figure 3.24). Whereas mRNA levels 

increased for both mRNAs as expected, poly(A) tail length was not affected  by the 

transcriptional up-regulation. 

 

 
Figure 3.24 No changes in poly(A) tail length for mRNAs induced in expression using 
nmt1 promoters with long induction time 
The pom1 (left panels) and rpb4 (right panels) genes were transcriptionally induced by 
thiamine removal using regulatable nmt1 promoters of different strength: 3nmt1, strongest 
promoter; 41nmt1, intermediate promoter; and 81nmt1, weakest promoter. mRNAs before 
induction (0) as well as 16 and 21 hours after induction were analyzed for poly(A) tail length 
by LM-PAT assays. Both mRNAs showed short poly(A) tails independently of transcription 
rates. The longer-tailed rps27 mRNA is included as a control (middle panels), and the input 
RNA is shown below. 
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These data indicate that the transcription rate does not influence poly(A) tail length 

for the tested mRNAs. A problem with this experiment and its interpretation might 

arise through the long induction time needed for expression from the nmt1 promoter. 

Therefore we wanted to test whether the same result would be obtained looking at 

mRNAs induced for a short period only. To this end we made use of the promoter of 

urg1 (uracil regulatable gene), which shows a fast induction time after addition of 

uracil to the medium (S. Watt, J. Mata, G. Burns and J. Bähler, manuscript in 

preparation). pom1 under the regulation of this promoter, urg1 under its own promoter 

and SPAC1002.17, which shows a similar short induction time under its own 

promoter after uracil addition, were tested by LM-PAT assay (Figure 3.25). A 30 min 

time-course of induction was followed by a 30 min time-course of repression 4 hours 

later. A weak band indicating some long-tailed form of pom1 was present 5 min after 

induction, but from 10 min onwards the short-tailed form predominated. Urg1 and 

SPAC1002.17 were present mainly in a long-tailed form 5 min after induction, and 

short-tailed forms appeared later after 15 and 30 min. However, these mRNAs seemed 

to have slower deadenylation kinetics, as long-tailed forms were still evident 30 min 

after induction, but were gone at the time of repression. Thus, when transcription was 

induced within a short time, a transient population of longer tailed mRNAs was 

apparent, which were then deadenylated with different kinetics depending on the 

particular mRNA. 

Figure 3.25 Transient changes in poly(A) tail length for mRNAs induced in expression 
using a promoter with short induction time 
Transcription of pom1 was induced under the control of the regulatable urg1 promoter 
showing fast induction time. A 30-min timecourse of induction was followed by a 30-min 
timecourse of repression 4 hours later, and mRNAs were analyzed for poly(A) tail length by 
LM-PAT assays. Some long-tailed form of pom1 mRNA is present at 5 min after induction, but 
from 10 min onwards the short-tailed form predominates. Corresponding LM-PAT assays 
from the same cells are also shown for urg1 (under its own promoter) and SPAC1002.17c 
(which shows a similar short induction time under its own promoter). These mRNAs have 
slower deadenylation kinetics, and long-tailed forms are still evident 30 min after induction, 
but are gone at the time of repression.  The unregulated rps27 mRNA and input RNA are 
shown as controls. 
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We conclude that the transcription rate does not directly influence poly(A) tail 

lengths, although increased transcription can lead to transiently increased tail lengths 

before reaching steady-state conditions. Similar observations were made in budding 

yeast for mRNAs with predominantly long poly(A) tails measured by LM-PAT assay 

after replenishing stationary phase cells with fresh media (Beilharz and Preiss 2007). 

 

Conclusion 

Comparisons between our genome-wide data sets on key aspects of gene expression 

control, ranging from transcription to translation, highlight a remarkable degree of 

global interconnectivity between different layers of gene expression. For a summary 

of all correlations between the diverse data sets see Table 3.1. 

 

Table 3.1 Summary of all correlations between the different genome-wide data sets on 
key aspects of gene expression 
 

 

Ribosome 
density 

Ribosome 
occupancy 

ORF 
length 

Poly(A) 
tail 

mRNA 
level 

Pol II 
occupancy 

Protein 
levels 

Ribosome 
occupancy 

 0.40 
(< 2e-16)       

ORF length 
 -0.98 

(< 2e-16) 

 -0.27 

(< 2e-16)      

Poly(A) tail 
 0.42 

(< 2e-16) 

 0.27 

(< 2e-16) 

 -0.40 

(< 2e-16)     

mRNA level 
 0.14 

(< 2e-16) 

 0.50 

(< 2e-16) 

 -0.02 

(0.11) 

 0.46 

(< 2e-16)    

Pol II 
occupancy 

 0.11 
(8e-11) 

 0.32 
(< 2e-16) 

 -0.05 
(0.11) 

 0.31 
(< 2e-16) 

 0.56 
(< 2e-16)   

Protein levels 
 0.31 

(< 2e-16) 

 0.31 

(< 2e-16) 

 -0.26 

(< 2e-16) 

 0.21 

(< 2e-16) 

 0.23 

(< 2e-16) 

 0.10 

(2e-10)  

AugCAI 
 0.20 

(< 2e-16) 

 0.25 

(< 2e-16) 

 -0.15 

(< 2e-16) 

 0.15 

(2e-14) 

 0.22 

(< 2e-16) 

 0.15 

(< 2e-16) 

 0.17 

(< 2e-16) 

 
This table shows the Spearman rank correlations between all data-sets, for which ranked lists 
were available. The corresponding P values are shown in brackets. Positive correlations with 
a P value smaller than 2e-16 are coloured green; negative correlations with a P value smaller 
than 2e-16 are coloured red. 

 

The large network of correlations between all aspects of regulation suggests 

widespread coordination between multiple gene expression levels for coherent and 

efficient protein production. Some of these relationships may reflect direct 

mechanistic links (e.g., translational efficiency could influence mRNA stability), 

while others may reflect independent evolutionary selection at different levels of 

regulation (e.g., alignment of transcriptional and translational efficiencies). These rich 

data sets, all acquired under one standardized condition in a simple model organism, 



 

 96 

are a basis to interpret global and specific regulation of gene expression in response to 

environmental or genetic perturbations. The findings presented here also provide a 

framework to gain comprehensive mechanistic insight into multi-layered gene 

expression programs and should advance a system-wide understanding of gene 

expression also in more complex organisms. 


