Karyotype Evolution:

Evolutionary Chromosome Rearrangements in Material Homologous to Human Chromosome 22q Studied in the Dog and Gibbon

by

Cordelia F. Langford

Thesis submitted for the degree of

Doctor of Philosophy

The Open University

31st December 2003

The Wellcome Trust Sanger Institute

Wellcome Trust Genome Campus

Hinxton

Cambridge, UK

This thesis is dedicated to my husband, Gavin, to my parents, Edward and Patricia, and to my sister, Deborah

Abstract

Following divergence from the common ancestor, mammalian karyotype evolution has been an ongoing process, by which chromosomes have been structurally and numerically reorganised by various intra- and inter-chromosomal rearrangements. Each mammalian species has a unique karyotype, but despite millions of years of divergent evolution, a balance has occurred between karyotype diversity and conservation. As a result, each mammalian species has a unique arrangement of homologous chromosome blocks known as evolutionarily conserved chromosome segments (ECCSs) within their karyotype.

The study of karyotype evolution requires the definition of ECCSs and the junctions between them, which can lead to an understanding of the underlying mechanisms, which drive evolutionary rearrangements. It is important for our understanding of phylogeny as well as normal and abnormal chromosome structure and sequence organisation in the mammals.

There are several different possible approaches to generating comparative maps of ECCSs, such as comparative sequence analysis. But, in the absence of genome sequence, alternative approaches are required, such as comparative chromosome painting (zoo-FISH), high-resolution cross-species FISH, and cloning and sequencing.

The aim of the work towards this thesis was to study evolutionary chromosome rearrangements involving material homologous to human chromosome 22 in the dog and gibbon. The dog is distantly related to the human and, due to its complex karyotype, had not previously been included in evolutionary studies. For the purposes of studying the dog, it was necessary to produce a standard karyotype, which was a useful outcome for the canine genetics research community. The gibbon is the primate most closely related to the human, which has material homologous to human chromosome 22 in two ECCSs within its karyotype.

iii

The two species were studied by reciprocal heterologous chromosome painting and cross-species FISH. The gibbon rearrangement was ultimately studied at the sequence level for a detailed analysis of the sequences surrounding the rearrangement breakpoint junctions involving material homologous to human chromosome 22q.

Acknowledgements

I would like to thank my supervisors Mark Ross and Nigel Carter for all their help, advice and guidance provided throughout the course of this thesis. I would also like to thank Margaret Leversha for her help with FISH during the first stages of the work. Thanks also to David Bentley, who acted as an academic sponsor for my registration.

A number of people at the Sanger Institute have made invaluable contributions, without which this thesis would not have been possible. Particular thanks go to Tamsin Wilmer for teaching me STS-PCR, Jackie Bye for help with library curation, Danita Pearson and Elizabeth Southeran for help with library protocols, Alison Coffey for her vectorette know-how, Elizabeth Huckle for sequencing the vectorette fragments, John Collins, Dave Beare and Ian Dunham for their knowledge of chromosome 22 and help with primer design, Graeme Bethel for help with EcoRI digest gels, Rebecca Pavitt, Matt Jones, Kirsten McLay, Claire Bagguley, James Gilbert, Stephen Keenan, Simon Mercer and Brian Wilson for putting my two cosmids through the Sanger sequencing and annotation pipeline, and Sarah Hunt and Carol Scott for primer design and creating Gibbonace,

I would also like to thank Joan and Andrew in the library for providing all the reprints, Richard Summers for all the scanning and binding and Matt Hurles for useful discussions about breakpoints.

Personal thanks go to all my friends, in particular Gareth and Simon (see you on June 5th!), Mark Ross, Dave Vetrie, Matthew Breen, Sheila, Paw, Gillian and Ian, Claire and Steve and Robin and Delphine, for their friendship, support and encouragement.

Final thanks go to my family: My husband, Gavin, my parents, Edward and Patricia and my sister, Deborah.

Table of Contents

Abstract	iii
Acknowledgements	v
Table of Contents	vi
Glossary of abbreviations	ix
Publications	xii

Chapter One: Introduction

1.1		3
	Evolution and speciation	
	1.1.1 The Class Mammalia	3
1.2	Mammalian Genomes	4
	1.2.1 Chromosome Structure	5
	1.2.2 Sequence Architecture	8
	1.2.3 The Karyotype	15
1.3	Karytoype Evolution	17
	1.3.1 Chromosome Rearrangements	18
	1.3.2 Phenotypic Effects of Germline Chromosome	21
	Rearrangements	
1.4	Methods of Studying Karyotype Evolution	22
	1.4.1 Comparative Banding	22
	1.4.2 Comparative Genome Mapping	23
1.5	Approaches for Constructing Comparative Maps	25
	1.5.1 Genetic linkage analysis	25
	1.5.2 Somatic cell hybrid (SCH) analysis	25
	1.5.3 Radiation Hybrid (RH) analysis	26
	1.5.4 Comparative Sequence analysis	26
	1.5.5 <u>In situ</u> hybridisation analysis	27
1.6	Zoo-FISH studies in the mammals	35
	1.6.1 Limitations of zoo-FISH Using DNA from Chromosome-	36
	Specific Plasmid Libraries	
	1.6.2 Zoo-FISH Using DOP-PCR Generated Chromosome-Specific	37
	Paints	
1.7	Patterns of Comparative Karyotype Organisation	41
1.8	Defining ECCS Boundaries	42
11.9	Aims of this thesis	42

Chapter Two: Materials and Methods

<u>Materials</u>		52
2.1	Composition of solutions	52
2.2	Reagents and stains	58
2.3	Media	59
2.4	Cells and cell lines	60
2.5	Bacterial clones	60
<u>Methods</u>		61
2.6	Tissue culture	61
	2.6.1 Lymphoblastoid cell culture	61
	2.6.2 Fibroblast cell culture	61
	2.6.3 Cell cryopreservation	62

2.7	Flow karyotype analysis and chromosome sorting 2.7.1 Lymphoblastoid cell chromosome isolation and staining 2.7.2 Generation of a bivariate flow karyotype	62 62 63
2.8	Generation of chromosome-specific paints by DOP-PCR 2.8.1 Primary DOP-PCR amplification of flow-sorted chromosomes	64 64
2.9	2.8.2 Secondary DOP-PCR amplification DNA Preparation 2.9.1 Preparation of high molecular weight gibbon genomic DNA from lymphoblastoid cells	65 66 66
	2.9.2 Preparation of DNA from BAC, PAC, fosmid and cosmid clones	68
2.10	Procedures for fluorescence <i>in situ</i> hybridisation (FISH) 2.10.1 Fixed metaphase preparations from lymphoblastoid cell lines	70 70
	2.10.2 Fixed metaphase preparations from fibroblast cell lines2.10.3 Metaphase spread slide preparation2.10.4 Probe labelling by nick translation2.10.5 Hybridisation of human and gibbon single-copy probes and	71 72 73 74
	chromosome-specific paints onto human and gibbon metaphases 2.10.6 Hybridisation of human single-copy probes and chromosome-specific paints onto canine metaphases	75
	2.10.7 Hybridisation of canine chromosome-specific paints onto human metaphases	75
	2.10.8 Direct detection for fluorescently-labelled probes 2.10.9 Three-layer immunochemical detection for biotinylated probes	75 76
2.11	Procedures for the construction and screening of a genomic cosmid library	78
	2.11.1 Partial restriction enzyme digestion and phosphatasing of high molecular weight genomic DNA	78
	2.11.2 Preparation of Lawrist16 vector arms	80
	2.11.3 Ligation and packaging of partially -digested DNA 2.11.4 DH5 α MCR E. coli plating cell preparation	83 85
	2.11.5 Assessing library titres	86
	2.11.6 Making gibbon cosmid library filters	87
	2.11.7 Library filter processing	90
	2.11.8 Filter screening with gibbon STSs	91
2.12	2.11.9 Colony PCR Procedures for the construction of a vectorette library from a gibbon cosmid clone	93 94
	2.12.1 Restriction enzyme digestion of a gibbon cosmid clone 2.12.2 Ligation of digested cosmid DNA to vectorette bubbles 2.12.3 Rescue of unknown gibbon sequences by vectorette PCR	94 95 96

Chapter Three: Reciprocal Zoo-FISH Analysis 3.1

3.1		100
	Introduction	
3.2	Establishing the Standard Karyotype of the Domestic Dog 3.2.1 Establishing the canine flow karyotype	100 100
	3.2.2 Characterisation of canine chromosome specific paint probes	106
	3.2.3 Standardisation of the canine DAPI-banded karyotype	113
3.3	Reciprocal chromosome painting analysis between human and the dog	114
	3.3.1 Generation of human chromosome-specific paints	114
	3.3.2 Hybridisation of human chromosome 22 specific paint onto dog metaphase chromosomes	116

	3.3.3 Reciprocal hybridisation of dog chromosome paints onto human metaphase chromosomes	118
3.4	Reciprocal chromosome painting analysis between human and gibbon	120
	3.4.1 Hybridisation of human chromosome 22 paint onto gibbon metaphase chromosomes	120
	3.4.2 Generation of the Siamang flow karyotype and chromosome isolation	123
	 3.4.3 Identification of the Siamang chromosome 18 specific paint 3.4.4 Hybridisation of Siamang chromosome 18 paint onto human metaphase chromosomes 	124 127
	3.4.5 Hybridisation of human chromosome 22, 16, 5 and 2 paints onto Siamang metaphase chromosomes	127
3.5	Discussion	131

Chapter Four: FISH analysis of the Gibbon and Dog

4.1	Introduction	139
	4.1.1 Cross-species FISH	139
	4.1.2 Aim of this chapter	141
4.2	FISH Analysis of Siamang Chromosomes with Human	142
	Bacterial Clones	
	4.2.1 Analysis of Siamang 18 with human 22q BACs	142
	4.2.2 Analysis of Siamang 18 with clones from human 22q12-13.1	145
4.3	FISH Analysis of Dog Chromosomes with Human 22q13.1	149
	Bacterial Clones	
	4.3.1 FISH analysis of Dog chromosomes with individual	149
	bacterial clones	
	4.3.2 FISH analysis of Dog chromosomes with contiguous	150
	bacterial clones from human chromosome 22q13.1	
4.4	Discussion	153

Chapter Five: Cloning the homologous block rearrangement breakpoints

5.1	Introduction	158
	5.1.1. Strategies for Analysing Sequences at the Homologous	158
	Block Junctions	
5.2	PCR analysis of Siamang chromosome 18	160
	5.2.1 STS design and verification	161
	5.2.2 STS-PCR mapping of Siamang DNA	161
	5.2.3 Long-range PCR assays of Siamang DNA	164
5.3	Construction of Siamang genomic cosmid library	167
	5.3.1 Partial digestion of high molecular weight Siamang DNA	167
	5.3.2 Ligation and packaging	175
	5.3.3 Assessing the titre of the library	175
	5.3.4 Assessing the integrity of Siamang genomic cosmid clones	177
5.4	Identification of Siamang cosmid clones spanning the	182
	homologous block junctions	
	5.4.1 Screening high-density filters	182
	5.4.2 Screening low-density filters	185
5.5	Construction of a cosmid map defining the homologous	187
	block rearrangement point	
5.6	FISH analysis of breakpoint clones	189
5.7	Discussion	190

Chapter Six: Sequence analysis of the evolutionary rearrangement points

6.1	Introduction	195
6.2	Isolating gibbon fusion point fragments for sequence analysis	196
6.3	Sequence analysis of SCHSY4.11 and SCHSY4.21 cosmids	204
6.4	Discussion	214

Chapter Seven: Discussion

7.1	Overview	217
7.2	Future work	220

Appendix

236

Glossary of Abbreviations

1 ⁰	primary
2 ⁰	secondary
BAC	bacterial artificial chromosome
BLAST	Basic Local Alignment Search Tool
BrdU	5-bromodeoxyuridine
BSA	bovine serum albumen
CCD	charge-coupled device
CFA	Canis familiaris
CIAP	calf intestinal alkaline phosphatase
CISS	chromosomal in situ suppression (hybridisation)
C ₀ t	concentration \times time (DNA reassociation kinetics)
CV	coefficient of variation
DAPI	4', 6-diamidino-2-phenylindole
dATP	2' deoxyadenosine 5'-triphosphate
dCTP	2' deoxycytidine 5'-triphosphate
dGTP	2' deoxyguanosine 5'-triphosphate
DMEM	Dulbecco's Minimal Essential Medium
DMSO	dimethyl sulphoxide
dNTP	any deoxynucleoside triphosphate, or a mixture of all four
dTTP	2' deoxythymidine 5'-triphosphate
dUTP	2' deoxyuridine 5'-triphosphate
DNA	deoxyribonucleic acid
DOP-PCR	degenerate oligonucleotide-primed polymerase chain reaction
DTT	dithiothreitol
EBV	Epstein-Barr virus
ECACC	European Collection of Animal Cell Cultures
EDTA	ethylenediamine tetraacetic acid (disodium salt)
EGTA	ethylene glycol- <i>bis</i> (β -aminoethyl ether)-N,N,N',N'-tetraacetic acid

FBS	foetal bovine serum
FISH	fluorescence in situ hybridisation
FITC	fluorescein isothiocyanate
HSA	Homo sapiens
HSRE	high salt restriction endonuclease buffer
HSY	Hylobates syndactylus
kb	kilobase (DNA)
LINE	long interspersed nuclear element
LSRE	low salt restriction endonuclease buffer
Mb	megabase (DNA)
NTA	nitrilotriacetic acid
OMIM	Online Mendelian Inheritance in Man
o/n	overnight
PAC	P1-derived artificial chromosome
PBS	phosphate-buffered saline
PCR	polymerase chain reaction
PHA	phytohaemagglutinin
PMSF	phenylmethylsulfonyl fluoride
rpm	revolutions per minute
RPMI	Roswell Park Memorial Institute (tissue culture medium)
SAM	S-adenosyl methionine
SDS	sodium dodecyl sulphate
SINE	short interspersed nuclear element
SSC	standard saline citrate
STS	sequence tagged site
TAPS	N-tris(hydroxymethyl)methyl-3-amino-propanesulphonic acid
Tris	tris(hydroxymethyl)aminomethane
U	units
UV	ultraviolet
v/v	volume/volume

w/v weight/volume

Publications

Parts of the work presented in this thesis have appeared previously in the following publications:

- Langford, C. F., Fischer, P. E., Binns, M.M., *et al.* (1996) Chromosome-specific paints from a high-resolution flow karyotype of the dog. *Chromosome Res* 4(2):115-23
- Breen, M., Bullerdiek, J., Langford, C. F. (1999a) The DAPI banded karyotype of the domestic dog *Canis familiaris* generated using chromosome-specific paint probes, *Chromosome Res* 7:401-406
- Breen, M., Thomas, R., Binns, M. M., Carter, N. P., Langford, C. F. (1999b) Reciprocal chromosome painting reveals detailed regions of conserved synteny between the karyotypes of the domestic dog (Canis familiaris) and human. *Genomics*. 61(2):145-55
- Langford, C.F. and Breen, M. (2003). Chromosome Structure and Function Comparative Cytogenetics. In: Nature Encyclopedia of the Human Genome. Macmillan Publishers Ltd. Nature Publishing Group, Hampshire, U.K. www.ehgonline.net