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Abstract

Many important traits are heritable, and have a strong genetic com-
ponent. In simple cases, such as Mendelian diseases, the genetic cause
can be found with linkage methods, and many trait genes have been
mapped to date. More recently, association mapping studies have fo-
cused on complex traits that include prevalent human diseases, such
as type 2 diabetes, hypertension, and others. Numerous genome-wide
association studies have corroborated that no single gene explains all
or even a large part of the heritable variability in such traits, and
that individual effect sizes due to common variants are small. The
effect of a single locus genotype on a global trait has to be mediated
by cellular, tissue, and organ phenotypes. Thus, genetics of cellular
traits is central to developing an understanding of the genetic basis

of complex traits.

In this thesis, we address the problem of mapping cellular traits. First,
we develop a statistical model based on Bayesian regression and factor
analysis for association mapping with high-dimensional phenotypes.
We show how accounting for global, non-genetic variance components
in the phenotype data increases power to detect genetic associations.
Applying the method on human gene expression variation data, we
find that up to 30% of transcripts have a statistically significant as-

sociation to a proximal locus genotype.

Second, we show how to infer intermediate phenotypes and use them
for mapping genetic associations and interactions. We use a sparse
factor analysis model to infer hidden factors, which we treat as in-
termediate cellular phenotypes that in turn affect gene expression in

a yeast dataset. We find that the inferred phenotypes are associated



with locus genotypes and environmental conditions, and can explain
genetic associations to nearby genes. For the first time, we consider
and find interactions between genotype and intermediate phenotypes
inferred from gene expression levels, complementing and extending

established results.

Third, we develop a novel approach to map trait loci rapidly and
in narrow intervals using massively parallel sequencing. We created
advanced intercross lines between two phenotypically different wild
isolates of baker’s yeast with sequenced reference genomes. We then
applied selective pressure on the intercross pool by growing it in a
restrictive condition to enrich for individuals with protective alleles.
Sequencing DNA from the pool before and after selection pinpoints
genes responsible for the increased fitness. This novel method provides
a rapid and fine scale QTL mapping strategy improving resolution and

power.

Finally, we conclude the thesis by exploring mapping cellular traits in

a series of short studies in different organisms.
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