
Chapter 1

Introduction and Background

1.1 Justifications of phenotype and approach

Since Man first climbed down from the trees and stared out at the world

around him, he has wondered why both he and his sister suffer from acute

inflammation of their digestive tracts. This thesis describes a series of sta-

tistical analyses designed to uncover and understand the genetics of complex

disease, with particular application to the discovery of loci associated with

inflammatory bowel disease (IBD).

Why should we dedicate time and effort to the study of IBD? And, given

this, why should we study it through the medium of complex disease genetics?
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1.1.1 Why study inflammatory bowel disease?

Much of this thesis will be concerned with inflammatory bowel disease (IBD),

and in particular its two major forms: Crohn’s disease (CD) and ulcerative

colitis (UC). IBD is characterised by an inappropriate inflammatory response

in the gastrointestinal tract, and symptoms include abdominal pain, diar-

rhoea, weight loss and damage to the intestinal wall (often requiring surgery

to correct). Its incidence varies geographically, with a mean of around 7 new

cases per 100,000 people per year in Europe, and has been increasing for at

least the last 30 years throughout the world (Vatn, 2011).

IBD, and CD in particular, has been a “model” disease in complex disease

genetics, with many linkage, candidate gene and genome-wide association

studies carried out over the last 20 years. There are two aspects of IBD that

make it an ideal complex trait to study.

It is a poorly understood disease with a high burden

While IBD is not a fatal disease, it does lead to a significant decrease in

life expectancy. The standardised mortality ratio for Crohn’s disease is 1.39

(95% CI 1.30 - 1.49) (Duricova et al., 2010), corresponding to a decreased life

expectancy of approximately 5 years (95% CI 3.8-6.1, using the method of

Tsai et al. (1992)). Ulcerative colitis does not show the same decrease in life

expectancy, though approximately 17% of UC patients die from UC-related

complications (Jess et al., 2007). Most deaths occur due to gastrointestinal

disease, though a significant minority of deaths come from respiratory and

genitourinary complications (Duricova et al., 2010).

As well as increased mortality, IBD is a life-long disease that is diagnosed

early in life (mean age of diagnosis is 27). 40-50% of patients will require

surgery within 10 years of diagnosis, and most will require drug therapy



1.1. Justifications of phenotype and approach 3

throughout their lives (Bernstein, 2011). As well as the costs in human

suffering, it is estimated that in Europe each patient with Crohn’s disease

costs e2898-6960 in direct health costs, and a total of up to e16.7 billion

per year in economic costs (Yu et al., 2008).

The aetiology of IBD is still poorly understood (Zhang et al., 2008), with

treatment focusing mostly on dietary changes to maintain remission, and

interventions to reduce acute inflammation. The most effective treatment of

acute inflammation is anti-TNF therapy (Bernstein, 2011), which is widely

used in a range of inflammatory diseases, but often has negative side effects

(Keane et al., 2001). Studies into environmental risk factors have had mixed

results (Vatn, 2011), making genetics a good candidate to shed light on the

biology of the disease. A better understanding of the aetiology of IBD could

lead to treatments that target the underlying disease pathways, significantly

lowering the costs of the disease.

It is highly heritable, and well characterised via twin studies

IBD is a highly heritable and genetically complex trait. Brant (2011) re-

viewed data from 6 twin studies of inflammatory bowel disease over the past

14 years, consisting of 657 sets of twins. Given these data, and the liability

threshold methods described in Chapter 2, we can make inferences about the

genetic architecture of disease. I analysed these data using two different lia-

bility models: one where siblings have some degree of shared environmental

risk (C) but where genetic risk is purely additive (the ACE model), and one

where genetic risk has additive and dominant components (A and D), but no

shared environmental risk (Table 1.1). Both of these models are approxima-

tions, and should be viewed as such, but both can shed light on the genetic

basis of IBD.
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Phenotype h2 (=A) C D H2 (=A+D)
(95% CI) (95% CI) (95% CI) (95% CI)

CD (ACE) 0.77 0 0 0.77
(0.70 - 0.84) (0 - 0.06) (NA) (0.70 - 0.84)

CD (ADE) 0.48 0 0.31 0.78
(0.41 - 0.54) (NA) (0.24 - 0.38) (0.69 - 0.88)

UC (ACE) 0.53 0.11 0 0.53
(0.46 - 0.61) (0.05 - 0.18) (NA) (0.46 - 0.61)

UC (ADE) 0.66 0 0 0.66
(0.58 - 0.74) (NA) (0 - 0.08) (0.58 - 0.77)

Table 1.1: The inferred liability components of CD and UC, using two different
liability threshold models.

We can draw a number of conclusions from the twin study data. Firstly,

both CD and UC are highly heritable: 70-85% and 45-70% respectively. Sec-

ondly, Crohn’s disease has a significantly higher heritability than ulcerative

colitis (p = 1.04 x 10−5). Thirdly, there is strong evidence of shared envi-

ronment in UC, and strong evidence of non-additivity in CD, showing that

IBD is both environmentally and genetically complex. The high heritability

makes IBD a good candidate for genetic study.

It has been well studied by linkage and GWAS

Since the rise of genome-wide genetic studies IBD has been at the forefront of

locus discovery. The discovery of the NOD2 locus via genome-wide linkage

(Hampe et al., 1999), and its subsequent fine-mapping to multiple causal

variants (Hugot et al., 2001), was a notable success of linkage studies. The

discovery of the IL23R locus was one of the first successes during the early

days of GWAS (Duerr et al., 2006).

The genetic basis of IBD has also been well studied through large, col-

laborative meta-analyses. The largest linkage meta-analyses in IBD, though

unsuccessful in mapping new loci, were successful in bringing together nearly
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2000 families (van Heel et al., 2004). The largest international GWAS meta-

analyses of Crohn’s disease (Franke et al., 2010) and ulcerative colitis (An-

derson et al., 2011) discovered nearly a hundred IBD loci in total. Notably,

they also collected together over 13,000 total cases with genome-wide data,

and over 25,000 other cases for the purposes of replication.

As a result of these studies, the IBD genetics community has a great

deal of experience in successful genetic research, a series of long-standing

collaborations with a history of data sharing, and a very large shared pool of

patient samples for study. Together, these contribute to the highly productive

research community that makes IBD a model disease for genetic studies.

1.1.2 Why study complex disease genetics?

I justified the study of inflammatory bowel disease by saying that the disease

was costly to society, not well understood, and a heritable and genetically

complex trait. However, the discovery of genetic risk factors is not in itself

of use to society. To justify the approach, one must show how the discovery

of these risk factors will positively impact science or medicine.

In this section I will discuss some of the ways risk loci can be used to the

benefit of scientists and patients. I will start with two uncontroversial uses

(helping to understand disease biology, and aiding further studies of disease),

and move on to the more hotly debated topic of genetic risk prediction.

To directly understand biology

The dominant reason for discovering loci associated with disease is to allow

us to understand disease biology. A better understanding of the aetiology

of human diseases can allow the development of improved options for treat-

ment, diagnosis and prevention, and ultimately reduce the incidence of, and
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suffering from, disease.

The identification of loci has improved the understanding of many com-

plex diseases. GWAS of type 2 diabetes have played an important role in

shifting focus away from insulin resistance and towards insulin production

(McCarthy and Zeggini, 2009), in particular towards defects in β-cell de-

velopment, and have identified many new drug targets (Wolfs et al., 2009).

New disease loci have uncovered previously unexpected pathways in inflam-

matory bowel disease including, notably, the role of autophagy in Crohn’s

disease (Zhang et al., 2008), and barrier defence in ulcerative colitis (Lees

et al., 2011). Another notable success for GWAS was the discovery of the

BCL11A locus as a major modifier of disease severity in haemoglobinopathies

(Akinsheye et al., 2011), which has “reinvigorated the field of globin gene reg-

ulation” and is leading to the development of new treatment options for sickle

cell disease and beta-thalassemia (Bauer and Orkin, 2011).

Locus identification can also give us information about biological factors

that are shared across diseases. GWAS of different diseases will often impli-

cate overlapping loci (Hindorff et al., 2009), and these loci can be informative

about the shared aetiologies of these diseases. For instance, cross-phenotype

comparisons of disease loci allow us to understand the relationships between

Crohn’s disease and both autoimmune and infectious disease (Lees et al.,

2011). More generally, GWAS have highlighted the remarkable degree of ge-

netic overlap between immune-mediated diseases (Cotsapas et al., 2011), and

is starting to drive the creation of new classifications of immune disease based

on shared pathways rather than affected tissue (McGonagle et al., 2009).
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Figure 1.1: Improvement in power curves gained by prioritising samples based
on genetic risk scores with different predictive powers. The colour of the line
represents the proportion of total variance captured by the risk score, with the
red line representing a random (i.e. non-prioritised) selection of samples. A) A
case-control scenario for a disease with 1% prevalence. The total cohort size for
prioritisation is 10,000 cases and an equal number of controls, and we measured
power to detect a risk allele with an odds ratio of 2 and a frequency of 1% at
genome-wide significance. B) A quantitative trait scenario. The total cohort size
is 100,000, and we measured power to detect an allele with 1% frequency that
increased a normally-distributed quantitative trait by 0.2 standard deviations.

To facilitate further research

Beyond the direct biological information that they can give us, disease loci

can also be used as tools to aid future experiments. One obvious example is

the use of genes in disease loci as candidates for functional studies, such as

gene knock-out studies in mice (Kitsios et al., 2010), in much the same way

as any candidate gene would be studied. However, there are also a number

of uses of disease loci that utilise the unique properties of risk loci.
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One such property of risk alleles is that an affected patient who carries a

large number of protective alleles is more likely to have been subject to an-

other, non-observed risk factor. We can therefore use known disease loci to

select cases that have a low risk allele count (or low genetic prediction score),

and test these for the presence of other risk factors. This is particularly rel-

evant to the detection of low-frequency causal variants by sequencing, where

often only a small subset of a larger cohort can be sequenced cost effectively.

Figure 1.1 shows how this approach can increase the power of sequencing

experiments for an example disease trait and an example quantitative trait.

This approach is particularly well powered when selecting from large popu-

lation cohorts of healthy individuals.

Another property of risk alleles is that they are acquired from birth

(through Mendelian segregation), and remain constant through an individ-

ual’s lifetime. As a result they cannot be caused by other risk factors, helping

to resolve epidemiological problems of causality (this is called “ Mendelian

randomisation”). This approach has allowed some previously difficult-to-

answer questions to be settled. For example high LDL cholesterol has been

shown to be causally related to heart disease (Linsel-Nitschke et al., 2008),

but high HDL is not (Voight et al., 2012). The same approach can be used to

perform “retrospective” drug trials, for instance using Mendelian randomi-

sation to establish IL6R as a drug target for heart disease (Hingorani et al.,

2012).

To predict disease genetically

In his 1999 Shattuck lecture on the impact of the Human Genome Project

(Collins, 1999), Francis Collins predicted the GWAS era, the rise of pharma-

cogenomics and the revolution in Mendelian disease genetics. However, the
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Figure 1.2: The predictive accuracy of variants discovered by genome-wide as-
sociation studies, as a function of the effective sample size (= 2

1/Ncase+1/Ncontrol
),

adjusted for the number of stages in the study (three stage studies have a smaller
fraction of samples with GWAS data, and thus have lower power). Risk predic-
tion is performed using logistic regression evaluated on datasets simulated from
allele frequencies and odds ratios taken from replication data. PD: Parkinson’s
Disease (International Parkinson’s Disease Genomics Consortium and Wellcome
Trust Case Control Consortium 2, 2011; Nalls et al., 2011), AMD: Age-related
Macular Degeneration (Chen et al., 2010), T1D: Type 1 Diabetes (Clayton, 2009),
T2D: Type 2 Diabetes (Voight et al., 2010), UC: Ulcerative Colitis (Anderson
et al., 2011), CD: Crohn’s Disease (Franke et al., 2010; Yazdanyar et al., 2009),
RA: Rheumatoid Arthritis (Stahl et al., 2010), CAD: Coronary Artery Disease
(Schunkert et al., 2011), BRCA: Breast Cancer (Turnbull et al., 2010), LOAD:
Late-Onset Alzheimer’s Disease (Harold et al., 2009; Corneveaux et al., 2010),
MS: Multiple Sclerosis (De Jager et al., 2009), MDD: Major Depressive Disorder
(Shyn et al., 2009), BP: Bipolar Disorder (Scott et al., 2009), SLE: Systemic Lu-
pus Erythematosus (Harley et al., 2008), SZ: Schizophrenia (Purcell et al., 2009),
CRCA: Colorectal Cancer (Houlston et al., 2008), PRCA: Prostate Cancer (Eeles
et al., 2009), OVCA: Ovarian Cancer (Goode et al., 2010; Song et al., 2009).
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most controversial forecast was about the advent of prediction for complex

disease, and its role in medical practice. He told a hypothetical story about

a patient (named John), visiting his doctor in 2010:

After working through an interactive computer program that

explains the benefits and risks of such tests, John agrees (and

signs informed consent) to undergo 15 genetic tests that provide

risk information for illnesses for which preventive strategies are

available. [...]

Confronted with the reality of his own genetic data, he ar-

rives at that crucial “teachable moment” when a lifelong change

in health-related behaviour, focused on reducing specific risks, is

possible. And there is much to offer. By 2010, the field of phar-

macogenomics has blossomed, and a prophylactic drug regimen

based on the knowledge of John’s personal genetic data can be

precisely prescribed to reduce his cholesterol level and the risk of

coronary artery disease to normal levels.

While this exact scenario was not common by 2010, personal genetic test-

ing for disease risk has become available to those who want it (and are willing

to pay). Many companies now carry out such tests, using genome-wide data,

for a range of diseases (Ng et al., 2009). The largest such companies, such as

23andMe and deCODEme, provide testing for tens of thousands of customers

a year (Wright and Gregory-Jones, 2010). The potential utility of such ge-

netic risk prediction has been widely debated (Gulcher and Stefansson, 2010;

Kraft and Hunter, 2009; Hall et al., 2010).

Hundreds of GWAS and ever-larger meta-analyses have discovered a

lengthening list of variants associated with complex disease, which can in
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turn be used to construct disease predictors. Figure 1.2 shows the Area

Under the ROC Curve (AUC) of predictors based on the current genetic

knowledge of 18 diseases. In this context, the AUC can be interpreted as the

probability that a genetic test could correctly identify the affected individual

in a pair of individuals of which exactly one is affected. Many diseases cannot

be well predicted (including virtually all psychiatric diseases and cancers),

but others have relatively good predictive power (including type 1 diabetes,

Crohn’s disease and age-related macular degeneration). Note that, while the

AUC is a useful indicator of predictive power, it needs to be considered in

the context of the prevalence of the disease. For example, the low prevalence

of Crohn’s disease makes prediction difficult, even given the high predictive

power of Crohn’s GWAS loci.

The range of genetic AUCs for these diseases is very similar to the range

found in classical (non-genetic) risk prediction based on epidemiological pre-

dictors (Lloyd-Jones et al., 2006; Cassidy et al., 2008; Seddon et al., 2009;

Wacholder et al., 2010; Buijsse et al., 2011). There are additional advantages

to genetic risk prediction compared to classical risk prediction, due to the

fact that genetics do not change over an individual’s lifetime. This means

that risk models can be fitted with retrospective genotype data without fear

of confounding, and that risk prediction can be carried out much further in

advance. For instance, genetics is better than classical risk factors in pre-

dicting type 2 diabetes more than 30 years in the future (Lyssenko et al.,

2008). This may be important for cases where prevention is most effective if

started long before disease onset, or carried out over a long period. However,

when both genetic and non-genetic predictors are available, prospective stud-

ies are required to determine how much power genetic testing adds: common

variants increase the AUC of risk prediction from 0.76 to 0.83 in age-related
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macular degeneration (Seddon et al., 2009), but add negligible improvement

for prediction of metabolic diseases (Companioni et al., 2011; Buijsse et al.,

2011).

Of course, these numbers only tell part of the story. To properly assess

the utility of genetic risk prediction, it must be considered in the context

of the cost of testing, the actionability of the results, and the framework in

which these results will be used. Deciding the optimal way to use genetic

risk prediction, and its potential utility in such an optimal framework, will

be a significant challenge for medical practice in the future.
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1.2 A brief history of human disease genetics

1.2.1 The age of molecular disease: 1940 to 1980

The concept of disease as influenced by hereditary factors originates at the

turn of the 19th century, with the rise of family studies (discussed in Chapter

5). However, the modern formulation of disease genetics, characterised by the

search for inherited polymorphisms in disease loci that increase or decrease

disease risk, is a product of the mid-20th century.

The adoption of Mendelian laws of inheritance (Mendel, 1866) in the early

20th century led to the discovery that many diseases follow a Mendelian

pattern of inheritance within families (Garrod, 1902; Punnett, 1908). While

these early studies were before the discovery of DNA, and were thus unable

to establish the genetic cause of these diseases, they nonetheless established

that they were caused by the presence (or absence) of a specific molecular

factor. It was the search for these molecular factors that led to rise of the

molecular disease paradigm, and the discoveries of the first true disease loci.

In the 1940s a series of landmark experiments established the central

dogma of heredity (Beadle and Tatum, 1941; Avery et al., 1944): DNA is

the agent of heredity, and it acts via the production of proteins. The coming

decades would see the structure of DNA solved (Watson and Crick, 1953) and

the genetic code for proteins described (Crick et al., 1961). These discoveries

gave us the modern framework of disease genetics: mutations in DNA lead

to changes in the functioning of proteins, which in turn lead to defects in

body function that cause disease.

The age of molecular disease lasted from the establishment of the central

dogma to the rise of recombinant DNA techniques in the 1970s. It was

characterised by an increasing understanding of the action of proteins in
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disease, and the resulting discovery of inherited functional polymorphisms

that underlie them. The first disease to be explained in molecular terms

was sickle cell disease, which in 1949 Linus Pauling and colleagues showed to

be caused by differences in the activity and amino acid composition of the

haemoglobin protein (Pauling et al., 1949). Remarkably, a single amino acid

sequence difference underlying this disease was discovered only 8 years later

(Ingram, 1957), though the gene itself was not cloned and mapped until the

late 1970s (Lawn et al., 1978; Deisseroth et al., 1978). Other successes rapidly

followed, such as the discovery of the enzymatic cause of phenylketonuria in

1953 (Jervis, 1953).

One group of proteins that were first understood in this period were the

proteins of human leukocyte antigen (HLA) system. First identified as im-

portant in matching donor and host tissue for transplant, in the course of

the 1960s and 70s the HLA came to be recognised as having a centrally

important role in diseases of immunity (Dick, 1978). Many associations be-

tween HLA alleles and immune-mediated diseases were discovered at this

time, including relatively simple associations with a single HLA allele, and

more complex associations with multiple HLA alleles (such as those in type

1 diabetes (Cudworth and Festenstein, 1978)). The HLA has been under

almost constant study as a source of risk alleles for the last 50 years.

The above disease loci were identified in an essentially “backward” man-

ner. The disease biology led to the investigation of a candidate protein, which

in turn led to the discovery of pathogenic variation and, eventually, mapping

of disease genes. While this process was “molecular”, it was not truly “ge-

netic” in the modern sense, in that it did not proceed from DNA. The first

truly genetic programme for the study of disease came with the develop-

ment of recombinant DNA technology, and the sequential rises of linkage,
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candidate gene and genome-wide association studies.

For a whirlwind tour of the 40 years I am about to describe, one only

needs to look at the study of the HLA regions in type 1 diabetes. The HLA

association with diabetes was first identified via HLA typing in the 1970s

(Cudworth and Festenstein, 1978). The strongest signal was localised to the

HLA-D region in the early 1980s via linkage to restriction fragment length

polymorphisms (RFLPs). Fine-mapping of this signal to the gene HLA-DQB,

however, had to wait until the late 1980s and the rise of the polymerase chain

reaction (PCR) (Todd et al., 1987). Even then, a full characterisation of all

the different HLA associations in diabetes had to wait for the development

of microarray genotyping at the turn of the 20th century (Nejentsev et al.,

2007), forty years after the association was first reported. The same locus

identified during the early days of molecular disease studies has taken four

decades of technological advance to crack.

1.2.2 The age of linkage for Mendelian traits: 1980-1994

The concept of linkage is an old one. In essence, linkage involves discovering

the relative positions of different genetic markers by measuring their coin-

heritance within families. Markers that are present on the same chromosome

are more likely to be coinherited than would be expected by chance, and

markers that are closer together on the genome are even more likely to be

coinherited, as recombination is less likely to separate them. For a fully pen-

etrant Mendelian disease, presence of a mutation is synonymous with disease

status, and thus linkage can be used to determine the location of the mutated

gene on a genetic map.

Linkage studies have a sophisticated statistical heritage. In the 1930s

both Haldane (1934) and Fisher (1935) described statistical methods for
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detecting genetic linkage between dominant traits. Linkage has undergone

constant statistical refinement for over half a century, with the development

of the parametric LOD score (Morton, 1955), pedigree likelihood modelling

(Elston and Stewart, 1971), the multipoint Lander-Green algorithm (Lan-

der and Green, 1987), Non-Parametric Linkage (Kruglyak et al., 1996) and

the development of sparse gene flow trees (Abecasis et al., 2002). Each

of these statistical developments has been in response to the development

of linkage from small-scale breeding experiments to massive whole-genome

meta-analyses with hundreds of markers and thousands of individuals.

The original linkage maps were based on physical characteristics, and were

almost exclusively generated for model organisms via breeding experiments.

For instance, in 1940 the chicken linkage map consisted of 6 chromosomes

with a total of 21 genes, each defined by mutant phenotype (Hutt et al., 1940).

This specified that, for instance, there were 10 centimorgans between the

genes that produce the Silkie and Flightless phenotypes. While these maps

allowed the first real understandings of genome structure, they were of limited

use for human disease. Firstly, without selective breeding, multiple obviously

Mendelian traits rarely segregated in the same family, so the maps were

difficult to produce. Secondly, the information provided was of little direct

relevance, since there existed no method of turning location on a linkage map

into biological insight.

Technological revolutions during the 1970s provided a platform for linkage

studies of human disease to come of age. This began with the development

of amplification in DNA within viral or bacterial vectors (Jackson et al.,

1972), and developed rapidly to sequencing of entire genes by dye termina-

tion (Sanger) sequencing (Sanger et al., 1977). These developments meant

that, if the location of a gene could be identified, it could theoretically lead to
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the gene being cloned and sequenced, its protein sequence determined and its

tissue expression distribution characterised. The development of the South-

ern blot during the same period (Southern, 1975) allowed easy genotyping of

RFLPs (variants in the DNA that interfered with the action of restriction en-

zymes). This was the first time that genotypes could be efficiently measured

from DNA itself, and led to the development of human linkage maps without

the need for mutation phenotypes (Botstein et al., 1980). Suddenly, discov-

ering disease loci by linkage became both possible, and potentially highly

biologically informative.

It did not take long for linkage results to arrive in multiple Mendelian

diseases. The first disease locus to be identified purely by linkage was Hunt-

ington’s disease (via a very fortuitous study of only 12 RFLPs), followed

soon by a flurry of papers reporting linkage to chromosome 7 in cystic fibro-

sis (Tsui et al., 1985; Knowlton et al., 1985; Wainwright et al., 1985; White

et al., 1985). However, while these loci were rapidly identified, the journey

from linkage to a mapped, cloned gene was often difficult. For instance, a

large international collaboration was required to discover the CFTR gene

and ∆F508 mutation that underlies cystic fibrosis, using a laborious posi-

tional cloning approach (Rommens et al., 1989; Riordan et al., 1989; Kerem

et al., 1989). For Huntington’s, discovering the responsible mutations took

10 years from when linkage was first detected (The Huntington’s Disease

Collaborative Research Group, 1993).

The number of samples and variants typed in these early studies were

counted in double digits, and the researchers only managed to discover mu-

tations with extremely high penetrance in diseases with simple genetic archi-

tecture. The methods used to solve these diseases required monumental effort

to use, and seem primitive and laborious by modern standards. However, in
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other ways they contained many of the essential principles of modern genet-

ics. They used direct typing of DNA, without requiring any prior knowledge

of the disease biology, to uncover disease loci. They utilised state-of-the-art

technology, combined with rigorous statistical analysis, and in many cases

shared data, samples and expertise across large, international consortia.

The success of this approach in solving these diseases inspired similar

projects aimed at solving more challenging diseases. These early forays into

the genetics of common complex diseases were less immediately successful. It

would require a series of technological revolutions, combined with a number

of false starts, before complex disease genetics would come of age.

1.2.3 The beginning of complex disease genetics: 1994-

2005

The diseases described in the previous section are all Mendelian diseases.

These diseases are caused by a mutation in a single gene, and this muta-

tion (and thus the disease itself) is passed on to offspring in a Mendelian

fashion. However, many diseases, including virtually all diseases with preva-

lence greater than around 1 in 500, are complex diseases. These include

most immune-mediated diseases, such as type 1 diabetes, Crohn’s disease and

rheumatoid arthritis, most metabolic diseases such as cardiovascular disease

and type 2 diabetes, and most cancers. They do not appear to have a sin-

gle cause (genetic or otherwise), but most have been known from families to

have a genetic component since the early 20th century (see Chapter 5). In the

1990s, many geneticists turned their attention to the genetic underpinnings

of these complex diseases.

The RFLP linkage approach had some ability to detect common alleles

of unusually large effect in complex diseases, including the discoveries of
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Figure 1.3: A timeline of complex disease genetics. Candidate gene studies (prior
to 2007) are taken from reviews by Bosker et al. (2011) and Morgan et al. (2007).
Linkage studies (prior to 2007) are taken from reviews by Guan et al. (2008) and
Baumgart and Carding (2007). GWAS taken form the NHGRI GWAS catalogue
(Hindorff et al., 2009).

the INS locus in type 1 diabetes (Bell et al., 1984) and the ApoE locus in

early onset Alzheimer’s disease (St George-Hyslop et al., 1987; Goate et al.,

1991). However, these discoveries were the exception, not the rule, and the

high genetic heterogeneity and low effect sizes in complex disease made it

ill suited to study using the old techniques. Another wave of technological

innovation in the late 1980s and early 1990s fundamentally changed the way

complex disease genetics was done.

In 1986, Kary Mullis and colleagues published the polymerase chain re-

action (PCR), a method for rapidly amplifying specific DNA sequences in

vivo (Mullis et al., 1986). This revolutionised the study of DNA. In 1989,

Variable Number Tandem Repeats (VNTRs) were described as a class of
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variant easily genotyped by PCR (Weber and May, 1989), and linkage maps

based on VNTRs appeared soon after. Additionally, by 1993 the TaqMan

system was being used to genotype SNPs and small indels using PCR (Lee

et al., 1993). These new techniques allowed genotyping of denser maps, in

many more samples, at much lower cost than the old techniques. As well

as making studies into many more Mendelian diseases affordable, this new

technology also drove an explosion of studies into the genetics of complex

disease, including both genome-wide linkage studies and association studies

of candidate genes (see Figure 1.3).

The first success of the new linkage technology was the discovery in 1990

of strong linkage in early onset breast cancer (Miki et al., 1994) (soon gener-

alised to all breast cancer (Margaritte et al., 1992)). The new techniques also

allowed relatively rapid mapping of the causal gene (BRCA1 ) in less than

four years (Miki et al., 1994). There were also notable early successes in type

1 diabetes, including replication of the INS association using linkage (Bain

et al., 1992), along with the discovery that it was driven by VNTR variation

in the gene itself (Bennett et al., 1995), and confirmation of a third linkage

driven by a mutation in CTLA4 (Nistico et al., 1996). Later successes in-

clude the discovery of linkage (Jawaheer et al., 2003) and then association

(Begovich et al., 2004) to PTPN22 in rheumatoid arthritis, and the detection

of linkage (Hampe et al., 1999) and then causal variants (Hugot et al., 2001)

in the gene NOD2 in Crohn’s disease.

Despite these successes, however, many of the linkage peaks discovered

were sporadic, and could not be consistently replicated. Even more dis-

appointing was the failure of linkage meta-analysis. The Genome Search

Meta-analysis (GSMA) method (Wise et al., 1999) was introduced in 1999

to allow the results of linkage scans to be combined without sharing genotyp-
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ing data, and theory created the possibility of very highly powered linkage

studies. However, when the large linkage meta-analyses arrived, including

thousands of affected families and representing millions of dollars of total in-

vestment, they produced almost no significant, novel results (van Heel et al.,

2004; Guan et al., 2008; Concannon et al., 2009).

In retrospect, the relative failure of later linkage studies was a result

of the high genetic heterogeneity and low effect sizes of complex disease

associations (a fact later uncovered by GWAS). It has long been known that

the power of across-family linkage falls off very rapidly with effect size and

allele frequency (Risch and Merikangas, 1996), meaning that even the large

linkage meta-analyses would not be well powered to detect true associations.

The history of candidate gene studies is an even more chequered. The

advent of relatively inexpensive genotyping, combined with gene mapping

and variant discovery efforts, made it possible to select at least one SNP in

a candidate gene and test it for association to a disease of interest. A large

number of associations were identified in this manner. There were some

notable successes that have stood the test of time, such as the discovery of

the PPARG association in type 2 diabetes (Altshuler et al., 2000)). However,

in general less than 5% of associations identified in candidate gene studies

were replicated in larger GWAS (Ioannidis et al., 2011), suggesting that, on

the whole, candidate gene studies failed to reliably identify true associations.

This failure is especially worrying given the fact that many candidate gene

studies are still carried out today.

The reasons for this failure have been widely debated. The use of post-hoc

adjustment to push p-values into nominal significance has been suggested (as

has been demonstrated in other fields (Masicampo and Lalande, 2012)), often

with an implication that this is a result of “hypothesis driven” investigators
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pushing their pet gene. However, I believe that most of the failure of candi-

date gene studies follows naturally from the sample size, p-value thresholds

and the (then unknown) distribution of effect sizes in truly associated loci.

Examining the candidate gene studies for major depression reviewed by

Bosker et al. (2011), we find that half of the positive studies reported a

p-value between 0.01 and 0.05, and that the median effective sample size

was 170 cases and 170 controls. Even under optimistic assumptions that

odds ratios are large (>2) and the SNP selection criteria is good (one in

20 is truly associated), this will produce false positives 49% of the time.

However, from GWAS we now know that the typical odds ratio is closer to

1.25, which increases the rate of false positives to over 80%. In practice, a

more appropriate set of criteria for candidate gene studies would be to use

p < 0.005 and N > 1500, which would give a 60% true positive rate even

given a 1 in 100 success rate in candidate SNP selection and an odds ratio of

1.25. These are approximately the criteria used by Altshuler et al. (2000) to

successfully establish the true PPARG association in type 2 diabetes. The

majority of candidate gene studies, however, fell well short of these criteria,

and were thus doomed to failure from the start.

By 2005, a small number of important new disease associations had been

identified. Many of these triggered new scientific investigations, such as the

role of innate immunity in Crohn’s disease inspired by the discovery of NOD2.

Others led to new developments in patient care, such as the (soon routine)

testing of BRCA1 mutations in individuals with a family history of breast

cancer. Others still generated significant social debate, notably the strong

ApoE association in Alzheimer’s disease. However, while the genes identified

were important, they were not many of them, with no diseases having more

than two or three loci identified. Ultimately, it would take the technological
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developments accompanying the Human Genome Project to increase the pace

of locus discovery.

1.2.4 The technological build-up to genome-wide associa-

tion studies: 1986-2005

The idea of a genome-wide association study (GWAS) was established even

in 1996, when Risch and Merikangas (1996) noted the greater power of as-

sociation testing compared to linkage in almost all scenarios, but especially

for lower effect sizes (OR < 2). They suggested that by mapping polymor-

phisms genome-wide, the Human Genome Project would allow the creation

of high-density polymorphism maps that, when combined with advances in

genotyping technology, would allow well-powered association testing across

all genes. In this design, a large number of cases (probably the cases al-

ready collected as part of linkage studies) would be genotyped throughout

the genome, along with a set of controls, and each variant could be tested for

differences in frequency between cases and controls. Again, the concept and

the statistics were well established, and waiting for the technology to catch

up. In this case, the technology consisted of advances in DNA sequencing

and SNP discovery, and the development of DNA microarrays for large-scale

genotyping.

In 1986, a description of the first automated DNA sequencing machine

was published (Smith et al., 1986). This machine used 4-colour dye ter-

mination, separated fragments through gel electrophoresis and imaged them

digitally. It was commercialised as the ABI 370-series, and at its peak a single

machine could produce 7200 bp (base pairs) of sequence per hour (Dovichi,

1997). In 1996 ABI released its first capillary sequencing machine, the ABI

310, followed two years later by the 96-capillary ABI 3700-series, capable of
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producing approximately 80kbp of sequence per hour (Dovichi, 1997). This

was the technology that drove the sequencing of the human genome, the first

full drafts of which were published in 2001 (Lander et al., 2001; Venter et al.,

2001).

Simultaneously with the sequencing of the reference genome, many groups

were discovering and cataloguing human genetic variation. dbSNP was

founded in 1998, and by 1999 held 4713 unique variants (Sherry et al., 1999).

This number did not stay this small for long: in 2001 the SNP Consortium

published its list of 1.42M SNPs discovered during and alongside the Hu-

man Genome Project (Sachidanandam et al., 2001). In the same year, Mark

Daly and colleagues published a study of linkage disequilibrium structure on

chromosome 5 (Daly et al., 2001), and noted that SNPs tended to form LD

blocks. This was soon confirmed independently on chromosome 21 (Patil

et al., 2001). The importance of these LD blocks were reinforced by the

discovery that a large proportion of recombination occurs in recombination

hotspots (McVean et al., 2004). These observation made association studies

based on a limited number of SNPs (so-called “tag SNPs”) more plausi-

ble, and led to the founding of the HapMap project in 2002 (International

HapMap Consortium, 2003). The HapMap Project set out to discover and

characterise genetic variation within and across human populations, and by

2005 had brought the number of known SNPs up to 9.2M, 1M of which were

genotyped in a reference panel of 270 individuals on a range of technologies

(International HapMap Consortium, 2005). The project went on to genotype

far more SNPs (3.1M) in the same samples using Perlegen technology (Hinds

et al., 2005), and genotype 1.6M SNPs on an extended panel of 1184 indi-

viduals using Affymetrix and Illumina technology (Altshuler et al., 2010).

The dataset generated by the HapMap project provided a backbone for



1.2. A brief history of human disease genetics 25

genome-wide association studies, locating hotspots and providing a resource

for designing tag SNP sets across different populations.

Meanwhile, technology was advancing to allow these newly discovered

variants to be genotyped efficiently. During the 1980s, many groups were

working on parallelising Southern blotting. While a Southern blot allows the

detection of a specific DNA sequence via binding to an oligonucleotide, it

could only be performed one oligo at a time, making it costly and slow. A

better solution would be a system where binding to a large number of oligos

could be tested simultaneously. The publication of massively parallel light-

directed synthesis in 1991 (Fodor et al., 1991) allowed sequences of DNA

to be “printed” onto a chip, which could in turn be hybridised to a sample

of DNA and digitally imaged. This technology was commercialised as the

Affymetrix microarrays, with the first chip containing 64 kbp of sequence

to assay the HIV genome for mutations (Lipshutz et al., 1995). The same

approach was soon applied to human SNP variation, with a prototype chip

being used to genotype 500 SNPs simultaneously in 1998 (Wang et al., 1998).

Throughout the early 2000s, a flurry of companies commercialised meth-

ods for genome-wide SNP genotyping, using a variety of methods and tech-

nologies (Syvanen, 2005). In retrospect, the most significant were Affymetrix

and Illumina, whose chips went on to underlie most of the GWAS to date.

Each used a slightly different form of microarray, but they also differed in

their selection of SNPs: Affymetrix used a random selection of SNPs, whereas

Illumina used a set of tag SNPs designed to maximise coverage in Europeans

(Barrett and Cardon, 2006). Affymetrix released its 10K Mapping Array in

2003 (Matsuzaki et al., 2004b), which it quickly expanded to 100K SNPs in

2004 (Matsuzaki et al., 2004a) and 500K in 2006. Illumina released its Gold-

enGate BeadChip system for genotyping approximately 1200 SNPs in 2002
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(Fan et al., 2003), followed by the Infinium chips, which in 2005 could geno-

type 100K SNPs, moving rapidly up to 650K SNPs in 2006. Higher density

chips, capable of genotyping a million SNPs, followed from both companies,

with the Illumina Human1M chip in 2007 and the Affymetrix SNP 6.0 array

in 2008.

1.2.5 The age of genome-wide association studies: 2005-

Present

By 2005, the technology for GWAS was in place. Genome-wide SNP sets that

tagged the majority of common variation were on the market, with the pos-

sibility of performing statistical imputation (see Chapter 3) via the HapMap

data to assay millions of SNPs. DNA microarrays were commercially avail-

able to genotype these SNPs in thousands of individuals. Additionally, many

sample collections, originally collected for large linkage analyses, were already

sitting in freezers ready for study.

The first published GWAS, a study of age-related macular degeneration

(AMD), involved only 96 cases and 50 controls genotyped on the Affymetrix

100K chip. Despite the small sample size, they identified a strong, common

association with a coding variant in the CFH gene (Klein et al., 2005). Other

early successes include the discovery of the important Crohn’s disease gene

IL23R in 2006 (Duerr et al., 2006), and a second association for AMD in the

same year (Dewan et al., 2006).

However, while the early days of GWAS were characterised by dramatic

successes, they also suffered some teething troubles, driven mostly by a lack of

a standardised GWAS protocol. For instance, in 2006 a genome-wide study of

649 individuals reported an association between a variant in the gene INSIG2

(Herbert et al., 2006) and childhood obesity. This association did not meet
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the modern definition of “genome-wide significant” (GWS) (p < 5 × 10−8),

and reports soon came in that the association did not replicate in indepen-

dent cohorts (Dina et al., 2007; Loos et al., 2007; Rosskopf et al., 2007).

Another early GWAS reported an association between memory performance

and a variant in the gene KIBRA that did not meet genome-wide significance

(Papassotiropoulos et al., 2006), which itself spawned a series of contradic-

tory and inconclusive candidate gene studies (Schaper et al., 2008; Need

et al., 2008; Bates et al., 2009) (exactly the situation GWAS was designed to

prevent). Other early genome-wide association studies employed statistical

techniques that seem somewhat unusual by modern standards (e.g. Liu et al.

(2006)).

The watershed moment in genome-wide association studies was the pub-

lication of the first study from the Wellcome Trust Case Control Consortium

(WTCCC) in 2007 (Wellcome Trust Case Control Consortium, 2007). The

WTCCC was the largest set of GWAS of its time by a wide margin, including

3000 shared controls and 7 different phenotypes, each with 2000 samples. It

cost a total of £9 million. The study identified 21 loci, of which 14 were novel.

All but one of these associations have been confirmed in later meta-analyses.

The first WTCCC study applied a number of techniques and protocols for

the first time, many of which became standards in genome-wide association

studies. The study gave a detailed treatment to population stratification,

ensuring that associations were not driven by systematic differences between

cases and controls. It was the first GWAS to use the HapMap data to per-

form genotype imputation (using the newly developed IMPUTE algorithm

(Marchini et al., 2007)), allowing testing of variants that hadn’t been directly

genotyped. It also gave significant attention to genotype calling, developing a

new calling algorithm, and ensuring that all associated SNPs were manually
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inspected. Not all of these were novel techniques, but the WTCCC cemented

these steps into a protocol that later GWAS followed.

Another aspect of the WTCCC was the extensive replication efforts that

followed it. Both SNPs that passed genome-wide significance, and (impor-

tantly) SNPs that showed suggestive but not conclusive evidence in the orig-

inal scan, were taken forward for replication in extensive cohorts. These

studies, which included type 2 diabetes (Zeggini et al., 2007), rheumatoid

arthritis (Thomson et al., 2007; Barton et al., 2008), Crohn’s disease (Parkes

et al., 2007) and type 1 diabetes (Todd et al., 2007), led to the establish-

ment of many new associations. It also established the importance of per-

forming replication in independent samples, using independent technologies,

in order to provide additional robustness to existing associations, and to

cost-effectively identify new loci. This replication paradigm has become an

important part of modern GWAS.

Over the last five years the number of GWAS per year has increased

linearly (Figure 1.3). As the number of association studies increased, the

next logical step was to combine studies together into meta-analyses (as was

done during the linkage era). Early GWAS meta-analyses often consisted

of pairwise collaborations, such as Samani et al. (2007), and often did not

produce many more significant hits than the original GWAS. However, meta-

analyses soon started producing startling results. The first Crohn’s disease

meta-analysis, consisting of three studies, discovered 21 new loci, bringing

the total to 30 (Barrett et al., 2008) (more than the entire WTCCC), and

the type 2 diabetes meta-analysis discovered six new loci for the previously

very hard to crack disease (Zeggini et al., 2008). In 2009 the type 1 diabetes

meta-analysis broke the record for the disease with the largest number of

associations, with 40 loci (Barrett et al., 2009a), topped by the 71 Crohn’s
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disease loci in 2010 (Franke et al., 2010). For almost all diseases studies, the

majority of associations now came from large consortium meta-analyses.

1.2.6 Technological advances post-GWAS: 2004-Present

Technological development did not halt with the advent of GWAS, and many

new experimental techniques have been introduced in the last 5 years that

are again dramatically altering the landscape of complex disease genetics.

The greatest leaps forwards have come in sequencing, with the advent

of “next-generation” (sometimes called “second generation”) sequencing. In

2004 the 454 pyrosequencing method was introduced, which allowed hundreds

of thousands of sequencing reactions to be carried out in parallel (Langaee

and Ronaghi, 2005). In 2006 Illumina commercialised the Solexa reversible

termination sequencing method, and in 2007 ABI (now Life Tech) intro-

duced the Sequencing by Oligonucleotide Ligation and Detection (SOLiD)

technology. By the end of 2007 it was possible to sequence over 500Mb a day

on a single machine (Mardis, 2008). In the last few years other sequencing

technologies have been introduced, including the small, low-cost “desktop se-

quencers” such as Illumina’s MiSeq and Life Tech’s Ion Torrent (Quail et al.,

2012), and even more advanced technologies, such as nanopore sequencing

(Eisenstein, 2012), are on the horizon. The rate of improvement in through-

put has continued to climb, and at the time of writing the state of the art

machines (e.g. Illumina’s HiSeq 2500) can produce over 50Gb per day per

machine. The cost of a high-quality fully sequenced human genome is now

less than £5000 (Wetterstrand, 2012).

This technology spawned a new breed of systematic resequencing studies

of human reference populations. In 2007 the 1000 Genomes Project was

founded, to perform low-coverage (2-4X) sequencing on thousands of human
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genomes. The project started with a pilot that detected 16M SNPs, indels

and structural variants in 180 HapMap samples (Project, 2010). The full

project will eventually sequence 2500 individuals from 25 populations, with

the first phase producing calls for nearly 40M variants across 1092 individuals

(Project, 2012). Unlike the HapMap, this dataset is a near-complete map

of genetic variation in these samples, including all common SNPs and indels

genotyped in all individuals, as well as an extensive catalogue of low frequency

variation.

These results also underlie the development of a new generation of high-

density genotyping chips, including the release of the Illumina Omni2.5, with

2.5 million SNPs, in 2010. Another result of this technology was the falling

cost of designing custom genotyping chips, with the introduction of the Il-

lumina iSelect high-density custom chips in 2006, and Affymetrix’s Axiom

system in 2010.

Other technological advances in sequencing followed these developments.

In 2007 NimbleGen published their sequence capture technology (Albert

et al., 2007), which used microarrays to pull down a specified subset of the

genome, allowing low cost sequencing of a subset of the genome. This birthed

the field of “whole exome sequencing”, in which only the 1% of the genome

coding that codes for proteins is sequenced. Interestingly, the benefits of this

technology were first seen in the field of Mendelian diseases, where exome

sequencing can identify all coding mutations in an individual’s genome, and

public databases (such as the 1000 Genomes Project) can exclude all poly-

morphic markers, leaving a small number of candidate causal mutations. The

discovery of the causal mutation for Miller syndrome by exome sequencing

(Ng et al., 2010) was rapidly followed by other successes, and this method is

now the dominant method for solving Mendelian diseases (Bamshad et al.,
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2011).

1.2.7 Next-generation GWAS and post-GWAS studies

The advent of GWAS has changed the landscape of complex disease genetics.

In 2005 only a few dozen loci were known to be associated to complex dis-

eases, across a handful of diseases. By the end of 2011, the NHGRI GWAS

catalogue reported that GWAS have discovered over 2000 genome-wide sig-

nificant associations for over 200 complex traits. But GWAS have their limits

as a tool for locus discovery, and new methodologies are appearing the fill

the gaps left by GWAS.

The tag SNP approach, the greatest strength of GWAS, is also its biggest

limitation: a GWAS is only well powered to detect associations that are well

covered by common tag SNPs. Populations with different LD to the HapMap

populations, or meta-analyses across populations with different patterns of

LD, can confound the tag SNP approach (Teo et al., 2010). This is especially

problematic as many important diseases, including many infectious diseases,

are more common in areas of the world with greater genetic diversity (e.g.

Africa) or from areas that have been less well represented in reference panels

(e.g. South Asia). Additionally, low frequency variants are not well tagged

by common SNPs (Altshuler et al., 2010), making first generation GWAS

ill-suited to discovering associations to such variants. This is an important

limitation, as it has long been hypothesised that rare variants are likely to

play an important role in complex disease (Pritchard, 2001). Finally, GWAS

arrays are still relatively expensive, yet to discover loci with low-frequency

or low-effect size risk variants we require tens or even hundreds of thousands

of samples to be genotyped.

One potential method for overcoming problems of poor tagging is to use
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a technique called genotype imputation, which can allow us to infer these

poorly tagged sites statistically using the new sequence reference sets de-

scribed above. As an example, the study of malaria in Africa has generally

suffered from low LD and high diversity (Teo et al., 2010). However, a

MalariaGEN study showed that genotype imputation using a well-matched

reference set could overcome issues of low LD (The MalariaGEN Consor-

tium, 2009). Similarly, imputation may allow us to assay associations at low

frequency variation that is not well tagged by any one common SNP. Geno-

type imputation, combined with datasets such as that generated by the 1000

Genomes Project, may allow us to perform high-powered meta-analyses in

African populations, and uncover new associations with low-frequency vari-

ants, without requiring more experimental genotyping.

The advent of low cost, high-density custom genotyping has allowed a

many-fold expansion of genetic datasets of complex disease. By joining to-

gether in large meta-consortia, disease genetics consortia can club together to

design genotyping chips. Because orders are large (>100,000 samples), chips

can be purchased at very low cost, allowing very large sample sizes. The first

example of such a chip was the Metabochip, designed to genotype 200,000

variants for deep replication and fine-mapping of metabolic and anthropomet-

ric traits (Cortes and Brown, 2011). The Metabochip has already expanded

the number of known loci for both type 2 diabetes (Cortes and Brown, 2011)

and glycemic traits (Scott et al., 2012). Other consortia have constructed

similar platforms, including the Immunochip (for immune-mediated disease)

and the Exome chip (to study coding variation).

The falling cost of sequencing has allowed the direct assaying of low-

frequency variants via resequencing studies. Early studies involve the se-

quencing of sets of candidate regions using capture technology. A striking
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early success came with the discovery of multiple rare variants in the gene

IFIH1 that protect again type 1 diabetes (Nejentsev et al., 2009). This study

used 454 sequencing to sequence the exons of 10 candidate genes in 480 in-

dividuals, and marked the first major success of next-generation sequencing

in complex disease genetics. A similar sequencing project in Crohn’s dis-

ease identified a number of low frequency associated variants within existing

GWAS loci, including a highly significant splice variant in the gene CARD9

(Rivas et al., 2011).

Newer sequencing projects in complex diseases are focusing on whole-

exome or whole-genome sequencing of case and control collections. Exome

sequencing is relatively low cost, and can allow large sample sizes to be

collected, but only allows us to study coding variation. A notable alternative

approach is low-coverage, whole-genome sequencing, which is made plausible

using the imputation-based genotype refinement techniques developed for the

1000 Genomes Project (Li et al., 2011). These techniques can allow us to infer

genotypes in enough samples to test low-frequency variants genome-wide, at

approximately the same cost of exome sequencing.

The success of whole-exome sequencing in solving Mendelian diseases has

led people to ask whether family-based sequencing studies of complex dis-

ease may be able to identify low-frequency coding mutations that contribute

to complex disease (Bamshad et al., 2011). While GWAS (and, indeed, the

failure of linkage meta-analyses) ruled out the existence of high-frequency,

high penetrance mutations (i.e. mutations likely to be shared between fam-

ilies), they do not rule out the possibility of rare variants of intermediate

penetrance segregating with disease in a single family. The sequencing of

multiply affected (or “multiplex”) families, combined with new functional

and genetic reference datasets, may allow us to identify such rare variants.
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1.2.8 Conclusions

The history of locus discovery in human disease genetics has largely been

a history of technology. The Southern blot and Sanger sequencing allowed

the first disease genes to be mapped and cloned. PCR sparked the age of

complex disease linkage and candidate gene studies, and microarrays and

capillary sequencing led to GWAS. In each case, the general form of the

studies were anticipated decades in advance, and the concepts underlying

them were thus decades old by the time they came to be applied.

This is not a general property of genetics. For instance, sequence anal-

ysis has undergone a statistical renaissance in response to next-generation

sequencing, with methodological advances in short read alignment (Ruffalo

et al., 2011), de-novo assembly (Pop, 2009) and variant calling (Nielsen et al.,

2011). It also has clear exceptions around chip design and processing, such

as the development of tag SNP approaches (Li and Wang, 2010), of genotype

calling algorithms (Shah et al., 2012) and of genotype imputation and meth-

ods to handle the resulting uncertainty (Marchini and Howie, 2010). But

when it comes to locus discovery per-se, this conceptual preempting is the

rule. Likewise, we are all aware that the ultimate locus discovery experiments

will come within a few decades, via low-cost, high-quality whole-genome se-

quencing of hundreds of thousands of samples.

One effect of this technological drive is a tendency for statistical argu-

ments to be raised, settled and often forgotten decades before the technology

catches up. This can lead to a certain amount of historical blindness. Dis-

cussions of rare variants and genetic heterogeneity, for instance, seem to wax

and then wane away every 10 years or so (with early family studies, with

RFLP studies, with the failure of complex disease linkage, and in the GWAS

era). Another effect is that methods can become ingrained, and used without
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proper thought to what they mean. This was one of the reasons behind the

failure of candidate gene studies, where a rule-of-thumb (a p-value thresh-

old of 0.05) became a blindly applied law even in cases where it was not

appropriate.

A more positive result of the established statistical methodologies is that

far more attention is paid to downstream analysis of results. A good example

of this is the development of gene prioritisation techniques, such as GRAIL

(Raychaudhuri et al., 2009a) and DAPPLE (Rossin et al., 2011). A solid

statistical framework is a platform that can easily be built upon to go beyond

simple locus identification (e.g. see Chapter 4). This is especially important

given that one of the main challenges of the next decade will be to turn the

windfall of loci discovered by GWAS into detailed biological knowledge of

disease.
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1.3 Outline of this thesis

In this chapter, I have laid out the reasons for studying complex disease

genetics in general, and the genetics of IBD in particular. I have shown how

the process of locus discovery has proceeded over the last 70 years, and in

particular how new technologies have continually opened up new avenues of

research. We have seen that the greatest successes have come with the rise of

genome-wide association studies, and in particular with large, collaborative

GWAS meta-analyses. However, we have seen that there are still many loci

to discover, as there are many classes of allele that the first generation of

GWAS were unable to effectively study. I discussed how new technological

advances are expanding our ability to study the gaps that GWAS left, and

some of the strategies we can use to utilise these technologies to discover

associations to rare and low-frequency variants, variants of small effect size

and variants in diverse populations. The following chapters will lay out

a series of investigations into the methods required, challenges faced and

results generated by this next generation of studies.

However, before I describe these specific experiments, I will start by laying

down a statistical framework to understand the methods and models that I

am going to use. The twin studies used to infer heritability, the case-control

studies used to discover risk variants, and the epidemiological studies that

construct predictive models all use a related but distinct series of statistical

methods. Likewise, many statements about genetic risk, such as the amount

of heritability explained by GWAS, or the power of genetic risk prediction,

are themselves built upon models of genetic risk. Throughout this thesis I

make use of many of these different methods and models in the analysis of

various datasets, and so before I report these analyses it is necessary to review

this range of techniques, and unify them into a single rational framework.
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To this end, Chapter 2 describes a family of models of genetic risk, built

upon a normally distributed genetic risk score, with different models specified

by different link functions connecting this risk score to disease probability. I

show how the assumptions of most major statistical techniques correspond

to a choice of one out of three link functions, and investigate the behaviour

of these three models. I demonstrate that these models produce drastically

different predictions about the distribution of observable quantities, and dis-

cuss how these differences can lead to inaccuracy or ambiguous results in

studies of complex disease.

Once I have placed locus discovery efforts into both historical and statis-

tical frameworks, I will proceed to describe a series of three projects designed

to discover genetic risk factors in complex disease. Each of these projects is

designed to extend, and overcome the limitations of, first-generation GWAS

using a combination of new genetic data from patients, new publicly available

genetic and functional datasets and new statistical techniques.

In Chapter 3, I investigate the use of genotype imputation algorithms

in genome-wide association studies. As we saw above, genotype imputa-

tion can allow disease association to be tested with far more SNPs than

have been genotyped in a GWAS, facilitating meta-analysis and increasing

power. I begin by investigating the impact of reference set size and diver-

sity on imputation in Europeans, using the HapMap data, with particular

focus on the imputation of low frequency variants. I then investigate how

effective the same reference sets are at performing imputation in African pop-

ulations. Next, I expand this analysis to new datasets, looking at how well

1000 Genomes project data can impute low-frequency variation in a diverse

African population. Finally, I show how imputation of variants from the

1000 Genomes pilot can be used to draw conclusions about disease biology,
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by estimating the influence of loss-of-function variants on 7 complex diseases.

It is now clear from GWAS that a large proportion of disease risk is due to

so-called polygenic risk. This consists of a large number of common variants,

each with a small effect size, of which only those with the largest odds ratios

have so far been identified. As we have seen, custom genotyping can allow

us gather enough samples to identify loci in this long tail of low effect size

polygenic risk. In Chapter 4, I discuss how a custom genotyping platform (the

Immunochip) has been used to expand the IIBDGC GWAS meta-analyses

collection to include over 40,000 cases of inflammatory bowel disease (IBD).

This chapter details the analysis of this genotype data, including genotype

calling, quality control, and association analysis. 71 new loci for IBD are

described, bringing the total to 163 loci, with 193 genome-wide significant

independent signals.

In order to biologically interpret this large list of associated loci, I present

a number of bioinformatic analyses. This includes comparing genetic over-

laps between the two forms of IBD (CD and UC), and the overlap between

IBD and other complex and Mendelian diseases of immunity. It also includes

gene prioritisation, functional enrichment and gene expression analyses. Fi-

nally, I outline two other projects that make use of the Immunochip data.

The first is the use of Y chromosome markers to test relationships between

Y chromosome haplogroups and IBD. The second is the use of densely geno-

typed fine-mapping regions on the Immunochip, combined with functional

information, to draw conclusions about the nature and action of causal vari-

ants.

In contrast to the study of common variants of small effect, Chapter 5

describes a set of approaches to discover rare variants of large effect by us-

ing large, multiplex families. I begin by producing a joint model of common
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polygenic and rare dominant penetrant genetic risk in families, and exploring

how the probability of observing multiplex families of a certain size varies

depending on heritability and penetrance. I then lay out a method of per-

forming genetic risk prediction in families, and show that this method can

effectively distinguish between multiplex families that do or do not harbour

a penetrant mutation.

I go on to introduce a set of multiplex families with an abnormally high

prevalence of IBD, including one extended family with over 40 affected in-

dividuals. I describe and apply an approach to studying such families using

a combination of genotyping, whole-genome and/or whole-exome sequenc-

ing and functional annotation to detect candidate causal variants. I also

discuss various methods by which these candidate variants can be validated

and followed up.

In the final chapter I will highlight consistent themes and topics that tie

together this thesis, including the importance of external datasets, the inter-

play between statistical and biological theory, and the nature of experimental

design in the post-GWAS world. Next, I will look forward to locus discov-

ery efforts in the near future and beyond. This will involve the description

of a currently ongoing experiment involving low-coverage whole-genome se-

quencing of 5000 IBD patients and 4000 healthy controls, in order to identify

low-frequency associations. Finally, I will consider the “ideal” locus discov-

ery experiments of the coming decades, and the potential for an increased

integration of genetic and functional biology.




