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Abstract

Dosage compensation in mammals depends upon X Chromosome In-
activation (XCI), the transcriptional silencing of one X in female cells.
In human and mouse, CpG island methylation on the inactive X (X;)
has been implicated in the maintenance of XCI and has been used pre-
viously to indicate a gene’s XCI status. There is evidence that XCI
is more complete in mouse than in human, and so I speculated that
CpG island methylation on the X; might also be more extensive in the
mouse. In marsupials, by contrast, the small amount of available evi-
dence points to absence of methylation on the X;. I have studied the
methylation of CpG islands on the X chromosomes of human, mouse
and opossum in order to provide further evidence for these suggested

species differences.

Ninety-one human genes, including several thought to escape from
XCI, were assayed together with the mouse orthologues for 52 of these
genes. Female and male genomic DNA was digested with Mspl or its
methylation-sensitive isoschizomer Hpall then tested the ability of
the DNA to support amplification of PCR products containing mul-
tiple Mspl/Hpall sites. Only the three known mouse escapees tested
(Eif2s3, Ddx3x, Utr) were hypomethylated in the female, compared

to 13 genes in human. This is consistent with the suggestion that gene
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silencing is more effective in the mouse. Furthermore, the assay in-
dicated that partial methylation is common among the human genes
but rare in the mouse. Bisulphite sequencing of CpG islands from

eight human-mouse orthologous pairs has confirmed this difference.

The restriction-PCR assay was then applied to 37 X-linked genes in
opossum and CpG island hypermethylation was found to be rare on
the female X chromosomes. However, for at least six genes, there
was a greater level of methylation in the female sample, which was

subsequently confirmed by bisulphite sequencing.

Results from this study support the view that CpG island methylation
as a maintenance mechanism for XCI is common in the eutherian
mammals. The lower level of methylation in human than mouse is
consistent with the suggestion that escape from XCI is associated
with a failure to maintain the inactive state. If this is correct, a high
level of escape from XCI in marsupials might be anticipated. This
study has also provided the first evidence of a possible role of CGI

methylation in marsupial XCI.
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