Chapter 4

Investigating IBD genetics using

the Immunochip

4.1 Introduction

This chapter describes a set of studies carried out using a custom genotyping
platform named Immunochip. This genotyping chip was collaboratively de-
signed by a large number of researchers in the genetics of complex immune
and inflammatory disease, in order to offer an affordable way of performing
very large locus discovery and fine-mapping studies. This chapter describes
the application of this genotyping chip to the large number of samples col-
lected by the component research groups of the International IBD Genetics
Consortium (IIBDGC).

Both the Immunochip in general, and the IIBDGC study in particular,
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have been very successful in uncovering the genetics of immune-mediated dis-
ease. One study described in this chapter increased the number of associated
loci known for IBD to 163, which is more than for any other complex disease.
The very large number of associations has also necessitated a change in the
way we interpret these results, from a locus-by-locus examination of genes to
a large-scale bioinformatic interrogation of all loci. Much of this chapter will
be dedicated to applying these techniques to the results of the Immunochip

studies.

4.1.1 Overview of this chapter

I will begin (Section 4.2) with a discussion of the design of the Immunochip.
This section starts with a discussion of the economics and power consid-
erations of large-scale locus discovery and fine-mapping projects. It also
contains a brief investigation into the biology of the fine-mapping loci sub-
mitted to the Immunochip, and what they tell us about the shared biology
of immune-mediated diseases.

Section 4.3 will discuss the IIBDGC Immunochip data itself, and how
calling, quality control and association analyses were carried out. It will
describe the large number of novel loci this study has uncovered. Section
4.4 describes a detailed set of bioinformatic analyses to transform this locus
list into biological insights. These analyses draw on a range of external data,
such as associations with other phenotypes, gene networks, gene annotations,
population genetic data and expression analyses. This section also sets out
the main biological conclusions that can be drawn from these analyses, as I
see them.

Finally, I will discuss two smaller studies carried out on this dataset. Sec-

tion 4.5 discusses an association study of Y chromosome haplogroups in IBD,
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and reports a novel association with a Northern Furopean Y haplogroup.
Section 4.6 discusses a pilot fine-mapping project, investigating coding and
non-coding causal variants in the important NOD2 locus in CD, which will

act as a template for larger Immunochip fine-mapping efforts.
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Genotyping method Cost/sample | Number of variants
Sequenom genotyping (1 plex) | £1.25 25-30

[Mumina Omnikxpress GWAS | £160 800,000

array

Agilent and HiSeq targeted se- | £90 All in 6Mbp target region
quencing

[llumina Infinium iSelect HD | £25¢ 90,000-250,000

custom genotyping

Table 4.1: The costs and capacities of various genotyping technologies. All
costs are approximate, and assume large order numbers (>5000 individuals). ¢
Assuming an order of >100,000 chips.

4.2 An overview of the Immunochip

4.2.1 The economics of the Immunochip
The economics of deep replication

The 30 novel loci discovered by the last International IBD Genetics Consor-
tium’s GWAS meta-analysis of Crohn’s disease (Franke et al., 2010) have a
median odds ratio of 1.1. The total discovery and replication dataset in this
study contained 22,441 cases and 29,496 controls, and thus had a 90% power
to establish such loci at genome-wide significance (p < 5 x 107%), assuming an
allele frequency of 0.25 and an additive genetic model. However, a limitation
of this study was that the discovery cohort only had ~29% power to detect
these signals with a p-value less than the significance threshold required to
be taken forward into the replication (p < 5 x 107%). This means that we
have likely only discovered 29% of the variants that the total collection is
well-powered to detect, suggesting another 70 loci that could be discovered.

How can we map these loci in an affordable manner?

One option for uncovering some of these associations would be to expand
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the GWAS collection. Doubling the number of cases on a low-cost genotyping
chip such as the Illumina OmniExpress would cost around £160 x 6333 =
£1,013,280 (all costs shown in Table 4.1). This would increase the proportion
of true associations taken forward for replication to 65%, and would likely
result in around 50 new loci for follow-up. Replication on two Sequenom
plexes would then cost around £76,370. This would thus involve spending
a total of £1,089,650 to discover approximately 33 new loci, at a cost of
£29.450 per locus.

Instead of expanding the GWAS collection, we could instead expand the
replication genotyping effort (a so-called deep replication experiment). For a
replication set containing all SNPs with p < 10~* would contain around 800
SNPs (or 32 Sequenom plexes), and would include 54% of true associations.
This would cost £1.25 x 32 x 30,548 = £1,221,920 to uncover approximately
26 loci, or £46,997 per locus.

There is a third option: custom microarray genotyping. Designing a cus-
tom genotyping array allows the genotyping of a large number of SNPs at
a lower cost than GWAS arrays. For instance, the Illumina iSelect Infinium
HD custom genotyping chips can genotype up to 250,000 markers. For small
numbers of samples the cost is relatively high (starting at around £100/sam-
ple). However, if a very large number of chips are ordered the price can fall
substantially, and for orders measured in the hundreds of thousands the price

falls to under £25/sample.

At this price, the entire IIBDGC replication cohort can be genotyped for
£763,700. Additionally, because tens of thousands of SNPs can be taken
forward for replication, we can perform very deep replication. For instance,
taking forward the approximately 5000 SNPs that show p < 1072 would allow

us to test 76% of true associations. This would allow us to discover 44 new
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loci at a cost of £17,357 each.

The economics of fine-mapping

Most of the associations that have been established during the IIBDGC meta-
analyses are still poorly understood. For all but the most long-established
associations the causal variant is unknown, and in many cases the gene or
genes that are being acted on are also unknown. Bioinformatic techniques,
such as those discussed in section 4.4.3, can shed light some light on the causal
genes. However, the gold standard for establishing causation is genetic fine-
mapping, i.e. demonstrating that a single variant, and no others, is capable
of explaining the observed association.

In general, fine-mapping is not easy to achieve. To take a simple example,
consider a common association (allele frequency of 50%) with a small effect
size (odds ratio of 1.2), with the lead SNP in high LD (r* = D’ = 0.95) with
another variant of the same frequency. To have 80% power to identify the
causal variant with high certainty (i.e. posterior > 0.99), we would require
genotypes at 20,000 cases and 20,000 controls. In practice, the structure of
the genome, and the biases of GWAS detection, will lead to most associations
having many variants in high LD. To fine-map these associations we need a
large number of samples, genotyped for a large number of SNPs. The IIB-
DGC cohort, with an effective sample size of around 25,000 cases, has enough
power to fine-map a significant fraction of the CD associations detected by
GWAS. However, designing this experiment in an affordable manner is diffi-
cult.

A basic fine-mapping effort will involve genotyping a limited set of can-
didate causal variants. If we examine the 40 CD loci that have not been

previously fine-mapped with the lowest degree of LD, we find that there are
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536 SNPs with 72 > 0.8 to the hit SNP in the 1000 Genomes pilot. This set of
SNPs could be genotyped using around 19 Sequenom plexes, and would cost
£1,233,504 to genotype the entire IIBDGC cohort. However, if the causal
variant has r? < 0.8 to the hit SNP, we will not find it (and indeed may
end up with a false positive causal variant). Additionally, only the primary

signal at the locus can be fine-mapped in this fashion.

The ideal fine-mapping experiment involves sequencing entire regions, as
this allows us to assay all variants that could drive the association, as well
as allowing us to identify new (potentially low-frequency) associations. A
pull-down array designed to capture DNA from CD loci, combined with low-
cost next-generation sequencing would allow us to perform this. However,
while the cost of sequencing is now extremely low, the cost of sample prepa-
ration and the pull-down arrays is still relatively high. Even if we restricted
sequencing to 20K cases and 20K controls, such a project would still cost in

excess of £3,600,000.

Again, a powerful third solution comes in the form of custom genotyping,
and in particular via a combined deep replication and fine-mapping array.
The same genotyping array that is being used for deep replication (and thus
is already being run on a significant fraction of the IIBDGC cohort) can also
used to genotype variants in IBD-associated regions taken from the 1000
Genomes project and dbSNP. This allows the primary signal and any sec-
ondary signals to be fine-mapped, and also allows any low-frequency variation
that is in the SNP databases to be assayed as well. This approach has less
full coverage than would be achieved by sequencing, but for common varia-
tion the coverage should be nearly as high, at a much lower cost. In essence,

the fine-mapping and deep replication efforts are combined on a single chip.
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An immune-mediated disease chip

We have seen that custom genotyping is an affordable way to discover and
fine-map new loci using existing collections, providing that a large enough
purchase is made. If the IBDGC alone purchased 40,000 chips (enough to
genotype all CD and UC cases, and all controls), this would still be too small
an order to be cost effective. However, by including deep replication studies
from other disease consortia, we can rapidly increase the total number of

chip users, and reduce the price to affordable levels.

It was these economic considerations that led to the creation of the Im-
munochip. This custom genotyping platform was designed for deep replica-
tion and fine-mapping in a wide range of studies, with particular focus on
immune-mediated diseases (Table 4.2). Along with the reduction in price,
there are a number of additional advantages to this cross-consortium collabo-
ration. Firstly, it greatly reduces the costs of control genotyping, as common
control sets can be used. Secondly, because there is a high degree of genetic
overlap in immune-mediated diseases (see section 4.2.3) a high proportion of
deep replication SNPs and fine-mapping regions will be associated to multiple
diseases, reducing redundancy and increasing the power to detect new shared
associations. Finally, because the chip contains almost all known immune-
mediated disease loci at time of creation, and because it is being run on a
range of different immune-mediated diseases, it makes a perfect platform for

performing cross-phenotype analyses of immune diseases.

4.2.2 The content of the Immunochip

The Immunochip is an Infinium iSelect HD custom genotyping chip, manufac-

tured by llumina. It contains 196,524 variants (largely SNPs, plus 718 small
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Immune-mediated diseases Other diseases
Autoimmune Thyroid Disease® Barrett’s oesophagus
(AITD)

Ankylosing Spondylitis (AS) Bipolar Disease (BD)
Bacteraemia susceptibility (BS) Glaucoma

Crohn’s Disease (CD) Ischaemic stroke

Coeliac Disease (Coeliac) Parkinson’s Disease

IgA deficiency® (IgAD) Pre-eclampsia

Multiple sclerosis (MS) Psychosis endophenotypes
Primary Biliary Cirrhosis* (PBC) Statin response

Psoriasis (PS) Reading and mathematics abilities
Rheumatoid arthritis (RA) Schizophrenia

Sarcoidosis

Systemic lupus erythematosus

(SLE)

Type 1 Diabetes (T1D)

Ulcerative colitis (UC)

Vasculitis

Visceral leishmaniasis

Table 4.2: The diseases involved in the Immunochip design *Fine-mapping only,
no deep replication.

indels), picked specifically for the purpose of discovering and fine-mapping
genetic associations with immune-mediated disease. The variants are selected
based on three criteria: deep replication of variants implicated by GWAS,
fine-mapping of established disease associations and variants submitted as
wildcards. In total, approximately 240,000 SNPs were selected for inclusion,

with an assay design success rate of ~80%.

Deep replication

Approximately 50,000 SNPs are included on the Immunochip as deep repli-
cation for the diseases shown in Figure 4.2. These SNPs showed suggestive

evidence in GWAS, and are intended to be replicated in a large set of samples
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in order to discover novel associations. Many of these (including all repli-
cation for non-immune-mediated traits) were included as part of the second
Wellcome Trust Case Control Consortium project. While these SNPs make
up only a quarter of the total, they represent the larger proportion of the
genome tagged, as they are largely independent (in contrast to the high level

of redundancy in the fine-mapping regions).

Fine-mapping regions

A total of 290 established disease associated loci were included on the Im-
munochip for fine-mapping. 196 of these came from studies that were sub-
mitted, accepted or published when the Immunochip was designed (listed in
Table 4.3). An additional 94 loci were included on the basis of personal com-
munication with researchers carrying out GWAS and GWAS meta-analyses
that were not yet submitted for publication at the time of chip design (listed
in Table 4.4). All but one of these studies have now been published. How-
ever, many of the fine-mapping loci included were not included in the final
publication for these studies. Some of these loci were subsequently discov-
ered in other studies, but there are still 13 “false” loci that are included on
the Immunochip and have never been reported in a publication (Table 4.4).
Many of these loci are actually true associations; for instance, three of the
four “false” IBD loci are confirmed in the IIBDGC Immunochip data (see
section 4.2.2).

Fine-mapping regions were defined by taking 0.2cM on either side of the
hit SNP, using the combined HapMap2 genetic map. SNPs for fine-mapping
were chosen from the 1000 Genomes pilot 1 two-of-three way SNP site set

(dated 10/11/2009), and from dbSNP build 130.

The 290 fine-mapping regions include a high degree of overlap. Exactly
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Phenotype | Study Loci
AITD Kavvoura et al. (2007) 1
AITD Brand et al. (2009) 1
AS Burton et al. (2007) 2
BD Ferreira et al. (2008) 2
BD O’Donovan et al. (2008) 1
CD Barrett et al. (2008) 30
CD Kugathasan et al. (2008) 2
Coeliac Hunt et al. (2008) 3
Coeliac Dubois et al. (2010) 27
IgAD Ferreira et al. (2010) 1
MS Booth et al. (2008) 3
MS De Jager et al. (2009) 5
MS Bahlo et al. (2009) 1
MS Esposito et al. (2010) 3
MS Jakkula et al. (2010) 1
MS McCauley et al. (2010) 2
MS Mero et al. (2010) 1
PBC Hirschfield et al. (2009) 1
PS Capon et al. (2008) 1
PS Nair et al. (2009) 6
PS Zhang et al. (2009) 2
RA Raychaudhuri et al. (2009b) | 23
SLE Harley et al. (2008) 3
SLE Kozyrev et al. (2008) 1
SLE Han et al. (2009) 14
SLE Gateva et al. (2009) 7
T1D Cooper et al. (2008) 1
T1D Smyth et al. (2008) 1
T1D Barrett et al. (2009a) 34
T1D Qu et al. (2009) 1
T1D Wallace et al. (2010) 2
UC Franke et al. (2008) 1
UC Kugathasan et al. (2008) 2
UC Imielinski et al. (2009) 1
ucC Asano et al. (2009) 1
ucC Silverberg et al. (2009) 3
UC Barrett et al. (2009b) 4
UC Festen et al. (2009) 1
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Table 4.3: Fine-mapping regions included on the Immunochip as a result of
studies published or submitted at the time of chip design. The “Loci” column gives

the total number of fine-mapping regions on the Immunochip from this study.
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Disease | Study On | In study “False”
chip | (Confirmed)
AS Reveille et al. (2010) 4 3 (1) 0
AS Evans et al. (2011) 2 1(19) 0
CD Franke et al. (2010) 34 | 32(1%) 1
MS Sawcer et al. (2011) 11 |10 1
PS Strange et al. (2010) 11 19 2
PS Stuart et al. (2010) 3 2 1
RA Stahl et al. (2010) 1 2 1
RA Freudenberg et al. (2011) | 1 1 0
SLE NA® 10 | 0°(39) 7
T1D Swafford et al. (2011) 1 1 0
T1D Heinig et al. (2010) 1 1 0
UC Anderson et al. (2011) 15 | 13 (29) 0

Table 4.4: Fine-mapping regions included on the Immunochip as a result of
studies that were not completed at the time of chip design. “On chip” is the total
number of loci included on the Immunochip from this study, “In study” is the
number of these loci that were subsequently included in the final locus list for that
study, “Confirmed” is the number of loci that were not included in the study have
subsequently been confirmed elsewhere, and “False” is the number of loci included
on the Immunochip from this study that have never been published. *These loci
are confirmed in the study described in this chapter, ’I do not believe that this
study has been published yet. “Confirmed by Evans et al. (2011) Confirmed by
Danoy et al. (2010) ?Confirmed by Guerra et al. (2012)

how many independent regions exists depends on exactly what parameters
are used, but merging any regions with boundaries that lie within 50kb of
each other, and excluding the two BD regions, gives 186 separate immune-

mediated disease regions.

In addition to the regions included due to established associations, a total
of 6378 SNPs from across the MHC were included to allow fine-mapping and
imputation of HLA alleles.
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Wildcard variants

Many groups with the contributing consortia submitted “wildcard” SNPs.
Each contributor was given an allocation of SNPs that could be picked based
on criteria not directly related to deep replication or fine-mapping.

Many researchers submitted wildcard variants in candidate genes. For
instance, the IBD consortium added three SNPs in the gene XBP1, impli-
cated as involved in IBD by a functional and candidate gene study (Kaser
et al., 2008). The most associated SNP in the original study, rs35873774, had
an odds ratio interval of 0.66-0.84 in 4389 cases and 5322 controls. In the
22,442 cases and 30,837 controls of the IIBDGC Immunochip data, it had an
odds ratio interval of 0.92-1.02, suggesting that this association is not real, or
at least has been overestimated. A more powerful example is an attempted
replication via wildcard genotypes of an association between variants in the
gene SIAE and autoimmune disease. The original study that reported the
association tested 923 cases and 648 controls (Surolia et al., 2010), but an
Immunochip-based study in over 60 thousand individuals failed to replicate
the results (Hunt et al., 2012). Often candidate gene studies are expensive
to replicate, and many false associations are not disproved. These wildcard
replication efforts can allow us to confirm or falsify associations that would
not be tested in ordinary circumstances.

Some groups submitted candidate SNPs generated from sequencing ex-
periments. For instance Manny Rivas and colleagues submitted 260 low-
frequency SNPs that had been identified through resequencing of IBD GWAS
regions, many of which replicated successfully in the IIBDGC Immunochip
cohort (Rivas et al., 2011).

Other sets of SNPs were added for other purposes. 100 SNPs within the
Killer cell Immunoglobulin-like Receptor (KIR) gene cluster were added, to
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allow development of techniques to impute KIR serological alleles. 1735 Y
chromosome SNPs were included to allow Y haplogroup analyses (discussed
in section 4.5 below), and a further 848 SNPs were added from the NHGRI
GWAS catalogue to allow testing of GWAS hits from non-immune-mediated

diseases.

Unpicking “false” IBD fine-mapping regions

There are four IBD fine-mapping regions that were included on the Im-
munochip despite not appearing in either the Franke et al. (2010) nor An-
derson et al. (2011) meta-analysis papers. These include two CD and two
UC regions.

In the UC meta-analysis, the first “false” SNP (rs1518070) showed genome-
wide significant evidence (Peompined = 7.9 x 107%), leading to its inclusion on
the Immunochip. However, final replication did not meet p,eprication < 0.05
due to a high rate of technical failure. The second “false” SNP (rs1569501)
showed genome-wide significant evidence of association in the UC GWAS
alone, but failed assay design during replication and was thus not included
in the final study.

In CD, one “false” SNP (rs1536833) met genome-wide significance in
the replication datasets available when the Immunochip was first designed
(Peompined = 2.6 x 1078), but dropped just below genome-wide significance
when the final replication cohorts were included (peompinea = 9.5 x 1078).
The second, rs2098112, showed a significant value of peompined (leading to its
inclusion on the Immunochip), but the entire signal was entirely driven by
association in the GWAS data, and was excluded from the final list due to
lack of signal in the replication.

Of the four IBD fine-mapping regions included “in error”, three were
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Figure 4.1: Locus sharing between immune-related diseases, using Immunochip
fine-mapping regions. Connecting line width represents number of loci shared,
either a) unweighted or b) weighted by square root of the product of the number
of associations in both phenotypes.

found to be truly associated in the IIBDGC Immunochip study described
in this chapter. The only association that failed to show signal in the Im-
munochip was rs2098112. Additionally, the improved GWAS imputation
described below reduced the association signal from p = 4.5 x 1071° to p =

0.35, showing that this association was driven entirely by poor imputation.

4.2.3 The biology of the Immunochip

The fine-mapping regions on the Immunochip represent a complete survey
of the known genetics of immune-mediated disease (or at least, a relatively
complete survey of the loci known in mid-2010). What can this list of loci
tell us about the shared biology of the diseases that the Immunochip was

designed to study?
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Locus sharing between immune-mediated diseases

Of the 186 fine-mapping loci, 61 were submitted for more than one dis-
ease, including 9 loci shared by at least 4 diseases. Highly shared loci in-
clude loci that been traditionally considered important in immunity such as
IL23R/IL12RB2 (5 diseases) and PTPN22 (4 diseases), and other loci that
do not have well-understood roles in immunity such as KIF21B (5 diseases).

We can use these shared loci to construct a locus sharing network for 9
autoimmune diseases (excluding diseases with 2 or fewer loci). An unweighted
network (Figure 4.1a) shows strong connectivity between CD, UC, T1D and
Coeliac. However, these diseases are also those with the largest number of
discovered loci, so this connectivity is unsurprising. If we weight the network
edges by the geometric mean number of associations in the two diseases, we
get a very different network (Figure 4.1b). The strongest connection here is

between UC and AS (two comorbid diseases).

Network analyses of Immunochip loci

We can place the Immunochip loci in the context of gene networks, and ask
which loci seem to play a central role in these networks. I used two gene
network tools (GRAIL and DAPPLE) to construct networks using genes in-
side Immunochip regions. The first, GRAIL (Raychaudhuri et al., 2009a)
(Gene Relationships Across Implicated Loci), is a network connectivity tool
that uses text mining to calculate a network distance between genes in dif-
ferent implicated loci. Each gene is measured for enrichment of connectivity
to genes in other associated loci, and a p-value is calculated. The second,
DAPPLE (Rossin et al., 2011) (Disease Association Protein-Protein Link
Evaluator), is a network connectivity tool that uses protein-protein interac-

tions. Each gene is measured for enrichment in either direct or indirect (i.e.
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Figure 4.2: The relationship between GRAIL network connectivity and number
of associations for Immunochip fine-mapping regions. a) The GRAIL gene network,
with genes in shared loci highlighted in red. b) The relationship between GRAIL
connectivity p-value and degree of locus sharing

via other proteins) interactions with genes in other loci, and an empirical
p-value is calculated by permutation.

Looking at the GRAIL literature network (Figure 4.2), genes that tend to
be closest to the centre of the network also tend to be in regions associated
with more than one phenotype. In general, there is a correlation between
connectivity p-value and number of associations for both GRAIL (Spearman
p =-0.39, p =145 x 1077) and DAPPLE (p = -0.31, p = 1.15 x 107%)
networks. As intuition might lead us to believe, that loci that play a more
central role in the pathways of immune disease are more likely to impact
multiple diseases.

The 10 most connected Immunochip fine-mapping loci are shown in Table
4.5. Nine of these regions are associated to more than one disease, though
the most significantly connected region, the TNFSF/ locus, is only asso-
ciated with SLE. TNFSF/ (also called OX40L) is expressed by dendritic

cells and promotes Th2 differentiation and thus humoral immunity, and has



156 Chapter 4. Investigating IBD genetics using the Immunochip

Chrom:Pos GRAIL DAPPLE Genes Phenotypes
(MB) p-value p-value
1:171.4-171.6 | 3.61 x 107 | 0.23 TNFSF) SLE
1:7.6-8.1 8.32x 102 | 0.07 TNFRSF9 | CD, UC,
Coeliac
2:204.2-204.5 | 1.73 x 1071 | <0.002 ICOS, RA, AITD,
CD28, T1D,
CTLAY Coeliac
16:28.2-28.9 1.64 x 107 | <0.002 1L27, CD, T1D
NFATC2IP,
CD19
21:44.4-44.5 2.47 x 10718 | 0.44 ICOSLG CD, Coeliac
2:191.6-191.7 | 4.65 x 10718 | <0.002 STATY, SLE,
STAT1 RA,CD*,UCHY
1:67.4-67.7 9.97 x 107 | <0.002 IL12RB2, PS, CD,
IL23R ucC, AS,
PBC
20:44.0-44.2 | 1.11 x 1077 | 0.22 CD40 RA, CDe,
uce
3:161.1-161.2 | 3.03 x 10717 | <0.002 IL12A MS, Coeliac
12:54.6-55.1 3.10 x 10717 | <0.002 IL23A, PS, T1D
STAT2

Table 4.5: The top 10 most connected Immunochip fine-mapping regions, ac-
cording to a GRAIL network analysis. “New associations discovered in the IBD
Immunochip analysis.

been investigated as a drug target in allergic diseases (Wang and Liu, 2007).
If this gene were truly associated only to SLE, and not to other immune-
mediated diseases, it would suggest a good starting point for investigating
deep-rooted differences between immune diseases. However, we can also use
the Immunochip itself to investigate this possibility. The SLE-associated
SNP, rs1234315, shows a low but sub-genome-wide-significant signal in the
Crohn’s disease IIBDGC data (p = 2.03 x 1071), suggesting that this locus

is active in other diseases, but has too small an effect size to be reliably

detected in GWAS.



4.2. An overview of the Immunochip 157

Chrom:Pos GRAIL DAPPLE Genes” Phenotypes

(MB) p-value p-value

1:199.1-199.3 | 0.90 0.63 KIF21B MS, AS,
UucC, CD,
Coeliac

2:162.7-163.1 | 0.38 0.68° IFIH1 [gAD, T1D,
PS, CD¢,
uce

6:90.9-91.1 0.08 0.96 BACH?2 T1D,
Coeliac,
CD, UC*

Table 4.6: Immunochip fine-mapping regions associated with at least 3 pheno-
types, but with no evidence of connection via either DAPPLE or GRAIL. *New
associations discovered in the IBD Immunochip analysis. ’The stated genes are
the standard candidate genes given the in the literature *IFIHI is not included in
the protein network used by DAPPLE

As well as highlighting highly connected genes, this analysis can also
highlight loci that are associated to many different immune-mediated dis-
eases, but do not show evidence of network centrality. Table 4.6 shows three
loci that are associated with at least three diseases, but show p > 0.05 in
both the GRAIL and DAPPLE analyses. One of these genes, IFIH1, was not
present in the DAPPLE interaction dataset, so may represent a simple lack of
data. One of the others, KIF21B, was originally discovered in MS, and was
believed to act via its role in neuronal transport (McCauley et al., 2010).
However, associations to AS, CD, UC and Coeliac disease suggest a more
general role in immunity. All three of these regions are associated in IBD,
and two contain candidate genes identified by the IBD-specific gene prioriti-
sation approach described in section 4.4.3. IFIH1 shows a marginal GRAIL
association (p = 0.032), and KIF21B was prioritised by a gene co-expression

network approach.
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Figure 4.3: Numbers of IBD and control samples passing quality control, from
each country participating in this study. The numbers for the Immunochip samples
(numbers in blue) only include samples that are not also present in the GWAS
(numbers in red).

4.3 QC and association analysis of the [IBDGC

Immunochip dataset

4.3.1 The IIBDGC Immunochip dataset

As part of the International IBD Genetics Consortium (IIBDGC), research
groups from 15 countries (Figure 4.3) collected Crohn’s disease (CD) and
Ulcerative colitis (UC) samples and genotyped them using the Immunochip.
These data were combined with the GWAS meta-analysis collection to create
a large dataset for locus discovery.

The GWAS meta-analysis dataset consists of seven Crohn’s disease collec-

tions and eight ulcerative colitis collections with genome-wide SNP genotype
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Cohort Countries Chip Case / control (unique)
CD cohorts
BEL1 Belgium, ILMN317 | 513 / 884 (884)
France
BEL2 Belgium ILMN317 | 153 / 94 (94)
CEDARS USA ILMN317 | 835 / 2881 (1364)
CHOP USA, Canada, | ILMN550 | 1495 / 6090 (3054)
Italy, UK
GERMAN Germany ILMN550 | 480 / 1114 (573)
NIDDK USA, Canada | ILMN317 | 759 / 929 (462)
WTCCC UK AFFX500 | 1721 / 2935 (1612)
Total 5956 / 14927 (8043)
UC cohorts
CEDARS USA ILMN317 | 836 / 2928 (1566)
CHOP USA, Canada, | ILMN550 | 664 / 6091 (3038)
Italy, Scotland,
Canada
GERMANY Germany AFFX6 990 / 2915 (2383)
NIDDK1 USA, Canada | ILMN550 | 498 / 1070 (624)
NIDDK?2 USA, Canada | ILMN550 | 451 / 1428 (1420)
NORWEGIAN | Norway AFFX6 258 / 279 (279)
SWEDISH Sweden ILMN317 | 918 / 341 (341)
WTCCC UK AFFX6 2353 / 5412 (4076)
Total 6968 / 20464 (13727)

Table 4.7: GWAS cohorts, with country of origin, genotyping chip and size. Case
and control numbers are after QC, and the number in brackets in the number of
unique controls after duplicates between CD and UC have been removed.

data (Table 4.7). The CD cohorts contained a total of 6,299 cases and 15,148
controls, and the UC cohorts contained a total of 7,211 cases and 20,783 con-
trols (the control sets contain largely overlapping samples). Four different
chips were used: two produced by Affymetrix (the GeneChip Human Map-
ping 500K Array and the Genome-Wide Human SNP Array 6.0) and two
produced by Illumina (the HumanHap300 BeadChip and the HumanHap550
BeadChip). The majority of these samples were used in the published IIB-
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Center Nationality CD / UC / control
Bonn Germany 0/0/ 1494
Cedars Sinai USA 1156 / 822 / 0
Feinstein Institute | Australia 844 / 706 / 464
Canada 610 / 506 / 305
New Zealand 422 /420 / 0
Netherlands 140 / 157 / 0
USA 743 / 364 / 2288
Total 2759 / 2153 / 3057
Kiel Denmark 66 / 169 / 88
Germany 1062 / 261 / 1490
Ttaly 1273 / 595 / 272
Lithuania/Baltic | 129 / 304 / 269
New Zealand 260 / 0 / 457
Norway 122 /54 /0
Spain 264 / 0/ 282
Sweden 669 /0/0
Total 3845 / 1383 / 2858
Leuven Belgium 1434 / 783 / 721
Munich Germany 0/0/ 286
U of Pittsburgh Australia 0 /57 /62
Canada 0/25/20
Germany 0 /537 / 505
Netherlands 0/ 327 / 346
Sweden 0/232/315
USA 315 / 218 / 388
Total 315 / 1396 / 1636
U de Liege Belgium 1015 / 548 / 699
UMC Groningen | Slovenia 171 / 38 / 217
Netherlands 1116 / 366 / 989
Total 1287 / 404 / 1206
UVA UK 0/0 /2441
Sanger Institute UK 2952 / 3431 / 1579
Total 14763 / 10920 / 15977

Table 4.8: Immunochip cohorts, broken down by genotyping centre and country
of origin. Case and control numbers are after QC, and after samples that overlap
the GWAS cohorts have been removed.
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DGC meta-analyses (Franke et al., 2010; Anderson et al., 2011).

The Immunochip dataset consists of collections from 15 countries geno-
typed in 11 different genotyping centres (Table 4.8). Genotyping was per-
formed in 20 batches, with each centre processing between one and three
batches. A total of 60,828 samples were genotyped on the Immunochip,
comprising 20,076 CD cases, 15,307 UC cases and 25,445 controls. These
numbers include many samples that were also present in the GWAS cohorts,
which are to be used for fine mapping and not for locus discovery.

Overall, after QC and removing overlapping samples (see below), this
dataset has 20,700 CD cases, 17,865 UC cases and 37,747 controls. This
is the first time a large meta-analysis has analysed CD and UC together,
allowing very high power for variants shared across both phenotypes. For
instance, the dataset has an 80% power to detect common IBD associations
with an odds ratio greater than 1.06. It is also well-powered to detect low-
frequency variants (MAF of 1%) with an odds ratio of >1.35, and rare (MAF

= 0.1%) variants with an odds ratio of >2.3.

4.3.2 Genotyping, imputation and quality control

GWAS data

In addition to the quality control performed by individual studies before

submission, each GWAS study was subject to the following QC:

1. missing rate per SNP < 0.05
2. missing rate per individual < 0.02
3. heterozygosity per individual 4 0.2

4. missing rate per SNP < 0.02 (after sample removal)
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Figure 4.4: All GWAS samples plotted on the first two principal components,
coloured by study. Circles are cases, crosses controls

5. missing rate per SNP difference in cases and controls < 0.02
6. Hardy-Weinberg equilibrium (controls) P < 107¢

7. Hardy-Weinberg equilibrium (cases) P < 1071,

A set of 17,385 high-frequency SNPs (MAF > 5%) in linkage equilibrium
(r? < 0.05 for all SNP pairs) was generated. Plink was used to calculate
relatedness statistics (the estimated coefficient of relatedness ), and indi-
viduals with 7 > 0.2 to another sample were removed. Samples duplicated
between CD and UC control datasets were recorded: these samples are kept
in for single-phenotype tests, but removed for combined tests. Principal com-

ponent analysis was performed (Figure 4.4), and principal components that
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Figure 4.5: a) Principal component projection of Immunochip samples onto a)
continental axes fitted from HapMap samples and b) European axes fitted from
Immunochip controls

correlated with disease phenotype were recorded for use as covariates.
Imputation of untyped SNPs was performed within each study in batches
of 300 individuals. These batches were randomly drawn in order to keep
the same case-control ratio as in the total sample from that study. Imputa-
tion was performed with the CEU+TSI HapMap3 reference set (containing
1,252,901 polymorphic SNPs), using Beagle 3.13 with a chunk size of 10Mb

and default parameters.

Immunochip data

Because many of the variants on Immunochip do not meet the manufacturer’s
quality standards set for GWAS products, rigorous QC is essential. Further-
more, because samples with poor quality DNA or with other genome-wide
problems can adversely affect the genotype calls at high quality samples, I
performed a first stage of “coarse” QC on genotypes called using Illumina’s

GenomeStudio program. I exclude samples with >5% missing data, genome-
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wide heterozygosity outside a 95% confidence interval in each batch, samples
of non-European ancestry (via PCA, see below) or with abnormal mean in-
tensity values from further analysis.

For all remaining samples, I used the optiCall clustering program (Shah
et al., 2012) (v0.3.0) to call genotypes, with a no-call cutoff of 0.7 and HWE
blanking disabled. I identified duplicate and related samples (7 > 0.1) using
PLINK with the same set of SNPs used for PCA (details below for details),
and removed the duplicate or related sample with the higher missing data
rate. I used a set of 692 SNPs present on both the Immunochip and all four
GWAS chips to remove Immunochip samples that were also present in the
GWAS. I removed samples without a phenotype definition of Crohn’s disease,
ulcerative colitis or healthy control, and finally removed all samples with >
2% missing data in this improved call-set.

I performed SNP QC in this filtered dataset, removing SNPs with >2%
missing data or HWE p-value < 107! in controls. However, a relatively large
number of SNPs still showed poor clustering, driving many false positive
associations. To further ensure the quality of genotype calls in our analysis,
I selected 3,356 variants for manual inspection, including those with meta

analysis p<10~® which fulfilled at least one of the following criteria:

1. Cochran heterogeneity p < 0.01 between GWAS and Immunochip
(N=8T71)

2. lie outside fine-mapping regions known to be associated with immune-

mediated disease (N=797)
3. are one of the 3 most significantly associated SNPs in a region (N==851)

4. any SNP with p < 5x10™® which did not fit those criteria (N=195)
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5. random SNPs as a comparator (N=642)

I distributed intensity data for these SNPs to 16 members of the [IBDGC
for manual inspection. Included was a version of the manual inspection pro-
gram Evoker (Morris et al., 2010) optimised for multi-cohort inspection, and
a document describing the protocol for manual inspection. Each SNP was
inspected by three individuals, and was considered to have passed inspec-
tion if three individuals passed the SNP, or two passed it and one marked it
as a “Maybe”. 1015 SNPs were removed during this process. A further 29
SNPs had genotypes manually adjusted (blind to phenotype and association
statistics) to correct recoverable errors.

I used principal component analysis to identify ethnic outliers, and to
generate covariates to control for population stratification. To identify
outliers on the continental scale I constructed a reference set consisting
of 662 HapMap founder samples genotyped on the Illumina HumanlM,
the Affymetrix Human SNP Array 6.0, and the Illumina Omni2.5 for the
HapMap3 and 1000 Genomes Projects. This reference set was designed to
maximise overlap with the Immunochip, and has a total of 3,268,731 SNPs,
of which 83,689 are present on the Immunochip. I used PLINK to LD prune
the data such that no pair of SNPs had r? > 0.2, and I also removed GC/AT
SNPs, SNPs within known high LD regions (Price et al., 2008) and SNPs
with MAF < 5%. I projected the Immunochip samples on the principal
component axes generated using these 17,891 SNPs from the 662 reference
samples using the R package snpMatrix (Clayton and Leung, 2007). All sam-
ples that did not cluster with the European samples were excluded (Figure
4.5a).

To resolve within-Europe relationships, I performed PCA within the re-

maining Immunochip samples. LD pruning was performed within European
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Figure 4.6: QQ plots, A and Ajggg values for the CD, UC and IBD GWAS
analyses. Grey shapes show 95% confidence interval under the null.

controls (this was performed three times, to properly break up the LD in
fine-mapping regions), and SNPs present in high LD regions or with MAF
< 5% were removed, leaving a total of 19,111 SNPs. I generated principal
component axes within the controls, and projected the cases onto these axes
to generate PCs for all samples. The first four principal component axes
seemed to capture significant population structure (Figure 4.5b), and addi-
tion of components beyond the fourth as association covariates in a subset

of the Immunochip data did not further reduce the genomic inflation factor.

4.3.3 Association analyses

4.3.4 GWAS and Immunochip analyses

Three association scans were performed for both GWAS and Immunochip.
These included a CD analysis (Crohn’s disease vs controls), a UC analysis
(ulcerative colitis vs controls) and an IBD analysis (combined CD and UC
vs controls).

For the GWAS, the CD scan had a total of 5,956 QC+ cases and 14,927
QC+ controls, the UC scan had 6,968 cases and 20,464 controls, and the
IBD scan had 12,882 cases and 21,770 controls. For the IBD scan, controls
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Figure 4.7: QQ plots and X values for the CD, UC and IBD Immunochip analyses.
Grey shapes show 95% confidence interval under the null.

that overlapped between the CD and UC control cohorts were removed from
whichever dataset had a greater excess of controls. Association testing was
carried out in PLINK, using the dosage data from the imputation and using
10, 7, 15 principal components for CD, UC, IBD respectively as covariates (all
PCs that correlated with case-control status). The CD, UC and IBD scans
had genomic inflation (Age) values of 1.137, 1.129, and 1.169 respectively
(Figure 4.6). These inflation figures are substantially lower than the figures
for the previous CD and UC meta-analyses.

For the Immunochip analysis, the CD, UC and IBD scans all used the
entire control dataset. The CD scan had a total of 14,763 QC+ cases, the UC
scan had 10,920 cases, the IBD scan had 25,683 cases, and all scans used the
15,977 QC+H controls. I performed association testing using additive logis-
tic regression in PLINK conditioned on the first four principal components.
Test statistic inflation was computed from a set of 3120 SNPs chosen based
on GWAS of schizophrenia, psychosis and reading/mathematics ability. Ge-
nomic inflation factors were relatively low, given the large sample size and
presence of polygenic risk: Agc., = 1.353, Agoye = 1.154, Age,np, = 1.234
(Figure 4.7).

For comparison, I also performed an association test on all IBD samples
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using the Cochran-Mantel-Haenszel method to stratify by country of origin
of the samples. This is one of the standard methods used to analyse GWAS
replication data, where population stratification correction via principal com-
ponents are usually not available. The genomic inflation value for the IBD
all analysis was A\gc,,, = 2.00, showing that without the genome-wide SNP
data on the Immunochip this replication analysis would have shown severe
inflation.

This also has some worrying implications for the GWAS field, as it sug-
gests that most standard international replication datasets will suffer from
test statistic inflation. This in turn could mean that combined GWAS-
replication p-values may be too liberal. In the future, it seems prudent that
large replication analyses should include a number of ancestry-informative
SNPs to control for stratification. Exactly how many such SNPs would be
required to reduce inflation is unknown, and the Immunochip provides a

platform to investigate this.

4.3.5 Deep replication meta-analysis

A combined analysis was performed using both the GWAS and the Im-
munochip association results comprising 20,700 Crohn’s disease, 17,865 ul-
cerative colitis cases and 37,747 healthy controls.

All SNPs in GWAS association results with p < 0.01 in the CD, UC
or IBD scans were selected for replication in the Immunochip dataset (a
total of 25,075 SNPs). A fixed-effect meta-analysis was performed using
odds ratios and standard errors from the GWAS hit and the Immunochip
tag with the highest r? to the hit SNP, providing a tag with 72 > 0.4 was
available. The Cochran heterogeneity p-value was also calculated (none of

the final association signals showed significant heterogeneity after correcting
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for multiple testing).

SNPs with p < 5 x 1078 in any of the three phenotypes in this analysis
were combined into clumps if they had r? > 0.1. SNPs within these clumps
were tested for evidence of association independent of the strongest signal
in the clump. Because the tag SNP meta-analysis approach makes stan-
dard methods for conditional analysis impossible to carry out, so we used an

approximate conditional Z-score

Zi = Zi — i it Znit (4.1)

Where Z; is the Z score of the SNP being tested, Z,;; is the Z score of the
strongest signal in the clump, and r; ;; is the correlation coefficient between
the strongest signal and the SNP being tested. If P(Z! > 0) < 5 x 1078 then
this clump is considered to have a secondary signal, and the SNP with the
Z! largest in magnitude is recorded as a secondary signal in this clump. All
other SNPs in the clump are then tested for a tertiary signal independent of

the first two, using

ZZ, =7 — Ti,hz‘chit - T’i72ndZ2nd (42)

We do not test for additional signals after the third. Theoretically, this
could be extended to an arbitrary number of signals, but the approximation

will become less accurate as additional signals are tested for.

This approach yielded 193 genome-wide significant independent signals of
association. None of these signals had significant heterogeneity of effect size,
and all had their Immunochip intensity cluster plots manually inspected to

ensure that they were well clustered.
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Figure 4.8: The results of a null simulation of association clumping. The x-axis
shows varying thresholds of proximity for two statistically independent signals
to be considered in the same locus. The y-axis shows the number of loci for a
particular threshold, from 193 (the total number of independent signals) at the
left when no signals are combined to fewer than 50 when even extremely distant
signals 100Mb apart are combined. The grey shaded area shows the 95% confidence
interval from simulations of 193 random signals, and the black line shows the true
number of loci for a given clumping value. The red line is 500kb, the actual
clumping distance we used.

4.3.6 Combining signals into loci

The large number of independent signals (193) makes categorising them into
functionally separate loci problematic. We conventionally define signals as
coming from the same locus if their lead SNPs lie within a certain physical or
genetic distance of each other. However if this physical distance parameter is
too large functionally independent signals that are adjacent by chance may be
incorrectly combined. Conversely, selecting too small a distance parameter

could cause variants that act relatively proximately on the same gene to be
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split into independent loci.

To test the effect of this distance parameter on classifying signals into
loci, I performed a null simulation. I selected randomly from the PCA SNPs
to simulate null signals, and examined what proportion of signals are incor-
rectly merged together for a given distance parameter value. Based on this, I
decided to define a locus as a 500kb unit: 250kb on either side of the hit SNP.
This results in between 95% and 99% of null loci being correctly separated
(Figure 4.8).

Each independent signal had a region defined around it, which was 250kb
on either side of the hit SNP, or the extent of LD (defined as the positions
of the furthest up-and-downstream variants with 72 > 0.5 to the hit SNP).
Overlapping regions were merged together, providing that they were associ-
ated to compatible phenotypes under the likelihood analysis (see below); i.e.
loci were not merged if one was uniquely associated with CD, and the other
uniquely associated with UC. The final merged regions were defined as loci,
with their extents being the maximum extent of their component signals. A

total of 163 independent loci were thus defined (Table 4.9).

4.3.7 Crohn’s disease/Ulcerative colitis likelihood modelling

We used a likelihood modelling approach to classify signals into four cate-
gories according to their relative strength of association to CD and UC. We
used a multinomial logistic regression model with additive log-odds ratio pa-
rameters Scp and Syc. The model was fitted to the Immunochip genotypes
using the mlogit package in R.

We fit this model with four sets of parameter constraints:

1. CD-specific model: Bye = 0 (i.e. UC cases and controls have the same

frequency), Bep fitted by maximum likelihood
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2. UC-specific model: Scp = 0, Bye fitted by maximum likelihood

3. IBD unsaturated (same-effect size) model: Bop = Byc = Bisp (ie.
frequency is the same in CD and UC cases), f;pp fitted by maximum

likelihood

4. IBD saturated (different effect sizes) model: Scp and Sye both fitted

by maximum likelihood

Note that models 1-3 are all constrained versions (1 d.f.) of model 4 (2
d.f.).

We calculated likelihoods for each model, and performed a likelihood ratio
test of each of models 1-3 against model 4. If the likelihood ratio test had p
< 0.05 for all 3 models (the 2 d.f. model is nominally significantly a better
fit than any of the 1 d.f. models), we classified the signal as “saturated” (i.e.
associated to both CD and UC, but with evidence of different effect sizes).
Otherwise, we classified the signal according to which of the first three models
had the largest likelihood. Note that being classified as IBD unsaturated
should be interpreted as “associated to both CD and UC, without significance
evidence of differing effect sizes”.

In Table 4.9 below, the “IBD” section contains all loci where the main
signal was classified as IBD unsaturated or IBD saturated. An exception
was made for the CD associations at PTPN22 and NOD2, where the correct
model was “IBD saturated”, as there were significant UC associations that
went in the opposite direction to the CD effect.

Even within these classifications there is a significant variation in the
balance of CD and UC effect sizes (Figure 4.9). To capture this we also used
polar-transformed log odds ratios as a continuous measure of CD vs UC effect

size balance. This is defined as # = atan2(log(ORCD), log(ORUC)). Large
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values of 6 correspond to associations with a stronger UC component, smaller

values correspond to a stronger CD component.

4.3.8 Comparison of this locus list to previous CD and UC

lists

Because this study has access to raw genotype data from both CD and UC for
the first time, it has allowed us to clarify several aspects of the 99 previously

reported associations:

e While previously suspected, we have confirmed that the associations in
the MHC are distinct for CD and UC, and therefore should be split into

two phenotype specific associations, rather than a single IBD locus.

e Conversely our improved imputation has re-localised the CD associa-
tion previously reported as VAMPS to be the same effect as the adja-
cent previous UC association to TNFRSF9, making this a single IBD

locus.

e Two previously independent associations on chromosome 2 near 102Mb
(one CD, one UC) have both been shown to be IBD, and accordingly
have been merged into independent effects in a single IBD locus. Sim-
ilarly, a previous CD SNP (chromosome 2 near 198Mb), which is now

associated to UC as well, was incorporated into a new nearby UC locus.

e Five previous associations (Chr2@198Mb, Chr5@36Mb, Chr6@3Mb,
Chr6@44Mb, Chr13@42Mb) are no longer genome-wide significant. In
four cases, our improved PCA-corrected analysis is >2 orders of magni-
tude less significant than the previous country-stratified analysis, sug-

gesting that these associations may have been driven in part by uncor-
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rected population structure. In the final instance the key SNP failed

Immunochip design.

Thus, from 99 previously reported loci, one was split, three were merged
and five were lost, leaving 92 established and 71 novel loci. This highlights
both the overall robustness of our previous analyses as well as potential pit-
falls in small-scale replication genotyping, for which correction for population
stratification is difficult.

We also compared the total phenotypic variance of CD and UC explained
by our loci compared to previously published estimates. In ulcerative colitis
we improved from 3.9% of phenotypic variance explained by known loci to
7.0% explained by our 193 signals. For Crohn’s disease we improved from
7.6% to 12.0%. Two additional comments are necessary: first, I have decided
here to report phenotypic variance explained, rather than heritability, due
to the difficulties in measuring narrow-sense heritability discussed in Chap-
ter 2. Second, the odds ratios estimated from the Immunochip are smaller
than previous estimates for several key loci in CD, including NOD2, IL23R
and ATG16L1. This difference was not explained by an abnormal degree of
stratification or differential ancestry at these sites. Our new odds ratios are
estimated in replication samples in this project, so this effect may reflect less

severe disease than the samples previously collected for GWAS.
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Table 4.9: The 163 inflammatory bowel disease loci, split into Crohn’s Disease
specific, Ulcerative Colitis specific, and shared across Inflammatory Bowel Disease.
Key genes are those identified by one of the candidate gene prioritisation analyses
described in the text, and bold genes are identified by more than one bioinformatic
approach. Loci shaded grey are newly identified in this study. SNP IDs marked *
denote the presence of a second genome-wide significant alternative signal at this
locus, and ** denotes the presence of two or more additional signals. Odds ratios
marked with a tshow evidence of heterogeneity of effect size between CD and UC.

Chrom:Pos SNP P-value RAF | OR Key Genes (+N
(Mb) additional in lo-
cus)

Crohn’s Disease

1:78.37-78.87 rs17391694 2.96 x 1079 0.889 | 1.134 | (5)

1:114.05-114.55 | rs6679677 2.03 x 10~ | 0.907 | 1.1961| PTPN22,

DCLRE1B,

(7)
1:120.2-120.7 rs3897478 1.97 x 107 | 0.891 | 1.161 | ADAMS0, (5)
1:172.6-173.1 rs9286879 5.53x 10722 | 0.249 | 1.125 | FASLG, TN-

FSF18, (0)
2:27.38-27.88 rs1728918 4.86 x 10716 | 0.299 | 1.123 | UCN, (23)
2:62.3-62.8 rs10865331 | 9.77 x 1071 | 0.396 | 1.098 | (3)

2:230.84-231.34 rs6716753 1.17 x 10716 | 0.196 | 1.134 | SP140, (5)

2:233.87-234.42 | 1312994997 | 4.14 x 10-7° | 0.523 | 1.233 | ATG16L1,
INPP5D, (7)

4:48.11-48.61 16837335 1.75 x 10~8 | 0.647 | 1.086 | TXK, TEC,
SLC10A4, (3)

4:102.61-103.11 rs13126505 1.84 x 10712 | 0.096 | 1.172 | (1)

5:55.18-55.68 rs10065637 3.68 x 10712 | 0.773 | 1.123 | IL6ST, IL3IRA,
(1)
5:72.29-72.79 rs7702331 5.63 x 10710 | 0.621 | 1.088 | (4)
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5:173.09-173.59
6:21.17-21.67

6:31.02-31.52

6:127.2-127.7
6:127.99-128.49
6:159.24-159.74
7:26.63-27.13

7:27.92-28.42

8:90.62-91.12
8:129.31-129.81
13:44.2-44.7

15:38.64-39.14

16:50.31-51

17:25.59-26.09

19:0.87-1.37

19:46.6-47.1

19:48.95-49.45

21:34.52-35.02

rs17695092
1512663356

159264942

rs9491697
1513204742
rs212388
rs10486483

rs864745

rs7015630
rs6651252
rs3764147

rs16967103

rs2066847**

152945412

rs2024092

rs4802307

rsb16246

rs2284553

4.68 x 1079
4.01 x 10712

4.96 x 10728

3.79 x 10710
8.38 x 1071°
3.04 x 10714
3.48 x 1078

3.65 x 1079

1.42 x 10~8
1.45 x 10~16
2.19 x 102!

3.88 x 1079

5.86 x 107299

8.68 x 10717

8.26 x 10722

2x 10710

1x 10715

2.14 x 10716

0.703

0.533

0.378

0.439

0.124

0.410

0.247

0.497

0.739

0.865

0.248

0.203

0.024

0.587

0.215

0.706

0.483

0.599

1.095
1.095

1.145

1.077
1.173
1.105
1.089

1.087

1.075
1.185
1.155

1.088

3.103t

1.137

1.156

1.099

1.107

1.123
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CPEBJ, (2)

(3)

HLA-C,
PSORS1CI,
NFKBILI, (19)

CREBS,
(1)

RIPK?2, (4)
(0)
LACCI, (3)

JAZF1,

RASGRP1,
SPREDI, (2)

NOD2, ADCY7,

(5)
LGALS9, NOS2,
(3)
GPX/, HMHAL,
(20)
(9)
DBP,  SPHK?,
1ZUMO1, FUT?,
(22)
IFNGR2, IF-

NAR1, IFNAR?,
IL10RB, (9)
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Ulcerative Colitis

1:2.25-2.75

1:19.88-20.42
1:199.84-200.34

2:198.18-199.12

2:199.27-200.12

3:52.8-53.3

4:103.26-103.76

5:0.34-0.84
5:134.19-134.69

6:32.33-32.86

7:2.53-3.03

7:26.97-27.47
7:107.18-107.72

7:128.32-128.82

11:95.77-96.27

rs10797432

rs6426833**
rs2816958

rs1016883

rs17229285*

rs9847710

rs3774959

rs11739663
rs254560

rs6927022

rs798502

rsd722672
rs4380874*

rs4728142

rs483905

2.62 x 10712

2.39 x 1068
1.98 x 10~17

2.87 x 1078

1.73x 10713

1.05 x 1078

3.66 x 10712

1.81 x 1078
2.55 x 109

4.71x 107133

6.09 x 10~17

2.06 x 1078
2.07 x 10726

4.37 x 10714

1.21 x 1078

0.522

0.542
0.887

0.817

0.496

0.416

0.358

0.760
0.397

0.535

0.709

0.183
0.405

0.444

0.292

1.078

1.265

1.23

1.1

1.117

1.064

1.118

1.071

1.056

1.444

1.127

1.091

1.137

1.104

1.056

TNFRSF14,
MMEL1, PLCH?,

(8)

(9)

(3)
RFTNY,
(7)

(0)
PRKCD,
(8)
NFKBI,
MANBA, (2)

PLCL1,

ITIH),

SLCIAS3, (8)

(6)
HLA-DQB1,
DRB1, -DQAl
(13)

CARDI11,
GNA12, TTYHS,

(4)
(14)
DLD, (9)

IRF5,  TNPOS3,
TSPANS33, (11)

JRKL,
(2)

MAML?,
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11:114.13-114.63 | rs561722 515x 10717 | 0.663 | 1.12 | FAMS55A,
FAMS55D, (5)

15:41.29-41.81 | 1s28374715 | 2.43x 1078 | 0.738 | 1.082 | ITPKA,  NDU-
FAF1, NUSAP1

(8)
16:30.22-30.72 rs11150589 6.04 x 1071° | 0.463 | 1.09 ITGAL, (20)
16:68.33-68.83 rs1728785 3.71x 1078 0.767 | 1.075 | ZFP90, (6)
17:70.39-70.89 rs7210086 1.89 x 107° 0.797 | 1.111 | (3)
19:46.87-47.37 rs1126510 1.55 x 107 0.363 | 1.075 | CALMS3, (14)

20:33.55-34.05 | rs6088765 | 2.21 x 1078 | 0.437 | 1.079 | PROCR, UQCC,
CEP250, (8)

20:42.81-43.31 156017342 1.43 x 10743 | 0.530 | 1.228 | ADA, HNFJA, (9)

Inflammatory Bowel Disease

1:0.99-1.49 rs12103 7.66 x 10~ | 0.182| 1.099 | TNFRSF18, TN-
FRSF/, (30)

1:7.77-8.27 135675666 | 1.12x 1071° | 0.838 | 1.112 | TNFRSFY, (6)

1:22.45-22.95 112568930 | 1.26 x 10717 | 0.821 | 1.0951| (3)

1:67.4-67.95 rs11209026%* | 8.12x 107161 | 0.933 | 2.013t| IL23R, IL12RB2,
(4)

1:70.74-71.24 152651244 229 x 1078 | 0.599 | 1.015t| (3)

1:151.54-152.04 | rs4845604 3.52x 10716 | 0.857 | 1.1441| RORC,(14)

1:155.22-156.12 | rs670523 579 x 10711 | 0.324 | 1.06t | UBQLNJ,  ITt,
STO1,(28)
1:160.6-161.1 rs4656958 6.8 x 1079 0.686 | 1.061 | CD48, SLAMF1I,

ITLNI, CD2//,
(12)
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1:161.22-161.72

1:197.33-197.87

1:200.62-201.12

1:206.68-207.18

2:24.87-25.37

2:28.36-28.86

2:43.56-44.06

2:60.95-61.45

2:65.42-65.92

2:102.41-103.31

2:162.85-163.35

2:191.67-192.17

2:218.89-219.39

2:241.31-241.83

3:18.51-19.01

151801274

rs2488389
rs7554511

rs3024505

rs6545800
rs925255
rs10495903

rs7608910

rs6740462

rs917997*

rs2111485

rs1517352

rs2382817

rs3749171%*

rs4256159

2.12 x 10738

8.45 x 10713
1.24 x 10732

6.66 x 10~42

6.14 x 10716
2.67 x 10710
8.03 x 10712

8.65 x 10732

2.35x 1078

3.12x 10720

1.93 x 1078

3.28 x 10~ 11

3.7x 10712

3.07 x 1072

9x 1071

0.509

0.220

0.725

0.160

0.445

0.557

0.130

0.394

0.739

0.231

0.404

0.600

0.408

0.167

0.140

1.124%

1.115
1.164

1.2087

1.109%
1.092f
1.0861

1.138

1.081

1.103

1.066

1.077

1.073

1.135¢

1.107¢
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FCGR2A,
FCGR2B,
FCGR3A,
HSPAG6 (11)
Clorf53,(2)
KIF21B,(6)

IL10, 1L 20,
IL19, IL24, (7)
ADCYS, (6)
FOSL2, BRE, (1)
(5)

REL,  C2rf1),
KIAA1841,
AHSA2, (6)
SPRED?, (1)

ILIR2, IL1SRAP,
IL1S8R1,  ILIR{,

(5)

IFIHI, (5)
STATI,
(2)
SLC11A1,

CXCR2,
CXCR1, PNKD,

(11)
GPR35, (12)

(0)

STATY,
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3:47.96-49.96

4:74.6-75.1

4:122.91-123.53

5:10.44-10.94

5:40.02-40.74

5:95.99-96.49

5:129.75-130.26

5:130.36-132.01

5:141.26-141.76

5:150.02-150.52

5:158.53-159.07

5:176.54-177.04

6:14.46-14.96

6:20.47-21.06

6:90.71-91.21

6:106.18-106.68

Chapter 4. Investigating IBD genetics using the Immunochip

rs3197999**

rs2472649

rs7657746
rs2930047
rs11742570**

151363907

rs4836519

rs2188962*

rs6863411

rs11741861

rs6871626**
rs12654812
rs17119
rs9358372*
rs1847472

rs6568421

1.01 x 10~%7

2.57 x 108

2.76 x 10713
1.03 x 1078
1.81 x 10~82

5.62 x 10713

4.24 x 10710

1.35 x 10752

3.59 x 10714

2.94 x 10737

1.43 x 10742
1.68 x 108
3.08 x 10~
8.66 x 10~14
1.57 x 10710

8.24 x 10~20

0.296

0.824

0.753

0.382

0.605

0.411

0.768

0.425

0.630

0.093

0.337
0.335
0.786
0.379
0.655

0.301

1.18

1.095¢

1.116
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1.198f

1.068

1.072f
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1.249%

1.181%
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1.108¢
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(7)

IL2, IL21, (2)

ILS,

DAP, (2)
PTGER/, (1)
ERAP2, ERAPI,
LNPEP, (2)
(1)

IRF1,
CSF2,

SLC22A4,
(14)

IL13,

SPRY/,
(5)
TNIP1,  IRGM,
ZNF300P1, (8)

NDFIP1,

IL12B, (3)

DOKS3, (17)
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6:111.55-112.09

6:137.75-138.25

6:143.65-144.15

6:167.12-167.62

7:49.94-50.55
7:98.5-99
7:100.06-100.61
7:116.64-117.14
8:126.28-126.78
8:130.37-130.87
9:4.73-5.23
9:93.67-94.17

9:117.3-117.89

9:138.99-139.64

10:5.83-6.33

10:30.47-30.97
10:35.04-35.55
10:59.74-60.24
10:64.12-64.89

10:75.42-75.92

rs3851228

rs6920220
rs12199775

rs1819333

rs1456896*
rs9297145
rs1734907
rs38904
rs921720
rs1991866
rs10758669
rs4743820

rs4246905**

rs10781499*

rs12722515

151042058
rs11010067
rs2790216
rs10761659**

rs2227564

1.08 x 10~13

1.4 x 10~
1.99 x 10~8

6.76 x 10~2

7.28 x 1071°
8.21 x 10712
1.67 x 10713
1.31 x 108
8.3 x 10720

1.65 x 10~?
7.88 x 1074
3.6 x 1079

2.8 x 10732

4.38 x 10726

3.76 x 10~190

5.93 x 10~
2.49 x 1072
8.07 x 107°

6.37 x 10746

6.75 x 10719

0.073

0.206

0.929

0.523

0.688
0.265
0.149
0.532
0.609
0.422
0.349
0.702

0.709

0.412

0.849

0.592
0.346
0.778
0.543

0.770

1.153

1.1021
1.129

1.081%

1.088
1.082
1.114%
1.0541
1.081%
1.054
1.174
1.0561

1.142

1.188¢

1.1021

1.075%
1.115¢
1.066

1.1667

1.082¢

TRAF3IP2,
FYN, REVSL, (2)

TNFAIP3 (1)
PHACTR2, (5)

CCRS,
RPS6KA2,
RNASET?, (3)

ZPBP, IKZF1, (4)
SMURF1, (6)

EPO, (21)

JAK2, (4)
NFIL3, (2)
TNFSFS,
FSF15,

(2)
CARDY9, PM-

PCA, SDCCAGS,
(19)

TN-
TNC,

IL2RA,
IL15RA, (6)

MAPS3KS, (3)
CREM, (3)
CISD1, IPMK, (2)
(3)

(13)
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10:80.78-81.28

10:82-82.5

10:94.18-94.68
10:101.03-101.53

11:1.62-2.12

11:58.08-58.58

11:60.52-61.02

11:61.31-61.81

11:63.85-64.39

11:65.4-65.9

11:76.04-76.54
11:86.87-87.37
11:118.49-118.99
12:12.4-12.9
12:40.5-41.03
12:47.95-48.45

12:68.24-68.74

13:27.27-27.77
13:40.45-41.26

13:99.7-100.2

rs1250546

156586030

rs7911264
rs4409764

rs907611

rs10896794

rs11230563

154246215

rs559928

rs2231884

rs2155219
156592362
15630923
rs11612508
rs11564258*
rs11168249

rs7134599

rs17085007
rs941823**

159557195

3.15 x 1018

9.24 x 10716

2.98 x 108
1.03 x 10754

2.7 x 1010

6.8 x 10710

9.03 x 10713

1.93 x 10715

4.19x 1071

2.91 x 10710

4.24 x 10736
2.32x 1078
7.07 x 107
1.06 x 10~8
6.38 x 102
7.78 x 107

8.51 x 10732

2.79 x 10~
2.07x 10714

237 x 1074

0.604

0.847

0.519
0.491

0.315

0.762

0.654

0.338

0.821

0.157

0.509
0.248
0.846
0.267
0.025
0.467

0.378

0.183
0.758

0.772

1.0961

1.115%

1.066
1.182

1.068

1.08

1.085

1.079%

1.101

1.083t

1.151%
1.083

1.074%
1.058f
1.334%
1.054%

1.0961

1.1061
1.071%

1.112
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FADS2, (12)
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RPS6KA/,(20)
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CTSW, SNX32,
(22)

(5)

(1)

CXCRS5, (17)

LOH12CR1, (8)
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1L22, (1)
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GPR183,
GPR18,(6)
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14:69.02-69.52 rs194749 2.7x 1071% 1 0.226 | 1.0751| ZFP36L1, (4)
14:75.45-75.95 rs4899554 2.71 x 107% | 0.819 | 1.083t| FOS, MLHS3, (6)
14:88.22-88.72 rs8005161 2.35x 107 | 0.089 | 1.153 | GPR65, GALC,
(1)

15:67.18-67.68 1517293632 | 5.97 x 10716 | 0.235 | 1.067| SMADS, (2)

15:90.92-91.42 rs7495132 9.48 x 10711 | 0.891 | 1.134 | CRTCS3, (3)

16:11.12-11.95 | rs529866* 1.73x 10716 | 0.803 | 1.1241| SOCS1, LITAF,
RMI2, (10)

16:23.61-24.11 rs7404095 9.68 x 10719 | 0.572 | 1.06 PRKCB, (5)

16:28.26-28.93 | 1526528 9.65x 10722 | 0.451 | 1.0991| RABEP2,  IL27,
EIF3C, SULT1A1,
(11)

16:85.75-86.25 rs10521318 1.41 x 107° 0.915 | 1.1551| IRFS, (4)

17:32.34-32.84 | 1s3091316 | 1.22 x 10726 | 0.722 | 1.122| CCL13, CCL2,
CCL11, (4)

17:37.66-38.16 | 1s12946510 | 4.1 x 10738 | 0.465 | 1.157 | IKZF3,  ZPBP2,
GSDMB, OR-
MDL3, (13)

17:40.28-40.78 | 1512942547 | 551 x 10722 | 0.580 | 1.103t| STAT3, STAT5B,
STAT5A, (13)

17:57.71-58.21 | rs1292053 | 8.85 x 10713 | 0.446 | 1.076{| TUBDI,
RPS6KBI, (9)

18:12.55-13.05 rs1893217 3.05 x 10726 | 0.157 | 1.171f| (6)
18:46.14-46.64 rs7240004 1.31 x 107° 0.616 | 1.057| SMADY, (2)
18:67.28-67.78 rs727088 4.65 x 1079 0.484 | 1.077 | CD226, (2)

19:10.22-10.76 | 1s11879191% | 2.04 x 108 | 0.797 | 1.136 | TYK2, PPAN-
P2RY11, ICAMI,
(25)

19:33.48-33.98 rs17694108 5.85x 107 | 0.282 | 1.1 CEBPG, (8)
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19:55.13-55.63 | 1s11672983 | 6.5 x 10~'! | 0.392 | 1.087 | NLRP7, NLRP2,
KIR2DL1,
LILRBJ, (15)

20:30.47-31.03 rs6142618 6.05 x 10719 | 0.564 | 1.072{| HCK, (10)
20:31.12-31.62 rs4911259 1.2x107° 0.383 | 1.075 | DNMT3B, (8)

20:44.49-44.99 | rs1569723 | 9.95 x 1074 | 0.259 | 1.0911| CD40,  MMP9,
PLTP, (11)

20:48.7-49.2 15913678 4.59 x 1078 0.662 | 1.056 | CEBPB, (5)

20:57.57-58.07 | rs259964 1.01 x 10712 | 0.464 | 1.085 | ZNF831, CTSZ,
(5)
20:62.09-62.59 | 16062504 | 1.09 x 10~23 | 0.684 | 1.104 | TNFRSF6B,
LIME1,
SLC2A4RG,
(24)

21:16.56-17.06 152823286 9.28 x 10730 | 0.708 | 1.1571| (0)
21:40.21-40.71 1s2836878 4.62x 10748 | 0.733 | 1.18% | (3)
21:45.37-45.87 157282490 2.35x 10726 | 0.391 | 1.105 | ICOSLG, (9)

22:21.67-22.17 rs2266959 1.39 x 10716 | 0.186 | 1.105 | MAPK1, YDJC,

UBE2LS3,
RIMBPS, (9)

22:30.12-30.73 | rs2412970 | 2.7x 1074 | 0.457 | 1.08 | LIF, 0SM,
MTMR3, (8)

22:39.4-39.97 rs2413583% | 4.4 x 10733 | 0.833 | 1.209f| ATF, TABI,

APOBECS3G, (16)
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Figure 4.9: The IBD genome. A) The 163 IBD loci identified in this study.
Each bar, ordered by genomic position, represents an independent locus, and the
width of the bar is proportional to the variance explained by that locus in CD and
UC. Bars are connected together if they are identified as being associated with both
phenotypes. Loci are labelled if they explain more than 1% of the total variance
explained by all loci for that phenotype. B) The 193 independent signals, plotted
by total IBD odds ratio and phenotype specificity (measured by the odds ratio
of CD relative to UC), and coloured by their IBD phenotype classification from
Table 1. C) Number of overlapping IBD loci with other immune-mediated diseases
(IMD), leprosy, and Mendelian primary immunodeficiencies (PID). Within PID,
we highlight Mendelian susceptibility to mycobacterial disease (MSMD).

4.4 Biological and bioinformatic interpretation of

163 IBD loci

Our meta-analysis of the GWAS and Immunochip data identified 193 statis-
tically independent signals of association at genome-wide significance (P < 5

x 1078) in at least one of the three phenotypes (CD, UC, IBD). These signals
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were merged into 163 regions, of which 71 have never been reported before
(Table 4.9). This is more loci than has ever been recorded for a complex
disease, and the number of loci, and the large number of genes they contain,
make a locus-by-locus interpretation difficult. To go from a list of regions to a
set of specific biological hypotheses we have to use computational techniques,
and make use of external datasets.

In this section I will discuss a number of ways in which this can be
achieved, starting with a brief overview of the IBD loci. I will go on to
use genetic data from other disease loci (both complex and Mendelian) to
place IBD genetics in the context of other immune diseases. Next I will de-
scribe a range of methods for identifying candidate causal genes within the
identified loci using gene networks and functional information. I will then
describe a detailed analysis of the identified candidate genes in terms of Gene
Ontology (GO) terms and canonical pathways, followed by an analysis of the
IBD loci in the context of natural selection. Finally, I will describe a number
of functional analyses based on gene expression data carried out by other

members of the IIBDGC Immunochip analysis group.

4.4.1 Global patterns in the “IBD genome”

A traditional Manhattan plot of this study does not provide much informa-
tion, due to the large number of peaks and high variation in significance
between them. Instead, I have developed an alternative visualisation, which
[ call the “Belgravia plot” (by analogy with the flat, regular Regency terraces
in Belgravia, London). This plot (Figure 4.9A) shows the relative contribu-
tion of each locus to the total variance explained in UC and CD using width,
rather than height. This gives us an intuitive overview of the importance of

the global structure of IBD. For instance, CD is more dominated by the two
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major loci (NOD2 and IL23R), with UC having a more even distribution.

The likelihood-based model selection analysis described in Section 4.3.7
gives us information on the global level of genetic sharing between the two
IBD phenotypes. The vast majority of loci (110) are associated with both
disease phenotypes, of which 62 have an indistinguishable effect size in UC
and CD, while 48 show evidence of heterogeneous effects (highlighted in Table
4.9). Of the remaining loci, 30 are classified as specific for CD and 23 for
UC, but notably, 43 of these 53 show the same direction of effect in the non-
associated disease (overall P = 2.8 x 107°), suggesting that only a few of the
loci may be truly disease specific.

While likelihood-based approaches for the classification of IBD loci are
instructive, it should be noted that there is continuous variability in the CD-
UC balance of effect sizes among loci (Figure 4.9B). While locus sharing is
almost exclusively in the same direction, risk alleles at two CD loci, PTPN22
and NODZ2, show significant (P < 0.005) protective effects in UC, highlighting
them as particularly informative about biological differences between these

related diseases.

4.4.2 |BD genetics in the context of autoimmunity and infec-
tion

To place the IBD loci in the context of other immune-related diseases, I
generated lists of associations with other immune-related disease. I included
complex autoimmune and immune-mediated and diseases (IMD), and auto-
somal dominant or recessive primary immunodeficiencies (PID).

I took autosomal dominant and recessive genes identified as causing PID
from Notarangelo et al. (2009). Genes that lie within 250kb of each other

were merged together into regions, giving 135 genes across 121 independent



188 Chapter 4. Investigating IBD genetics using the Immunochip

Disease | Locus | Fold- Enrichment | 95% CI P-value
overlap | enrichment | OR

PS 14 13.5 14.71 8.5-25.5 | 4.15 x 10712
AS 8 12.56 13.18 6.5-26.8 | 3.22 x 107"
AD® 3 12.1 12.32 3.9-38.6 | 0.002

PBC 13 10.99 11.88 6.7-21.0 | 3.12x 10710
PSC? 1 10.93 11.00 1.5-78.6 | 0.085

RA 12 10.92 11.74 6.5-21.1 | 1.64 x 107°
Celiac 16 10.57 11.64 7.0-19.5 | 4.56 x 1072
T1D 20 9.99 11.28 7.1-19.0 | 2.35x 107
SLE 12 9.75 10.47 5.8-18.9 | 5.87 x 107°
All AT 66 8.62 13.94 10.2-19.1 | 5.15 x 10~*
MS 17 8.19 9.06 5.5-15.0 | 5.11 x 10~*
Asthma | 7 7.61 7.91 3.7-16.9 | 4.90 x 1073
All PID | 20 4.85 5.42 3.4-8.7 8.52 x 107°

Table 4.10: Enrichment in overlap between IBD loci and loci for other immune-
mediated diseases. The enrichment OR is measured on the logistic scale (as de-
scribed in section 4.4.4). “Atopic dermititus. *Primary sclerosing cholangitis

regions. I took associated regions for the IMD list from the NHGRI GWAS
catalogue, and included the following diseases: Primary sclerosing cholangi-
tis, primary biliary cirrhosis, rheumatoid arthritis, type 1 diabetes, multiple
sclerosis, celiac disease, atopic dermatitis, psoriasis, ankylosing spondylitis,
asthma and systemic lupus erythematosus. All SNPs in the catalogue with p
< 5 x 107® were included. As with the IBD loci, I defined a region as 250kb
on either side of the hit SNP, and overlapping regions were merged together
into loci. This generated a total of 156 independent IMD loci. I assessed
overlap between lists (IBD, PID and IMD) using the method described in
Section 4.4.4.

A large proportion (113 of 163) of the IBD loci are shared with other
complex diseases or traits. Sixty-six of these 113 are among the 154 loci

previously associated with other immune-mediated diseases (Hindorff et al.,
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2009), which is 8.6 times the number that would be expected by chance
(Figure 4.9C, P < 1071%). Comparing overlaps with specific diseases (Ta-
ble 4.10) is confounded by the differential power in studies of different dis-
eases. For instance, while type 1 diabetes (T'1D) shares the largest number
of loci (20/39, 10-fold enrichment), this is partially driven by the large num-
ber of known T1D associations. Indeed, seven other immune-mediated dis-
eases show stronger enrichment of overlap, with the largest being ankylosing

spondylitis (8/11, 14-fold) and psoriasis (14/17, 13-fold).

In addition to this well-established genetic overlap between IBD and other
complex immune mediated diseases, we can now show that IBD loci are also
markedly enriched (4.9-fold, P < 10~%) in genes involved in primary im-
munodeficiencies (PIDs, Figure 2C). Consistent with an important role for
T-cells in IBD, most of the PIDs overlapping with IBD loci are characterised
by reductions in levels of circulating T-cells (ADA, CD40, TAP1/2, NBS1,
BLM, DNMT3B), levels of Th17 (STATS3), memory T-cells (SP110) or reg-
ulatory T-cells (STAT5B), rather than reduced levels of circulating B-cells

(cell count characteristics taken from Notarangelo et al. (2009)).

Compared to the overlap between PID genes and IBD loci, the subset of
PIDs leading to Mendelian susceptibility to mycobacterial infection (MSMD)
(Notarangelo et al., 2009; Bustamante et al., 2011; Patel et al., 2008) are
enriched still further. Of the eight known autosomal genes that increase
susceptibility to MSMD, six are located within IBD loci (46-fold enrichment,
P = 1.3 x 107%), and a seventh, IFNGRI, narrowly missed genome-wide
significance (P = 6 x 107®). A further relationship to MSMD is seen in the
new association near the gene CD/0, which is involved in MSMD induced
by mutations in the X chromosome gene NEMO (Filipe-Santos et al., 2006).
Furthermore, genetic defects in STATS3 (Holland et al., 2007; Minegishi et al.,
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2007) and CARDY (Glocker et al., 2009b), also within IBD loci, lead to PIDs
involving skin infections with staphylococcus and candidiasis, respectively,
further underscoring the importance of host-microbe interactions in IBD.

This mycobacterial disease overlap is not limited to Mendelian suscep-
tibility. We also find IBD associations in 7/8 loci known to be associated
with complex susceptibility to leprosy GWAS (Zhang et al., 2011), including
6 cases where the same SNP is implicated (Figure 4.9C).

There appears to be a shared biology underlying these all these overlap-
ping mycobacterium susceptibility loci. All of the MSMD mutations that
overlap with IBD cause defects in interferon signalling pathways, which are
known to be important in mycobacterium infection (Flynn et al., 1993). Ad-
ditionally, the six MSMD genes, four of the leprosy genes and CD40 fit
together into a single well-connected subnetwork within the GRAIL and
DAPPLE networks described below (Figure 4.10A). This subnetwork also
includes many important signalling proteins involved in IBD and bacterial

defence, including IFNG, IL10 and NFKBI.

4.4.3 Prioritising candidate genes in IBD loci

We used various methods to reduce the 1438 genes in our locus list to a more
limited list of candidate variants. We used both gene network analyses, and
analyses of SNP function, to implicate candidate genes.

We used GRAIL and DAPPLE (discussed in Section 4.2.3) to prioritise
genes based on network connectivity. In both cases, we removed the HLA
region (due to its large size), and fixed four well-established IBD genes as
causal (NOD2, IL23R, ATG16L1 and PTPN22). We took any gene with
p < 0.05 as implicated. We also included genes from the gene expression

network discussed in section 4.4.6.
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Figure 4.10: a) A combined network graph including GRAIL (blue lines) and
DAPPLE (red lines) connections, consisting of all genes connected to MSMD or
leprosy genes (highlighted in green and teal respectively) b) The GRAIL network
for all genes with GRAIL P < 0.05. Genes included in our previous GRAIL net-
works in CD and UC are shown in light blue, newly connected genes in previously
identified loci in dark blue, and genes from newly associated loci in gold.

Compared to previous analyses that identified candidate genes in 35%
of loci (Anderson et al., 2011; Franke et al., 2010) our updated GRAIL-
connectivity network identifies candidates in 53% of loci, including increased
statistical significance for 58 of the 73 candidates from previous analyses.
The new candidates come not only from genes within newly identified loci,
but also integrate additional genes from previously established loci (Figure
4.10B). The joint-IBD loci are more likely to contain GRAIL connected genes
than CD- or UC-specific loci (P = 0.005), pointing to the shared core of

genetic risk between the two diseases.

We also used existing annotations of variant function to search for likely
causal mechanisms. We used SeattleSeq to annotate all variants in high LD
(r? > 0.8) with missense or nonsense SNPs, producing 29 IBD associations

that caused a protein code change. We also collected eQTL data from a range
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of studies, including lymphoblastoid cell lines of asthmatic children (Dixon
et al., 2007), various tissues from obese patients (Greenawalt et al., 2011),
and a collection of eQTL studies from the Chicago eQTL browser. We found

evidence that 64 IBD associations altered the expression of at least one gene.

Overall, our network analyses and functional annotations highlighted a
total of 300 candidate genes in 125 loci, of which 37 contained a single gene

supported by two or more methods.

4.4.4 Testing for enrichment of functional terms within IBD

loci

Gene Ontology (GO) terms and canonical pathways are a natural way to
ask questions about the function of the genes in the identified IBD loci. We
can ask whether there is an enrichment of certain functional terms in IBD
loci, as well as whether these functional loci are associated with a particular
type of locus (e.g. CD loci). Below I outline a method for performing tests
for enrichment and association of functional terms. I then go on to apply
this to the IBD data, to find functional terms associated with IBD, as well
as identifying terms associated with CD-UC balance, and are more strongly
enriched in IBD relative to other immune-mediated diseases. Finally, I use
this methodology to investigate potential functional biases introduced by the
structure of Immunochip, and by using genes identified by the prioritisation

approaches described above.
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A methodology for testing functional enrichment in IBD loci
Basic framework

We wish to assess the enrichment of a particular functional term (e.g. a
GO term) in causal IBD genes. Given a list of causal genes, we could easily
calculate an enrichment odds ratio A; of a functional term ¢ in IBD genes
relative to the genome as a whole, and perform a statistical test of \; =1 vs
A; > 1. However, we do not know the causal variant for most IBD regions,
and most IBD regions contain multiple genes. To compensate for this, we
use an extension of the standard odds ratio method that takes into account
the presence of non-causal genes.

Assume that we have M loci, designated by j = (1,..., M) each of which
contains IN; genes. For each associated locus j we set an indicator variable
0;; to 1 if the functional term ¢ is present in locus j, and 0 otherwise. We also
calculate a genome-wide frequency for term f; that is equal to the proportion
of all genes that contain the term .

We calculate g;, the frequency of term ¢ in causal genes, given an enrich-

ment odds ratio \; as

a 1- i\~
gi—(1+ Az‘fi) : (4.3)

We then assume that all other genes have a frequency of the term f;.
Assuming that there is exactly one causal gene in the region, the log likelihood

L; is given by

L, = Z dijlog (1 —(1- fi)Nj(l — gl)> +Z(1 —d;5)log ((1 — fi)NJ(l _ gz)) )
] ’ (4.4)
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We fit the parameter \; by maximum likelihood using the Nelder-Mead
optimisation method, implemented in the statistical package R. We assess
the significance of the parameter \; by performing a likelihood ratio test of

/\l:1VS/\Z7é1

Extension to arbitrary predictors

We can extend the method above to include arbitrary per-locus predictors
X = {xj} that correlate with level of enrichment of a function term. We

can extend the definition of g; to take the form of a generalised logistic model

1—fi o\
gi = (1 + 7 exp(—SBo — BX)) : (4.5)

We keep the enrichment odds ratio (in this case as \; = exp(fy)), but also
include regression coefficients for the other predictors B’ The predictors X
can be discrete (e.g. xj; = 0if locus j is a UC locus, and zj, = 1 if it is a CD
locus), or continuous (e.g. z;, = 6;, where 6, is the polar-transformed odds
ratio described in section 4.3.7). The model is fitted by maximum likelihood
in the same way as the simple enrichment model, and likelihood ratio tests

for B, = 0 can be used to assess the significances of the parameters.

Extension to interval overlap

We can extend the above methodology to look for an enrichment in overlap
between a set of genomic intervals (e.g. a set of wide linkage peaks) and our
IBD loci. We assume that we have a set of genomic intervals k£ = 1.,,.R,
each of length ;. We will also assume that the length of each locus is {; and
the length of the whole genome is [,. We can thus modify equations 4.3, 4.4
and 4.5 above by setting
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1
fi= T Z(lk +1;). (4.6)

Ik
It was this extension that enabled me to evaluate the significance of over-

lap between our IBD loci and GWAS associations discussed in section 4.4.2.

Functional term associations in the IBD loci

I tested the 300 genes prioritised in section 4.4.3 for enrichment in 15,526
human GO terms (27/02/2012 release) and 833 canonical pathways (taken
from KEGG, Reactome and Biocarta). I identified 286 GO terms and 48
pathways demonstrating significant enrichment in genes contained within
IBD loci. The top associations are shown in Table 4.11, though the large
number makes interpreting the entire list difficult.

We can use the hierarchical nature of the GO terms to bring some order
to these terms. For instance, cytokine production is the most significantly
enriched term, but within that four child terms drive this: IFN~, IL12, TNF«
and IL10. These cytokines are all produced by the cells of the innate immune
system (including macrophages, dendritic cells and natural killer cells) in
response to bacterial stimulation. This immediately suggests that the IBD
risk alleles are, as a whole, interfering with the correct response to bacteria
by altering the resulting rates of cytokine production.

The second strongest enrichment was in immune system processes (P =
2.6 x 10723), with activation of T-, B-, and NK-cells being the strongest
contributors to this signal (P = 1.6 x 10722). Strong enrichment was also
seen for response to molecules of bacterial origin (P = 9.6 x 107%°), further
evidence for a close relationship between IBD risk and bacterial exposure.

We can test whether any of these enriched functional terms show evidence

of differential enrichment between CD and UC phenotypes, both by using the
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Term Description Loci | P-value
G0:0002376 | immune system process 69 | 3.45x 1072
G0O:0002682 | regulation of immune system process | 60 | 2.61 x 1072
GO:0001817 | regulation of cytokine production 39 | 265x 10
G0O:0046649 | lymphocyte activation 32 1.77 x 10723
GO:0031347 | regulation of defence response 39 4.78 x 107
GO:0048518 | positive regulation of biological pro- | 90 | 3.23 x 10722

cess
GO:0050865 | regulation of cell activation 36 | 1.63x 102
GO:0045321 | leukocyte activation 33 1.84 x 1072
GO:0048522 | positive regulation of cellular process | 83 9.27 x 107%
G0:0002237 | response to molecule of bacterial ori- | 28 | 2.41 x 10=%°
gin
GO:0050776 | regulation of immune response 46 | 2.90x 10720
GO:0002684 | positive regulation of immune system | 45 | 3.05 x 1072°
process
GO:0042110 | T cell activation 24 1.56 x 10719
G0:0006955 | immune response 51 1.76 x 10719
G0:0002694 | regulation of leukocyte activation 33 3.09 x 1071
GO:0001775 | cell activation 38 | 340x 1071
G0O:0032496 | response to lipopolysaccharide 26 5.36 x 1019
G0:0051249 | regulation of lymphocyte activation | 31 8.13x 1071
GO:0070663 | regulation of leukocyte proliferation | 24 | 8.67 x 10~
GO:0080134 | regulation of response to stress 43 1.55 x 10718
KO:04630 Jak-STAT signalling pathway 20 480 x 10~
KO:05140 Leishmania infection 16 3.89 x 1071
KO:04060 Cytokine-cytokine receptor interac- | 25 | 1.66 x 10713
tion
BI Th1/Th2 differentiation 10 1.64 x 10712
BI NO2-dependent IL12 pathway 7 3.25 x 10710
RE:690 0 Signalling in immune system 24 3.35 x 10710
KO:04062 Chemokine signalling pathway 16 1.10 x 107°
BI IL12-dependent signalling pathway | 7 7.73x 107
KO:05330 Allograft rejection 9 2.34x 1078
KO:04660 T-cell receptor signalling pathway 13 | 249x 1078

Table 4.11: The top 20 most enriched GO terms, and top 10 canonical path-
ways, in IBD loci. Terms starting “GO” are Gene Ontology terms, those starting
“KO” are KEGG pathways, “RE” are Reactome pathways and “BC” are Biocarta
pathways
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Term Description Direction | py Pcpjuc

GO:0007243 | intracellular protein kinase | CD 0.0046 | 0.0005
cascade

GO:0051241 | negative regulation of multi- | UC 0.0796 | 0.0039
cellular organismal process

G0O:0000165 | MAPK cascade CD 0.0058 | 0.0086

GO:0002237 | response to molecule of bac- | CD 0.0099 | 0.0140
terial origin

Table 4.12: Pathways that show evidence of differential enrichment (p < 0.01) in
CD and UC. The “direction” shows which phenotype has the higher enrichment of
this term. py is the evidence of association between functional term and CD-UC
balance parameter 6. pcp e is evidence of differential enrichment in CD and UC
loci (as defined in Table 4.9)

Term Description PIMD | PPID | Pazis
KO:04350 | TGFf signalling pathway 0.015 | 0.004 | 0.001
BI Erythropoietin signalling pathway | 0.03 | 0.04 | 0.004

Table 4.13: Pathways that show evidence of enrichment (pgz;s < 0.01) in IBD loci
relative to other immune-mediated disease loci. prysp and pprp is the enrichment
p-value relative to complex immune-mediated diseases and Mendelian primary

immunodeficiencies respectively, and p,.is is the enrichment p-value of IBD relative
to both IMD and PID.

phenotype-specific loci defined in Table 4.9, and using the continuous CD-UC
balance parameter 6 defined in section 4.3.7. Neither analysis produced any
results that met Bonferroni-corrected significance, but results that showed
nominal (p < 0.01) significance are shown in Table 4.12. Perhaps the most
interesting is the evidence that CD may have a larger enrichment of terms
involved in response to bacterial products, as this reinforces the opposite
direction of effect we see at the NOD2 locus (itself responsible for responding
to the bacterial product MDP).

We can perform a similar analysis comparing IBD to the set of immune-

mediated complex diseases and primary immunodeficiencies described in sec-
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Figure 4.11: GO enrichment in known vs. new loci. The enrichment odds ratios
for enriched GO terms are plotted for loci discovered via GWAS and for new loci
identified in the current Immunochip analysis. The circled are filled if they were
significant in the GWAS loci, and empty if they are only significant when all loci

are combined.

tion 4.4.2. Again, no functional term produced a Bonferroni-significant re-

sult, but the strongest enrichment was in the TGFf signalling pathway (Ta-

ble 4.13). TGFf is a widely expressed protein that has been implicated in

many diseases. However, knock-out mice develop colorectal cancer, poten-

tially suggesting a particular role for TGF/ in the intestinal immune system

(Sterner-Kock et al., 2002).
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Testing for functional biases in Immunochip genes

The Immunochip was constructed using variant lists submitted by immune-
related disease association consortia. We may therefore expect there to be
a bias towards discovering loci that are associated to both IBD and other
immune-related diseases. This would, in turn, cause an artificial inflation
in enrichment of immune-related GO terms. To test this hypothesis, I re-
calculated enrichment odds ratios for the 286 enriched GO terms and 48
canonical pathways in two non-overlapping subsets of the 163 loci: (i) the 92
loci described in our previous meta-analyses, and (ii) the 71 newly discovered
loci. If our analysis for identifying new IBD loci were biased (via the Im-
munochip design) toward loci shared across autoimmune diseases we would
expect larger enrichment odds ratios in set (i) compared to (i). Figure 4.11
shows that in fact, the opposite is true: the previous loci are, on average,
slightly more strongly enriched than our new loci (p = 2.2x107%). This dif-
ference might suggest that the strongest IBD loci (i.e. those already known)

play a more central role in key immune functions than our new discoveries.

This lack of observable bias, while initially surprising, can largely be
explained by our experimental design, and the specifics of the SNP selection
process for the Immunochip. As part of that design we included the top 2000
most associated SNPs each from the earlier CD and UC GWAS meta-analyses
regardless of function or association with other phenotype (corresponding to
p < 0.0009 for CD and p < 0.0004 for UC). This subset of SNPs therefore
represents a functionally unbiased, genome-wide replication set that includes
147 (55 new, 92 known) of our 163 reported loci. Therefore the non-IBD part
of the Immunochip contributed to only 16 of our loci, of which only 8 are
known to be also associated with another immune-mediated disease. This

number is too small to strongly bias enrichment analyses, as demonstrated
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Figure 4.12: Enrichment p-values (a) and odds ratios (b) for GO terms (black
dots) and canonical pathways (red dots) calculated on all 1438 genes in IBD loci
(x-axis) and just the 300 prioritised genes (y-axis).

above.

Another potential source of bias is the use of the 300 genes selected by
our gene prioritisation procedure. There is good reason to use these genes,
as doing so grants a large increase in power to detect associations for both
GO terms and canonical pathways (Figure 4.12a). However, this procedure
is also likely to produce a bias towards the classes of genes and pathways
that can be easily detected using gene prioritisation methods. To measure
this effect, I calculated enrichment odds ratios for the selected GO term
and canonical pathways using just the prioritised genes, and then using the
entire set of genes inside the loci. Figure 4.12b shows that the estimated
odds ratios are indeed higher when using the prioritised genes, suggesting
that this introduces a detectable bias towards the detection of well-studied

pathways. However, this bias is relatively small.
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Figure 4.13: Signals of selection at IBD SNPs, from strongest balancing on the
left to strongest directional on the right. The grey curve shows the 95% confidence
interval for randomly chosen frequency-matched SNPs, illustrating our overall en-
richment (p = 5.5 x 107%), while the dashed line represents the Bonferroni signif-
icance threshold. SNPs highlighted in red are annotated as involved in regulation
of IL17 production, a key IBD functional term related to bacterial defence, and
are enriched for balancing selection.

4 .45 Natural selection in IBD loci

Infectious organisms are known to be among the strongest agents of natural
selection (Lederberg, 1997). It seems logical to ask whether the strong ge-
netic relationship between infection and IBD that emerges from the above
analyses also suggests a role for natural selection in the evolutionary history
of IBD susceptibility. There are many plausible types of selection that may
be acting on IBD risk variants. The risk alleles may be under directional
selection, either positive (if the decrease in fitness due to infection outweighs
the increase in fitness due to inflammation), and negative (if vice versa).

They may also be under balancing selection, indicative of an allele frequency
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dependent scenario typified by host-microbe co-evolution, as can be observed

with parasites (Lederberg, 1997).

To test selection on IBD loci, I used data, provided by Joe Pickrell, gen-
erated using the TreeMix method developed by Pickrell and Pritchard (Pick-
rell and Pritchard, 2012) They constructed population trees from the Human
Genetic Diversity Panel (HGDP) data (Li et al., 2008), and produced a per-
variant score that measures the extent to which population allele frequencies
at that site are over-dispersed relative to this tree. The most over-dispersed
sites are likely to have been subjected to directional (positive or negative)
selection, whereas those that match the tree most closely are likely to have

been subjected to balancing selection.

I picked the best HDGP proxy SNP for each of our associated variants
(picking only the UC associated variant from the HLA), and extracted the
scores for these variants. Because the score is confounded with allele fre-
quency, I calculated empirical p-values for each variant as follows: pick all
variants with an allele frequency within 1 percentage point of the hit vari-
ant’s allele frequency, and measure the proportion of variants with a score
greater than the score of the hit variant. I calculated p-values for directional
selection (the proportion of variants with a score higher than the hit variant),
and p-values for balancing selection (the proportion with scores lower than

the hit variant), as well as two-tailed p-values.

Two SNPs show Bonferroni-significant selection: the most significant sig-
nal, in NODZ2, is under balancing selection (P = 5.2 x 1079), and the second
most significant, in the receptor TNFRSF18, showed directional selection (P
= 8.9 x 107°). The next most significant variants were in the ligand of that
receptor, TNFSF18 (directional, P = 5.2 x 107%), and IL23R (balancing, P

= 1.5 x 1073). As a group, the IBD variants show significant enrichment in
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Term Description Direction P-value
GO:0032660 | regulation of interleukin-17 pro- | Balancing | 0.00014*
duction

GO:00327 positive regulation of interleukin- | Balancing | 0.00020
17 production
GO:0009897 | external side of plasma membrane | Directional | 0.0018

GO:0008283 | cell proliferation Directional | 0.0020
G0O:0032653 | regulation of interleukin-10 pro- | Balancing | 0.0020
duction

Table 4.14: Top 5 pathways that show evidence of natural selection in the IBD
loci. *Significant after Bonferroni-correction for 334 enriched GO terms and path-
ways.

selection (Figure 4.13) of both types (P = 5.5 x 1079).

In order to assess whether extent or direction of selection was correlated
with specific functions, I used the GO term enrichment method described
above. 1 converted the selection p-values to Z scores using an inverse nor-
mal transformation, and tested for association between these scores and GO
terms. The top five associations are shown in Table 4.14. The top re-
sult was the GO term “regulation of interleukin-17 production”, which met
Bonferroni-corrected significance (Figure 4.13). The important role of IL17
in both bacterial defence and autoimmunity suggests a key role for balanc-
ing selection in maintaining the genetic relationship between inflammation
and infection, and this is reinforced by a nominal enrichment of balancing
selection in loci annotated with the broader GO term “defence response to

bacterium” (p = 0.007).

4.4.6 Gene expression analyses of IBD loci

Gene expression datasets provide a powerful resource to interpret GWAS

results. Two other groups within the IIBDGC Immunochip analysis group
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Figure 4.14: Evidence of enrichment in IBD loci of differentially expressed genes
from various immune tissues. Each bar represents the empirical P-value in a single
tissue, and the colours represent different cell type groupings. The dashed line is
Bonferroni-corrected significance for the number of tissues tested.

used gene expression to investigate the new IBD locus list.

Xinli Hu and Soumya Raychaudhuri used enrichment of cell-type specific
genes to study the cell types implicated by our locus list, using a previ-
ously described method (Hu et al., 2011). They tested for enrichment of
cell-type expression specificity of genes in IBD loci in 223 distinct sets of
sorted, mouse-derived immune cells from the Immunological Genome Con-
sortium (Hyatt et al., 2006). Dendritic cells showed the strongest enrichment,
followed by weaker signals that support the GO analysis, including CD4+
T, NK and NKT cells (Figure 4.14). Notably, several of these cell types
express genes near our IBD associations much more specifically when stim-
ulated; our strongest signal, a lung-derived dendritic cell, had psimuiated <
1075 compared with punstimutated = 0.0015, consistent with an important role

for cell activation.

Ken Hui and Eric Shadt used gene expression networks and eQTL data to
infer causality in IBD associations. They screened genes in IBD loci against

211 co-expressed “modules” (sets of genes) previously identified by weighted
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Figure 4.15: NOD2-focused cluster of the IBD causal subnetwork. Pink genes
are in IBD associated loci, blue are not. Arrows indicate inferred causal direction
of expression regulation.

gene co-expression network analyses (Zhang and Horvath, 2005) performed
on multiple tissues (Greenawalt et al., 2011; Emilsson et al., 2008; Schadt
et al., 2008), and identified a significantly enriched module in omental adi-
pose tissue from obese patients (p < 107'%). They then used gene expression
and genotype data from these patients to construct a causal network using a
Bayesian network reconstruction algorithm (Zhu et al., 2007). To illustrate
the power of this approach, Figure 4.15 shows a small subset of this network
around the gene NOD2, which also contains many important bacterial inter-
action genes including IL10 and CARDY. This network implicates a number
of new IBD genes as playing a part in response to bacteria, and in particular
highlights the new IBD gene HCK as a potential regulator of the important
IBD genes NOD2 and IL10.

4.4.7 Take home messages about the biology of IBD

We have used a range of bioinformatic analyses to attempt to extract biolog-
ical insight from the 163 loci and 1438 genes implicated by the Immunochip

analysis. This has in turn produced a large amount of data, which itself
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needs to be interpreted. Below I will distil what I believe to be the major
biological lessons that these analyses have taught us about the aetiology of

IBD.

CD and UC show a very high degree of genetic overlap, with
almost all of the 163 loci showing some degree of association to both. Like-
wise, there does not appear to be any strong differences in the function of CD
and UC specific loci. However, many loci show a significant heterogeneity
of odds ratio between the two phenotypes, with many having differing (or
occasionally opposite) effects on CD and UC risk. Perhaps in the future we
need to think about genetic differences between CD and UC not in terms
of different loci, but as differently weighted combinations of the same loci.
The same property may apply to subphenotypes of IBD (such as ileal verses
colonic disease), and possibly even to the relationship between IBD and other

immune-mediated diseases.

IBD shows genetic overlap with almost all diseases of immunity. However,
there is a startling overlap between IBD and susceptibility to both
complex and Mendelian mycobacterial disease. This is further high-
lighted by the large number of loci that contain genes involved in interferon
gamma, including both the IFFNG gene itself and its receptor IFNGR2, which
is known to play a vital role in defence against Mycobacterium tuberculosis
(Flynn et al., 1993). This relationship appears to have led to significant
natural selection on IBD alleles during human history, and in par-
ticular balancing selection on the regulation of pro- and anti-inflammatory

cytokines IL17 and IL10.

Cell types of both the innate and adaptive immune system play an im-
portant role in IBD. Gene expression data implicated dendritic and natural

killer cells on the innate side, and CD4+ T-cells on the adaptive side. The
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Gene Ontology analysis, however, implies a different mode of action of these
two cell types. IBD risk alleles seem to lead to defects of bacteria-
induced cytokine production in innate immunity and defects of cell
activation and signal transduction in the adaptive immune system.
This is not an exclusive relationship (one innate immune cell type has an
activation-related GO term, “regulation of natural killer cell activation”),

but it does seem to hold as a rule of thumb.
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4.5 |BD and Y haplogroups

There is much suggestive evidence of a relationship between sex chromosomes
and immunity. Most autoimmune diseases are more prevalent in females than
in males (Whitacre, 2001), and individuals with Turner syndrome (a partial
or total absence of one sex chromosome) are at higher risk of developing
various immune-related diseases (Lleo et al., 2012). There is also evidence
that the progression of HIV infection can vary between carriers of different
Y haplogroups (Sezgin et al., 2009). However, large systematic studies of the
effect of Y chromosome variation on human immune disease are relatively
rare.

As mentioned in the introduction, 1735 Y chromosome variants were
placed on the Immunochip for the purpose of assigning Y haplogroups. This
gives us an opportunity to make a detailed and well powered study of the
relationship between IBD risk and Y haplogroups. In this section I will

describe the analysis of these variants in the IIBDGC Immunochip dataset.

4.5.1 Calling Y SNPs and assigning haplogroups

I selected males from the QQC+ Immunochip sample set based on their mean
normalised intensity at Y chromosome sites. There were a total of 22,129
males available, with 9,811 controls, 6,204 CD cases and 6,114 UC cases.
Because (at the time this study was carried out) the optiCall method
used for genotype calling on the autosomes had not yet been adapted to
run on sex chromosomes, I used the calling software [lluminus (Teo et al.,
2007). The calls were generally of low quality, so I selected 150 haplogroup
informative marker (Karafet et al., 2008) and manually inspected and fixed

clusters using the program Evoker (Morris et al., 2010).
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Figure 4.16: Y haplogroup frequencies in controls across the IIBDGC Im-
munochip dataset.

I developed a novel maximum likelihood method to assign haplogroups
to these individuals (implemented in C++ as the program YFitter (Luke
Jostins, 2011)). All but 9 males could be unambiguously assigned to a major
haplogroup. The dataset contained samples from 10 major haplogroups,

including 6 haplogroups with a frequency of greater than 1% (Figure 4.16).

4.5.2 Association analyses and controlling for stratification

I used logistic regression to assess association across these 6 common major
haplogroups. The frequency spectrum differs between IBD cases and controls,
even after including country-of-origin, sample collection and four autosomal

principal components as covariates (x? = 14.2, df = 5, p = 0.014). The per-
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Haplogroup | OR (95% CI) P-value
E 1.07 (0.92 - 1.24) | 0.393
G 1.20 (0.99 - 1.20) | 0.059
I 1.00 (0.93 - 1.10) | 0.837
J 0.85 (0.76 - 1.03) | 0.112
N 1.53 (1.12 - 2.07) | 0.006
R 0.96 (0.89 - 1.03) | 0.229

Table 4.15: Association statistics for the Y chromosome haplogroups

haplogroup results show that this association is largely driven by a strong
association between haplogroup N and IBD (Table 4.15).

Haplogroup N shows significant variation in frequency between European
populations (Figure 4.16). This may lead us to suspect that the association
results are due to population stratification. There are two major sources of
stratification in IBD: a higher incidence in Ashkenazi Jewish, and an increas-
ing incidence in Northern Europe compared to Southern Europe (Shivananda
et al., 1996). We can rule out the former as haplogroup N has a lower fre-
quency in Ashkenazim (Behar et al., 2004), which would produce the opposite
direction of association to that observed. However, haplogroup N is at a sig-
nificantly higher frequency in Northern Europe, so this is a plausible source
of stratification. While I conditioned on country of origin and principal com-
ponents, it is possible that additional stratification is driving the haplogroup

N association.

To attempt to remove such stratification, I selected two homogeneous
cohorts with over 10% frequency of haplogroup N (one Swedish and one
Lithuanian). To ensure the population was homogeneous, I used principal
component analysis to remove 136 individuals that lay more than two stan-
dard deviations from the mean on any of the first four PCs. Even within

these two highly homogeneous populations, the results were very similar to
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Collection Cases/controls | OR (95% CI)

Sweden 165/193 1.19 (0.60 - 2.37)
Sweden (PC corrected) 1.27 (0.62 - 2.58)
Lithuania 192,/109 1.94 (1.13 -3.33)
Lithuania (PC corrected) 1.81 (1.02 - 3.19)
Meta-analysis 228/228* 1.61 (1.05 - 2.47)
Meta-analysis (PC corrected) 1.57 (1.01 - 2.45)

Table 4.16: Association of haplogroup N with IBD in two homogenous popula-
tions. Studies were combined using variance-weighted fixed-effect meta-analysis.
¢Effective sample size

the across-Europe results (Table 4.16).

In these homogeneous groups, case-control status was correlated with
principal components, weakly in Sweden (omnibus p = 0.050) and strongly
in Lithuania (p = 3.6 x 10~*). Equally, haplogroup N shows evidence of pop-
ulation stratification via a correlation between the haplogroup and principal
components (p = 0.032 and p = 0.014). However, conditioning on the first
four principal components within these countries does not significantly alter
the results (Table 4.16), providing further evidence that this association is

not driven by stratification.

4.5.3 Identifying candidate causal variants

Because the Y chromosome does not undergo recombination, the haplogroup
association does not implicate a genomic region in the same way as an au-
tosomal association does, and thus does not immediately suggest candidate
genes or mutations.

To understand potential biological underpinnings of the haplogroup N
enrichment in IBD, I used sequence data from the 1000 Genomes Project

(specifically, from the Complete Genomics high-coverage sequencing) to iden-
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Gene Number | Location
AMELY |1 Intron

CD2 2 Upstream of TSS
KDM5D | 3 CDS (missense)
NLGN4JY | 8 Intron

PRKY 1 Intron

RPS;Y1 |1 Intron

RPS;Y2 |1 CDS (synonymous)
TBL1Y 5 Intron

TTTY10 | 2 Intron

TTTY14 | 2 Intron

TTTY15 |3 Intron

USP9Y 4 Intron

ury 13 Intron

Y 2 Intron

Table 4.17: Candidate genic mutations that may underlie the haplogroup N IBD
association.

tify Y chromosome mutations specific to that haplogroup. A total of 379 mu-
tations lie on or within the N haplogroup branch. 50 of these were present
in or near genes, implicated 15 candidate genes (Table 4.17). These in-
cluded a mutation 3kb upstream of CD24, a cell adhesion gene known to
be up-regulated in inflammatory bowel disease, and a missense mutation in
KDM5D, which encodes for a MHC antigen known to be involved in male-

to-female tissue graft rejection.
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4.6 Fine-mapping the NODZ2 locus

The TIBDGC has an ongoing project to fine-map IBD loci using the Im-
munochip. This project uses both the large European dataset discussed
above, and an additional set of approximately 12,000 transethnic samples. It
also aims to incorporate functional information from external datasets, such
as gene expression and functional sequencing. It is aimed at both establishing
the causal risk variants that underlie GWAS associations, and investigating
the biological mechanisms through which these risk variants act. Calling and
analysis of these datasets are currently ongoing.

In this section, I will describe the results of a pilot project carried out
to investigate the methods and resources that could be used in such a fine-
mapping project. This pilot project was focused on a single Crohn’s disease
fine-mapping region, the long-established NOD2 locus. I will show how the
Immunochip data can be used to infer new biological insights on both coding

and non-coding associations at this locus.

4.6.1 Characterising coding mutations in NOD2

There are 24 polymorphic missense mutations in NOD2 on the Immunochip.
Six of these have been previously established as associated with IBD (Rivas
et al., 2011). By performing stepwise logistic regression, I found that eight
of these coding mutations show independent associations that are significant
after correcting for the number of coding variants tested (i.e. p < 0.002), in-
cluding the six known mutations and two that have not been reported before
(Asn289Ser and Ala918Asp). With 8/24 mutations showing association, it
is clear that a large proportion of the NOD2 mutation space is associated

with IBD. However, the Immunochip data can allow us to investigate in more
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Figure 4.17: Functional characterisation of coding signals at NOD2. 17 coding
variants are shown on a plot of their position in the protein and their Condel score,
with colouring used to show their odds ratio. The LRR domain (responsible for
bacterial sensing) is also shown.

detail what drives certain mutations to increase CD risk, while others appear

to be benign from the point of view of IBD.

I took 17 of the highest frequency (MAF > 0.0005) non-synonymous
variants and calculated independent odds ratios for each (conditioning on
the six established NOD2 coding mutations, plus the common regulatory
signal discussed below). I also produced a Condel score (Gonzalez-Perez and
Lopez-Bigas, 2011) for each mutation, which combines various measures of
conservation and protein structure to estimate the probability that the muta-
tion is pathogenic. Figure 4.17 shows the relationship between Condel score,

position in the protein, and odds ratio. We can see a striking relationship:
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Figure 4.18: Fine-mapping and functional characterisation of a common regu-
latory signal at NOD2. Variants in orange are candidate causal variants. The
coloured spikes under at the bottom of the plot show H3K27Ac histone modifica-
tion levels in various tissues, with red being lymphoblastoid cell lines. Grey blocks
are open chromatin and black blocks are transcription factor binding sites, with
binding sites within 20bp of the candidate causal variant named in panel b).

mutations with a high Condel score, towards the end of the protein, almost
invariably increase the risk of IBD. However, variants towards the start of
the protein, or with a low Condel score, are rarely associated. It is likely
that this “CD sensitive region” of NOD2 represents mutations that disrupt
the Leucine-Rich Repeat (LRR) domain. The LRR domain is responsible
for detecting the bacterial product MDP, and is known to play a key role in
Crohn’s disease risk (Abraham and Cho, 2006).

4.6.2 Characterising a common regulatory signal at NOD2

Once we condition on the coding mutations mentioned above, a genome-wide
significant signal remains around 50kb upstream of NOD2 (Figure 4.18a).
This signal is the same signal (but in the opposite direction) as the common

NOD2 association with leprosy susceptibility (Zhang et al., 2011), and is also
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associated with expression of both NOD2 and SNX20 in monocytes (Zeller
et al., 2010). However, the association with IBD has not been reported before,
as it can only be detected at genome-wide significance after conditioning on

the coding variants.

Again, we are interested in the function of this association. The first step
is to establish the set of SNPs that could plausibly be causal. To do this,
we test the association statistics for the hit SNP conditional on each variant
in LD with it, and rule out all SNPs that still show conditional association
(p < 0.01). After performing this test, a total of 5 SNPs remain that could

plausibly be the causal variant.

The next step is to establish what functional impact these candidate
causal variants may have. Establishing the function of non-coding variants
is difficult, but we can make some headway by using epigenetic sequencing
data from the Encyclopaedia of DNA elements (ENCODE) (The ENCODE
Project Consortium, 2012; Myers et al., 2011). In Figure 4.18b, I have over-
laid H3K27Ac histone modification levels in various tissues: this is known to
be an indicator of active enhancers (Creyghton et al., 2010). We can see that
one of the candidate causal variants overlaps a peak that is specific to the lym-
phoblastoid cell line, suggesting an immune-tissue specific enhancer region.
Looking closer at this region, we can see multiple sites of open chromatin and
transcription factor binding (Figure 4.18b), with the candidate variant lying
within one of these. The variant is nearby to binding sites for transcription
factors involved in erythropoiesis (GATA2, PAX5 and BCL11A), as well as

the protein NFxB, which regulates inflammation.

Taken together, this evidence points towards the existence of a common
Crohn’s disease risk variant in an upstream enhancer of NOD2. The upstream

enhancer is active only in immune tissues, and appears to regulate expression
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of both NODZ2 and the neighbouring gene SNX20. This risk variant may act
by interfering with a transcription factor binding, possibly a transcription

factor involved in haemopoiesis.
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4.7 Conclusions

The majority of this chapter has been focused on the use of the Immunochip
to discovery new IBD loci in Europeans. The scale of the project has ne-
cessitated new approaches to both data handling and results interpretation,
requiring a greater range of both techniques and expertise than previous I1B-
DGC analyses. Overall this has been a successful project, delivering both
many new loci and biological information.

However, this project is only the first of many Immunochip analyses. At
the time of writing we have just produced a new release of IBD Immunochip
data, including over 86 thousand samples from both European and East
Asian sample collections. This dataset will be used in a range of projects,
including those that will fine-map existing loci, to study the contribution of
IBD loci across different populations, and investigate the genetics of IBD sub-
phenotypes. It will also be combined with Immunochip datasets from other
diseases, in order to make a detailed investigation into the shared genetics of
immune-mediated disease.

The results described in this chapter have taught us a number of lessons
that will aid these future projects. Some of these are important, but perhaps
uninteresting matters of quality control and data handling. For instance,
the large manual inspection effort described in section 4.3.2 has given us
many insights into the behaviour of Immunochip intensity readings, as well
as setting up a framework for large, collaborative cluster plot inspection.
Other lessons will have wider ranging consequences. For instance, the joint
analysis of CD and UC demonstrated that two diseases can have an extremely
high degree of genetic overlap (110 of 163 loci shared), but remain genetically
distinct due to a high degree of effect size heterogeneity. We have learned that

the relative balance of contribution of each locus can be just as important as
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the overall degree of locus sharing.

One of the strongest lessons to emerge from this analysis is the potential
for integrating functional datasets into genetic studies. Gene expression,
protein-protein interaction, canonical pathways and literature networks all
added a great degree of value to the locus discovery effort. Most striking,
the NOD2 pilot fine-mapping project demonstrated the power of functional
sequencing data in aiding the identification and understanding of non-coding
causal variants. As a result of these successes, ongoing Immunochip projects
are integrating, and in some cases specifically generating functional datasets

as an integral part of their respective studies.






