
Appendix A

Variational inference in PEER

Supplementary Methods

Implementation of non-Bayesian models

Standard expression QTL model

To ensure a common ground when comparing different methods, we used a well

established linear regression approach introduced by Lander and Botstein (1989)

to detect associations. For each tested SNP n with genotype sn,j and gene g with

expression level yg,j, we evaluated the log-odds (LOD) score

Ln,g = log

{∏
j

P (yg,j | sn,j,θ1)

P (yg,j |θ0)

}
= log

{∏
j

N(yg,j;un,jsn,j + µg,1, σ
2
g,1)

N(yg,j;µg,0, σ2
g,0)

}
(A.1)

which assess how well a particular gene expression level is modelled when the

observed genetic state sn,j is taken into account, compared to how well it is

model-led by a background model ignoring the genetic effect. The probe expres-

sion levels yg,j can either be the raw measurements, residuals after subtracting

the estimated effect of hidden and known factors, or ranks for a non-parametric

statistic.
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Significance of an association was evaluated in three different ways:

1. 2-tailed t test on expression values uses the Student’s t distribution

with N − 2 degrees of freedom to assess the significance of the statistic

t = (N − 2)0.5ρ(1 − ρ2)−0.5 based on the correlation coefficient ρ2 = 1 −
exp(−2Ln,gN

−1) between the genotype and the expression levels. We called

an association significant if |t| was greater than the 10−3

2S
tail of the tN−2

distribution, which corresponds to a 10−3 Bonferroni-corrected per-gene

false positive rate when performing tests for S SNPs.

2. Rank correlation uses the same test, but on the ranks of expression values.

3. Permutation testing (Lynch and Walsh, 1998) repeats the analysis in

Equation (A.1) with permuted expression levels with respect to the genetic

state, calculating the distribution of null log-odds scores. An eQTL was

called significant if Ln,g was greater than L̂n,g, the δ tail of the null distri-

bution for a given false positive rate (FPR) δ. The same set of permutations

was used for all methods. To account for multiple testing, we estimated a

single significance threshold L̂g per gene for all tested SNPs. This was done

by taking the maximum LOD score over SNPs for a given permutation and

using this score distribution when estimating the δ tail (Stranger et al.,

2007).

The posterior of the switch variable for the probabilistic genetic model is not

used for the final tests to put all methods on equal footing.

PEER framework

VBQTL and the alternative compared methods are implemented within the

PEER (Probabilistic Estimation of Expression Residuals) framework. Here, we

give a full self-contained treatment of the framework and the implemented infer-

ence algorithms.
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Likelihood models

The likelihood model of PEER for observed expression levels Y is

P (Y |Y(1), . . . ,Y(M), τ ) = N(Y |Y(1) + · · ·+ Y(M),Σ), (A.2)

where Σ = diag{ 1
τg
} is the diagonal matrix constructed from noise precisions {τg}

and {Y(m)} are the contributions of expression variability for each of M models.

The noise model is per gene, similar to a factor analysis model, where gamma

priors are put on the noise precisions,

P (τg) = Γ(τg | aτ , bτ ). (A.3)

In experiments we used vague gamma prior parameters, aτ = 1, bτ = 100. Each

of the M models itself depends on parameters θ(m) and possibly other data D(m)

P (Y(m) |θ(m),D(m)). (A.4)

Genotype effect model. The expression level y
(1)
g,j of the gth gene probe

in the jth individual is explained by linear effects of genotypes of N SNPs sj =

(s1,j, . . . , sN,j):

P (y
(1)
g,j | sj,bg,ug, τg) = N(y

(1)
g,j |

N∑
n=1

bn,g · (un,gsn,j) ,
1

τg
) (A.5)

P (bn,g) = Bernoulli(bn,g | pass) (A.6)

P (un,g) = N(un,g | 0, 1). (A.7)

The weight ug = (u1,g, . . . , uN,g) indicates the magnitude of the effect, and

the binary variables bg = (b1,g, . . . , bN,g) determine whether it is significant

(true) or not (false), taking the Bernoulli prior on the switch variable P (bn,g) =

Bernoulli(bn,g | pass) into account. When the switch variable is on, the expression
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level is linearly influenced by the SNP, and unaffected otherwise. The LOD score

of the association model (Section Standard expression QTL model) is closely re-

lated to the switch variable bn,g. For a particular parameter setting, the posterior

probability over the switch state bn,g is a monotonically increasing function of the

LOD score. The exact relation is P (bn,g = 1 | yg,j, sj,n) = σ(LOD score) where

σ() is the sigmoid function σ(x) = 1/(1 + e−x).

2) Known factor model. The effect of the measured C covariates in the

jth individual, fj = (f1,j, . . . , fC,j), where the weights of their effect on a gene g

is vg = (vg,1, . . . , vg,C) is modelled as:

P (y
(2)
g,j | fj,vg, τg) = N(y

(2)
g,j |

C∑
c=1

vg,c fc,j,
1

τg
) (A.8)

P (vg,c |αc) = N(vg,c | 0,
1

αc
) (A.9)

P (αc) = Γ(αc | aα, bα). (A.10)

The gamma prior on the inverse covariances for each factor introduces automatic

relevance detection (ARD) Mackay (1995); Neal (1996), driving the weights of

unused factors to 0 and thereby switching them off. This is explained in more

detail below.

3) Hidden factor model. Analogously to known factors, expression vari-

ability is modelled by linear effects from K hidden factors X = {x1, . . . ,xK}:

P (y
(3)
g,j |xj,wg, τg) = N(y

(3)
g,j |

K∑
k=1

wg,k xk,j,
1

τg
) (A.11)

P (wk, βk) =
G∏
g=1

N(wg,k | 0,
1

βk
) (A.12)

P (xk,j) = N(xk,j | 0, 1) (A.13)

P (βk) = Γ(βk | aβ, bβ). (A.14)
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The factor activations X are random variables that are not observed, but

instead inferred from the expression levels. Again, the ARD prior allows unused

factors to be switched off. This forces the model to learn factors which have a

broad effect on many expression levels. In experiments we used values aα = 10−7G

and bα = 10−1G, where G is the total number of gene probes. Similar prior

settings were used for the weights of the known factors vc. We put a standard

normal prior on the hidden factors, xk,j ∼ N(xk,j | 0, 1).

Variational inference

As outlined in Methods we use variational Bayesian inference Jordan et al. (1999)

for parameter learning in the framework. The basic principle of variational meth-

ods is to approximate the exact joint posterior distribution over all parameters by

a factorised Q-distribution. Individual factors of the Q-distribution are refined

by minimisation of the KL-divergence between the exact and the approximate

distributions with respect to the parameters of a single factor. This leads to an

iterative algorithm, updating individual factors of the approximate distribution

given the state of all others. Here, we give the factorisations and update rules for

the general framework and the individual models.

PEER framework. We approximate the exact joint posterior distribution

over all parameters

P ({Y(m)}Mm=1, {θ(m)}Mm=1, |D) (A.15)

by a factorised approximation over parameters for individual models

Q(Θ) =
M∏
m=1

Q(θ(m))Q(Y(m)). (A.16)

Here we defined the abbreviation D = {Y, {D(m)}Mm=1}, summarising all observed

data; expression levels Y as well as model-specific data {D(m)}Mm=1. Note that as

the expression contributions Y(m) are not observed they also resemble parameters
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that need to be inferred. Strictly speaking these are not treated as random

variables of the model, but Gaussian messages that comprise the first and second

moments of the expression variability contribution of a respective model. The

distributions of parameters θ(m) for individual models are in turn factorised. The

set Θ = {θ(1), . . . ,θ(M)} denotes the set of all parameters from all models.

The approximate Q-distributions are updated iteratively, taking the current

state of all others into account. Update equations for a particular Qi can be

derived by functional minimisation of the KL-divergence between P and Q with

respect to Qi which leads to

Q̃(Θi) ∝ exp {〈logP (D,Θ)〉Q(Θj),i 6=j}. (A.17)

The term in the exponent is the expectation of the model log-likelihood under all

other Q-distributions. Together with the expression data likelihood

P (Y |Θ) = N(Y |Y(1) + · · ·+ Y(M),Σ)
M∏
m=1

P (Y(m) |θ(m),D(m)) (A.18)

this allows generic update rules for all model parameters to be derived. Sub-

stituting in Equation (A.16) for each Q(·), we obtain the following approximate

distributions:

(Approximate distributions)

Q(τ ) =
G∏
g=1

Γ(τg | ãτg , b̃τg) (A.19)

Q(Y(m)) =
G∏
g=1

J∏
j=1

N(y
(m)
g,j | m̃Y

(m)
g,j
,

1

τ̃
Y

(m)
g,j

), (A.20)

and similar factorisations for each of the models (given below). The parameter
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update equations for the framework parameters follow as:

(Update rules)

ãτg = aτ +
1

2

J∑
j=1

〈(
yg,j −

M∑
m=1

y
(m)
g,j

)2〉
(A.21)

b̃τg = bτ +
J

2
. (A.22)

Genotype effect model The update equations for the models introduced

in the main text (Inference) follow similarly. For the models, we give the ap-

proximate factorisations employed, and the resulting update equations that are

derived in identical manner to the treatment above.

(Approximate distributions)

Q(B) =
N∏
n=1

G∏
g=1

Bernoulli(bn,g | p̃bn,g) (A.23)

Q(U) =
N∏
n=1

G∏
g=1

N(un,g | m̃un,g , Σ̃un,g) (A.24)
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(Update rules)

Σ̃un,g = I + 〈τg〉
〈
b2
n,g

〉 J∑
j=1

sT
n,jsn,j (A.25)

m̃un,g = Σ̃−1
un,g

(
〈τg〉 〈bn,g〉

J∑
j=1

sn,j

〈
z

(1)
g,j

\n〉)
(A.26)

m̃
y
(1)
g,j

=
N∑
n=1

〈bn,g〉 〈un,g〉 sn,j (A.27)

τ̃
y
(1)
g,j

=

[
N∑
n=1

〈
b2
n,g

〉 〈
u2
n,g

〉
s2
n,j

]
, (A.28)

where we define

〈
z

(1)
g,j

\n〉
= z

(1)
g,j −

∑
m6=n

〈bm,g〉 〈um,g〉 sm,j (A.29)

and the residual expression dataset for the mth model

z
(m)
g,j = yg,j −

M∑
l 6=m

y
(l)
g,j. (A.30)

(A.31)

The approximate posterior over the indicator variables can be obtained from

p̃bn,g ∝ pass · exp

{
−1

2

J∑
j=1

〈(
z

(1)
g,j

\n
− bn,gun,gsn,j

)2
〉}

(1− p̃bn,g) ∝ (1− pass) · exp

{
−1

2

J∑
j=1

〈(
z

(1)
g,j

\n)2
〉}

, (A.32)
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which after normalisation gives rise to p̃bn,g .

(A.33)

Known factor model is identical in treatment to the hidden factor model,

without the need for updates of the factor activations. Thus, we only present the

hidden factor model here.

(A.34)

(Approximate distributions)

Q(X) =
J∏
j=1

N(xj | m̃xj
, Σ̃xj

) (A.35)

Q(W) =
G∏
g=1

N(wg | m̃wg , Σ̃wg) (A.36)

Q(β) =
K∏
k=1

Γ(βk | ãβk , b̃βk) (A.37)

(Update rules)

Σ̃xj
= Σxj

+
〈
WTdiag (τ ) W

〉
(A.38)

m̃xj
= Σ̃−1

xj

〈
WT

〉
diag 〈τ 〉

(〈
z

(3)
j

〉)
(A.39)

131



Σ̃wg = diag 〈β〉+ 〈τg〉
J∑
j=1

〈
xjx

T
j

〉
(A.40)

m̃wg = Σ̃−1
wg

(
〈τg〉

J∑
j=1

〈xj〉
(〈

z
(3)
j

〉))
(A.41)

m̃
y
(3)
g,j

=
K∑
k=1

〈wg,k〉 〈xj,k〉 (A.42)

τ̃
y
(3)
g,j

=

[
N∑
n=1

〈
b2
n,g

〉 〈
u2
n,g

〉
s2
n,j

]
(A.43)

(A.44)

Initialisation. The initial states of hidden factor model weights Q(wg) and

levels Q(xj) are determined from a PCA solution, and the weights for known fac-

tors Q(vg) are initialised to the maximum likelihood estimate. The parameters

for remaining Q distributions for all models are deterministically initialised to

corresponding prior means. A random initialisation is possible as well, however,

additional computation time is required for multiple restarts, and the inference

becomes non-deterministic. We have not explored the implications of this alter-

native here as the maximum likelihood initialisation performs robustly well in

practise.

Bottleneck approximation. The genetic association model accounts for

additive association signals from all considered SNPs. The corresponding varia-

tional updates of the indicator variables in Equation (A.32) can be unstable in

practise. In particular, if multiple correlated SNPs are in association to a single

gene, variational learning is prone to being trapped in local optima, attribut-

ing the effect to only one of them. Hence, the inferred state of the indicator

variables B depends on the order in which these updates are carried out. To

obtain meaningful results, the update sequence needs to be randomised and typ-

ically large numbers of restarts are required. This procedure implies prohibitive

computational cost, particularly for large datasets. To avoid this additional com-

putation, these updates are instead implemented greedily. For each gene g only

a single non-zero entry in the indicator matrix is permitted, corresponding to
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the SNP with the greatest evidence for an association. This leads to a sparse

association matrix B.

VBQTL

Both the iterative (iVBQTL) and the fast variant (fVBQTL) of the studied al-

gorithms use these update equations presented above. iVBQTL uses the full

variational approximation with a specific update order of the Q(θi) distributions.

In experiments, we used 3 iterations of the full model. Within each full iteration,

the genetic model was iterated 3, known factor model 30 and hidden factor model

30 times.

To compare the eQTL detection performance of VBQTL with standard meth-

ods and previous studies, we do not directly evaluate the linkage probabilities

P (bn,g) which are obtained during learning. Instead, we apply the standard asso-

ciation model (Section Standard expression QTL model) on the residuals of the

known and unknown factor models after convergence similarly to the traditional

methods.

fVBQTL is a faster approximate variant of iVBQTL. Rather than performing

full inference in the model, the genetic part of the model is ignored when inferring

the parameters for the factor models, which can be cast as a specific update

schedule.

Simulation dataset

We simulated 80 diploid individuals with 100 SNPs and 400 probe expression

measurements. The simulated minor allele frequency was 0.4 for each SNP, and

the allele configuration sn,j of SNP n was encoded as (1, 0), (1, 1), or (1, 2),

including a column for the mean. We independently simulated effects of known

and hidden factors, as well as genetic associations, noise, and downstream effects.

Noise level ψg of probe g was drawn from a normal distribution with mean 0 and

inverse variance τg drawn from Γ(3, 1), ψg ∼ N(0, τ−1
g ). We simulated associations

between SNP genotypes and gene expression levels for 1% of the SNP-gene pairs.

The genetic weight θg,n for an association between probe g and SNP n was drawn
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from N(0, 4). A total of 10 global factors affecting all gene expression levels were

simulated. Individual factor levels xj,k for factor k were drawn from N(0, 0.6).

Weights wk,g of factor k for probe g were drawn from N(0, σ2
k), where σ2

k ∼
0.8(Γ(2.5, 0.6))2 for a heavy-tailed weight distribution. Three of the 10 simulated

global factors were designated as known covariates fc,j. Further three probes that

had a simulated SNP association were designated to have downstream effects on

30 other probes. The effect of probe g on probe h in individual j was simulated as

additive factor of w′g,hyg,j, where w′g,h ∼ N(8, 0.8) for strong downstream effects,

and yg,j is the expression level of probe g in individual j.
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Appendix B

Supplementary Tables

Chr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y Total FDR
Probes 1009 644 540 384 449 571 468 338 387 380 545 520 189 330 348 426 549 154 618 266 120 238 328 15 9816 -

CEU
Standard 23 21 12 24 14 26 18 12 3 17 21 24 5 16 15 21 35 9 29 8 8 14 7 0 382 2.57 %
fVBQTL 61 69 53 57 45 83 44 36 12 48 61 68 16 41 32 55 82 20 69 29 17 30 23 0 1051 0.93 %

YRI
Standard 37 32 23 19 21 42 27 17 9 27 31 30 9 24 16 24 38 12 30 18 8 26 9 0 529 1.86 %
fVBQTL 79 94 75 48 56 91 66 38 17 58 79 65 26 48 48 59 94 22 77 40 19 43 27 0 1269 0.77 %

ASI
Standard 36 37 19 28 19 48 30 15 9 24 33 36 10 19 12 24 43 16 42 16 10 19 9 0 554 1.77 %
fVBQTL 91 105 88 55 58 111 73 55 19 59 87 78 31 56 52 61 109 30 96 43 22 37 28 0 1444 0.68 %

pooled
Standard 68 77 56 48 42 79 52 32 14 46 48 66 21 39 34 43 82 21 71 31 19 37 19 0 1045 0.94 %
fVBQTL 159 191 158 115 120 202 138 101 36 120 168 159 54 104 96 113 181 51 170 78 33 85 60 4 2696 0.36 %

Table B.1: Number of probes with a cis association for individual chromosomes
and per-probe false discovery rate for the considered populations (per-probe
FPR= 0.100%, Bonferroni corrected for testing multiple SNPs per probe, 2-tailed
t test) on raw expression data (Standard) and after accounting for hidden factors
(fVBQTL).
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Standard eQTLs
CEU (382) YRI (529) CHB+JPT (554) Pooled (1045)

Standard

CEU (382) 382 (100%) 194 (50%) 236 (61%) 356 (93%)
YRI (529) 194 (36%) 529 (100%) 228 (43%) 409 (77%)
CHB+JPT (554) 236 (42%) 228 (41%) 554 (100%) 490 (88%)
Pooled (1045) 356 (34%) 409 (39%) 490 (46%) 1045 (100%)

fVBQTL

CEU (1051) 365 (34%) 282 (26%) 358 (34%) 662 (62%)
YRI (1269) 276 (21%) 510 (40%) 356 (28%) 675 (53%)
CHB+JPT (1444) 305 (21%) 322 (22%) 531 (36%) 788 (54%)
Pooled (2696) 370 (13%) 486 (18%) 527 (19%) 1028 (38%)

fVBQTL eQTLs
CEU (1051) YRI (1269) CHB+JPT (1444) Pooled (2696)

Standard

CEU (382) 365 (95%) 276 (72%) 305 (79%) 370 (96%)
YRI (529) 282 (53%) 510 (96%) 322 (60%) 486 (91%)
CHB+JPT (554) 358 (64%) 356 (64%) 531 (95%) 527 (95%)
Pooled (1045) 662 (63%) 675 (64%) 788 (75%) 1028 (98%)

fVBQTL

CEU (1051) 1051 (100%) 591 (56%) 717 (68%) 1007 (95%)
YRI (1269) 591 (46%) 1269 (100%) 697 (54%) 1120 (88%)
CHB+JPT (1444) 717 (49%) 697 (48%) 1444 (100%) 1350 (93%)
Pooled (2696) 1007 (37%) 1120 (41%) 1350 (50%) 2696 (100%)

Table B.2: Magnitude and fraction of overlap between probes with a Standard
of fVBQTLcis eQTL respectively, for different populations and methods. Total
numbers for each population and method are given in parenthesis after the pop-
ulation. 955 probes had a standard eQTL in some population, and 148 in every
population. 2236 probes had a fVBQTL eQTL in some population, and 477 in
every population.

Population 1. eQTLs 2. fVBQTLs 3. Pooled eQTLs 2. & 3. 2. - 1. 3. - 1. (2. - 1.) &(3. - 1.)
CEU 382 1051 871 485 686 582 204
YRI 529 1269 796 476 759 507 188
CHB+JPT 554 1444 709 501 913 378 170

Table B.3: Overlap of VBQTLs in one population (2.) with standard eQTLs
found when pooling the other two populations (3.). Overlaps are given both for
all QTLs (2. & 3.) and only for additional ones (2. - 1. & 3. - 1.) compared
to standard eQTLs in the population. Per-probe eQTL FPR=0.1%, Bonferroni
corrected for testing multiple SNPs per probe, 2-tailed t test.
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Standard
Population CEU (47) YRI (78) CHB+JPT (46)
CEU (47) 47 (100%) 18 (38%) 22 (47%)
YRI (78) 18 (23%) 78 (100%) 18 (23%)
CHB+JPT (46) 22 (48%) 18 (39%) 46 (100%)
All populations 13
> 1 populations 32
Any population 126

fVBQTL
Population CEU (72) YRI (87) CHB+JPT (76)
CEU (72) 72 (100%) 26 (36%) 41 (57%)
YRI (87) 26 (30%) 87 (100%) 31 (36%)
CHB+JPT (76) 41 (54%) 31 (41%) 76 (100%)
All populations 25
> 1 populations 48
Any population 162

Table B.4: Count and percent overlap between probes in trans associations on
different populations using standard method and after using fVBQTL.

Factor 1 2 3 4 5 6
Gender 0.12 0.16 -0.81 0.19 0.08 -0.00

CEU 0.68 -0.47 -0.21 -0.04 -0.27 0.04
CHB+JPT -0.43 0.28 -0.24 -0.64 -0.08 0.03

YRI -0.25 0.19 0.46 0.69 0.35 -0.08

Table B.5: Pearson correlation coefficient between top 6 factors learned on the
pooled HapMap data, and 4 indicator variables relating to the background of the
individual. Correlations with absolute value above 0.6 are highlighted.
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Method K α Factors found Variance explained cis probes cis spec. cis sens. trans probes trans spec. trans sens.
Standard – – 0 0.00 20 1.00 1.00 0 0.00 0.00
PCA 5 – 5 0.52 35 0.54 0.95 0 0.00 0.00
PCA 15 – 15 0.70 38 0.45 0.85 0 0.00 0.00
PCA 30 – 30 0.82 29 0.45 0.65 0 0.00 0.00
PCA 60 – 60 0.94 4 0.75 0.15 0 0.00 0.00
PCAsig – 0.01 7 0.56 37 0.51 0.95 0 0.00 0.00
PCAsig – 0.1 7 0.56 37 0.51 0.95 0 0.00 0.00
PCAsig – 0.3 7 0.56 37 0.51 0.95 0 0.00 0.00
SVA – 0.01 12 0.65 38 0.50 0.95 0 0.00 0.00
SVA – 0.1 12 0.65 38 0.50 0.95 0 0.00 0.00
SVA – 0.3 12 0.65 38 0.50 0.95 0 0.00 0.00
fVBQTL 5 – 5 0.52 34 0.59 1.00 0 0.00 0.00
fVBQTL 15 – 15 0.69 51 0.39 1.00 0 0.00 0.00
fVBQTL 30 – 30 0.70 55 0.36 1.00 0 0.00 0.00
fVBQTL 60 – 60 0.70 55 0.36 1.00 0 0.00 0.00
iVBQTL 5 – 5 0.52 34 0.59 1.00 0 0.00 0.00
iVBQTL 15 – 15 0.69 51 0.39 1.00 0 0.00 0.00
iVBQTL 30 – 30 0.70 54 0.37 1.00 0 0.00 0.00
iVBQTL 60 – 60 0.70 54 0.37 1.00 0 0.00 0.00

Table B.6: Summary statistics for method performances on the human chro-
mosome 19 dataset presented in the main text. The parameters for different
methods are varied by the number of allowed factors K (PCA, VBQTL) or by
the significance cutoff α ( PCAsig, SVA). Hidden factor summary is given by the
number of factors found and the variance explained by the hidden factor effects.
The number of probes with a cis and trans eQTL, as well as the sensitivity and
specificity of recovering probes with a standard eQTL are given. Per-probe eQTL
FPR = 0.001, Bonferroni corrected for testing multiple SNPs per probe, 2-tailed
t test.
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Method K α Factors found Variance explained cis probes cis spec. cis sens. trans probes trans spec. trans sens.
Standard – – 0 0.00 445 1.00 1.00 746 1.00 1.00
PCA 5 – 5 0.28 478 0.77 0.82 501 0.79 0.53
PCA 15 – 15 0.53 481 0.64 0.69 132 0.77 0.14
PCA 30 – 30 0.70 392 0.60 0.53 57 0.75 0.06
PCA 60 – 60 0.86 105 0.66 0.16 5 1.00 0.01
PCAsig – 0.01 7 0.34 468 0.72 0.76 229 0.80 0.25
PCAsig – 0.1 7 0.34 468 0.72 0.76 229 0.80 0.25
PCAsig – 0.3 7 0.34 468 0.72 0.76 229 0.80 0.25
SVA – 0.01 14 0.52 482 0.65 0.71 144 0.78 0.15
SVA – 0.1 14 0.52 482 0.65 0.71 144 0.78 0.15
SVA – 0.3 14 0.52 482 0.65 0.71 144 0.78 0.15
fVBQTL 5 – 5 0.34 547 0.72 0.89 409 0.81 0.45
fVBQTL 15 – 15 0.55 668 0.59 0.88 364 0.80 0.39
fVBQTL 30 – 30 0.62 719 0.54 0.87 349 0.79 0.37
fVBQTL 60 – 60 0.62 722 0.54 0.87 348 0.78 0.37
iVBQTL 5 – 5 0.32 616 0.68 0.95 650 0.76 0.66
iVBQTL 15 – 15 0.50 785 0.54 0.96 694 0.73 0.68
iVBQTL 30 – 30 0.57 821 0.52 0.95 746 0.71 0.71
iVBQTL 60 – 60 0.57 825 0.51 0.95 739 0.71 0.70

Table B.7: Summary statistics for method performances on the yeast dataset
presented in the main text. The parameters for different methods are varied by
the number of allowed factors K (PCA, VBQTL) or by the significance cutoff
α ( PCAsig, SVA). Hidden factor summary is given by the number of factors
found and the variance explained by the hidden factor effects. The number of
probes with a cis and trans eQTL, as well as the sensitivity and specificity of
recovering probes with a standard eQTL are given. Per-probe eQTL FPR =
0.001, Bonferroni corrected for testing multiple SNPs per probe, 2-tailed t test.
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Method K α Factors found Variance explained cis probes cis spec. cis sens. trans probes trans spec. trans sens.
Standard – – 0 0.00 560 1.00 1.00 369 1.00 1.00
PCA 5 – 5 0.25 639 0.84 0.96 418 0.76 0.86
PCA 15 – 15 0.48 614 0.82 0.90 409 0.72 0.80
PCA 30 – 30 0.74 708 0.70 0.88 488 0.59 0.78
PCA 60 – 60 0.91 354 0.82 0.52 178 0.76 0.37
PCAsig – 0.01 12 0.39 601 0.84 0.91 376 0.76 0.77
PCAsig – 0.1 13 0.41 589 0.85 0.90 371 0.75 0.76
PCAsig – 0.3 13 0.41 589 0.85 0.90 371 0.75 0.76
SVA – 0.01 24 0.67 687 0.74 0.91 501 0.58 0.79
SVA – 0.1 24 0.67 687 0.74 0.91 501 0.58 0.79
SVA – 0.3 24 0.67 687 0.74 0.91 501 0.58 0.79
fVBQTL 5 – 5 0.32 876 0.63 0.98 590 0.56 0.90
fVBQTL 15 – 15 0.51 1028 0.54 0.99 716 0.46 0.89
fVBQTL 30 – 30 0.67 973 0.56 0.98 657 0.49 0.88
fVBQTL 60 – 60 0.70 932 0.59 0.98 626 0.51 0.87
iVBQTL 5 – 5 0.32 895 0.62 0.99 613 0.55 0.91
iVBQTL 15 – 15 0.51 1036 0.53 0.99 723 0.46 0.90
iVBQTL 30 – 30 0.55 1056 0.52 0.99 729 0.46 0.90
iVBQTL 60 – 60 0.55 1049 0.53 0.99 728 0.45 0.90

Table B.8: Summary statistics for method performances on the mouse dataset
presented in the main text. The parameters for different methods are varied by
the number of allowed factors K (PCA, VBQTL) or by the significance cutoff
α ( PCAsig, SVA). Hidden factor summary is given by the number of factors
found and the variance explained by the hidden factor effects. The number of
probes with a cis and trans eQTL, as well as the sensitivity and specificity of
recovering probes with a standard eQTL are given. Per-probe eQTL FPR =
0.001, Bonferroni corrected for testing multiple SNPs per probe, 2-tailed t test.
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Factor Q-value mean(LODs) Covariate
Oaf1p 5.54E-03 42.9 (r2=0.30) Probe
Pdr3p 2.09E-02 14.6 SNP XV 132423
Rtg3p 3.01E-02 21.4 SNP XIV 449639
Reb1p 3.70E-02 41.5 Env
Reb1p 0.00E+00 78.1 (r2=0.51) Probe
Thi2p 0.00E+00 52.2 SNP VI 5852
Kar4p 0.00E+00 45.7 SNP V 183958
Hcm1p 0.00E+00 38.9 (r2=0.29) Probe
Rpn4p 2.25E-02 56.1 Env
Rpn4p 2.44E-02 35.4 (r2=0.24) Probe
Pdc2p 1.84E-02 16.4 SNP XII 611967
Gis1p 4.18E-02 11.9 SNP XV 193911
Ino2p 1.48E-02 11.9 SNP II 603790
Upc2p 2.90E-02 11.7 SNP I 55215
Adr1p 4.98E-02 41.7 Env
Met32p 1.90E-02 15.8 SNP IX 277908
Met32p 1.04E-03 23.4 (r2=0.19) Probe
Sum1p 0.00E+00 115.2 SNP XV 838599
Stp1p 1.36E-02 23.6 (r2=0.19) Probe
Gcn4p 2.28E-02 66.7 Env
Gcn4p 3.00E-02 72.4 (r2=0.42) Probe
Swi4p 6.09E-03 39.7 Env
Spt2p 8.70E-05 34.1 SNP XV 10337
Gat1p 2.44E-02 23.5 (r2=0.19) Probe
Hac1p 4.56E-02 20.5 Env
Cdc14p 0.00E+00 42.3 SNP X 307178
Pho4p 2.90E-02 15.5 SNP XIII 28694
Mig1p 5.77E-04 151.3 Env
Mig1p 3.30E-02 51.1 (r2=0.35) Probe
Aft1p 3.83E-02 10.9 SNP XV 180210
Hsf1p 2.60E-02 64.3 Env
Hsf1p 3.79E-04 31.1 (r2=0.24) Probe
Tos8p 5.79E-03 60.0 Env
Tos8p 1.92E-02 14.7 (r2=0.12) Probe
Gts1p 7.33E-03 43.1 SNP V 17399
Yap3p 1.53E-03 21.6 SNP VII 73452
Opi1p 3.24E-02 22.5 SNP V 15817
Stp2p 1.63E-02 70.4 Env
Stp2p 3.41E-02 61.7 (r2=0.39) Probe
Rsc30p 1.00E-03 29.7 SNP VIII 221933
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Factor Q-value mean(LODs) Covariate
Rsc30p 4.97E-02 60.7 (r2=0.41) Probe
Ste12p 2.22E-02 156.7 Env
Ste12p 4.31E-05 85.1 (r2=0.51) Probe
Zap1p 3.67E-02 35.1 Env
Gzf3p 3.63E-02 110.2 SNP III 210748
YJL206C 8.80E-04 46.0 SNP VIII 92978
Cbf1p 3.70E-02 34.7 Env
Put3p 1.47E-02 10.3 Env
Put3p 2.26E-02 7.0 (r2=0.06) Probe
Phd1p 2.51E-02 12.9 SNP XIII 46084
Phd1p 6.45E-04 24.5 (r2=0.19) Probe
Hap4p 4.84E-02 79.0 (r2=0.41) Probe
Abf1p 0.00E+00 52.4 Env
Bas1p 3.46E-02 72.9 SNP IV 289639
Rfx1p 4.78E-02 29.7 Env
Ifh1p 4.61E-02 15.7 Env
Hap1p 0.00E+00 38.7 SNP XII 607076
Hap1p 0.00E+00 96.4 (r2=0.59) Probe
Pdr8p 5.93E-03 14.2 SNP XII 27765
Sfp1p 0.00E+00 104.6 Env
Yap1p 0.00E+00 225.2 Env
Yap1p 0.00E+00 84.9 (r2=0.52) Probe
Yox1p 0.00E+00 93.6 Env
War1p 8.89E-03 36.5 SNP III 301446
Msn2p 3.35E-02 21.0 SNP XV 154309
Mcm1p 8.37E-03 76.7 Env
Mcm1p 3.28E-02 21.5 (r2=0.17) Probe
Fkh2p 4.90E-02 17.7 Env
Fkh2p 4.42E-02 10.5 (r2=0.09) Probe
Met4p 2.21E-04 79.0 Env
Met4p 4.77E-02 32.9 (r2=0.24) Probe
Sko1p 1.76E-02 36.3 SNP XV 180222
Gcr2p 6.25E-04 22.7 SNP XIV 486861
Gcr2p 4.36E-02 8.2 (r2=0.07) Probe
Gis2p 3.79E-02 12.6 SNP XIV 582954
Cin5p 2.35E-02 45.6 Env
Hms1p 3.21E-02 27.3 Env
Sfl1p 0.00E+00 39.1 SNP I 186488
Pip2p 4.34E-02 35.4 (r2=0.25) Probe
Usv1p 9.62E-04 41.3 SNP XI 98330
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Factor Q-value mean(LODs) Covariate
Rox1p 4.72E-02 35.5 SNP XIV 449639
Fhl1p 3.76E-02 31.7 (r2=0.25) Probe
Arr1p 3.50E-02 111.9 Env
Table B.9: Properties of inferred yeastract factor acti-
vations. Q-value and average LOD score of association
with SNPs (with best locus) or environment indicator is
given for associations with combined Q-value < 0.050

Factor Q-value mean(LODs) Covariate
Glycolysis / Gluconeogenesis (00010) 4.63E-02 19.9 SNP XIV 486861
Nitrogen metabolism (00910) 0.00E+00 119.9 SNP XII 433955
Lysine biosynthesis (00300) 4.00E-05 25.6 SNP II 479166
Tryptophan metabolism (00380) 0.00E+00 29.2 SNP XV 779974
Arginine and proline metabolism
(00330)

0.00E+00 46.7 SNP XV 59733

Aminoacyl-tRNA biosynthesis (00970) 4.50E-02 21.7 SNP XIV 486861
Metabolic pathways (01100) 0.00E+00 393.2 Env
Fatty acid metabolism (00071) 7.66E-03 67.1 SNP I 55329

Table B.10: Properties of inferred kegg factor activations. Q-value and average
LOD score of association with SNPs (with best locus) or environment indicator
is given for associations with combined Q-value < 0.050
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Factor Q-value mean(LODs) Covariate
Factor 1 0.00E+00 289.5 Env
Factor 4 0.00E+00 19.9 SNP XV 89211
Factor 5 0.00E+00 61.4 SNP XIV 449639
Factor 7 1.96E-02 10.9 SNP XV 446514
Factor 8 2.34E-04 16.2 SNP XII 681096
Factor 9 1.11E-03 15.6 SNP XII 659357
Factor 10 1.32E-03 15.1 SNP XII 672779
Factor 11 0.00E+00 19.2 SNP XII 634225
Factor 12 0.00E+00 17.7 SNP II 506661
Factor 14 6.23E-03 12.6 SNP XI 180221
Factor 15 1.99E-03 14.2 SNP III 76127
Factor 16 1.65E-02 11.2 SNP XIII 404546
Factor 17 2.54E-02 10.1 SNP XV 838599
Factor 18 3.12E-02 9.8 SNP XIII 216022
Factor 19 3.15E-02 9.7 SNP XV 619862
Factor 20 0.00E+00 21.3 SNP II 506661
Factor 21 2.25E-03 13.8 SNP XV 842027
Factor 22 0.00E+00 24.1 SNP V 395442
Factor 23 2.36E-03 14.1 SNP XIII 78655
Factor 24 0.00E+00 18.5 SNP III 75021
Factor 25 1.08E-02 11.5 SNP XV 496730
Factor 26 9.58E-03 11.6 SNP IX 195965
Factor 27 1.98E-02 10.9 SNP II 486640
Factor 28 3.32E-02 9.7 SNP XVI 454307

Table B.11: Properties of inferred freeform factor activations. Q-value and aver-
age LOD score of association with SNPs (with best locus) or environment indi-
cator is given for associations with combined Q-value < 0.050
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Locus Factor Q-value mean(LODs)
III 79091 War1p 4.53E-02 26.3
III 79091 Thi2p 9.65E-03 12.3
III 79091 Gzf3p 3.63E-02 110.2
IV 106892 Bas1p 3.46E-02 72.9
IV 106892 Gzf3p 3.90E-02 9.8
IV 106892 Yap3p 1.73E-03 35.2
V 6335 Gts1p 7.33E-03 43.1
V 6335 Opi1p 3.24E-02 22.5
V 6335 Kar4p 0.00E+00 45.7
V 420595 Rsc30p 3.60E-02 10.5
V 420595 Kar4p 0.00E+00 40.5
V 420595 Hap1p 1.89E-02 10.4
V 420595 Sfl1p 3.78E-04 36.4
VII 55458 Gts1p 1.79E-02 13.0
VII 55458 Yap3p 1.53E-03 21.6
VII 449898 Gzf3p 4.24E-02 12.2
VII 449898 Pdr8p 4.52E-02 14.7
XII 611810 Hap1p 0.00E+00 38.7
XII 611810 Pdc2p 1.84E-02 16.4
XII 611810 Pdr8p 2.21E-02 13.2
XIII 46084 Pho4p 2.90E-02 15.5
XIII 46084 Phd1p 2.51E-02 12.9
XIII 46084 Ino2p 4.69E-02 11.3
XIV 449639 Rox1p 4.72E-02 35.5
XIV 449639 Gcr2p 6.25E-04 22.7
XIV 449639 Rtg3p 3.01E-02 21.4
XIV 449639 Gis2p 3.79E-02 12.6
XV 174364 Pdr3p 2.09E-02 14.6
XV 174364 Sko1p 1.76E-02 36.3
XV 174364 Spt2p 8.70E-05 34.1
XV 174364 Aft1p 3.83E-02 10.9
XV 174364 Gis1p 4.18E-02 11.9
XV 174364 Msn2p 3.35E-02 21.0
XV 380725 Gis1p 4.79E-02 9.5
XV 380725 Sum1p 6.18E-03 13.2
XVI 932310 Rsc30p 4.52E-02 14.2
XVI 932310 Sfl1p 2.76E-02 14.8

Table B.12: Associations to loci with more than one yeastract factor association.
Q-value and average LOD score are given for all factors associated to each locus.
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Factor Q-value mean(LODs) Covariate
Locus Factor Q-value mean(LODs)
XIV 486861 Aminoacyl-tRNA biosynthesis (00970) 4.50E-02 21.7
XIV 486861 Glycolysis / Gluconeogenesis (00010) 4.63E-02 19.9

Table B.13: Associations to loci with more than one kegg factor association.
Q-value and average LOD score are given for all factors associated to each locus.
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Locus Factor Q-value mean(LODs)
II 486640 Factor 5 1.73E-02 11.1
II 486640 Factor 7 2.00E-02 10.8
II 486640 Factor 8 2.11E-02 10.6
II 486640 Factor 12 0.00E+00 17.7
II 486640 Factor 20 0.00E+00 21.3
II 486640 Factor 27 1.98E-02 10.9
II 697894 Factor 20 3.11E-02 9.8
II 697894 Factor 12 2.01E-03 14.3
III 91287 Factor 8 3.40E-02 9.6
III 91287 Factor 15 1.99E-03 14.2
III 91287 Factor 16 3.51E-02 9.4
III 91287 Factor 17 4.78E-02 8.8
III 91287 Factor 24 0.00E+00 18.5
III 91287 Factor 28 3.49E-02 9.4
V 350744 Factor 14 4.96E-02 8.7
V 350744 Factor 22 0.00E+00 24.1
IX 195965 Factor 25 4.18E-02 9.0
IX 195965 Factor 26 9.58E-03 11.6
IX 195965 Factor 4 3.05E-02 9.8
XII 635380 Factor 4 4.21E-02 9.0
XII 635380 Factor 8 2.34E-04 16.2
XII 635380 Factor 9 1.11E-03 15.6
XII 635380 Factor 10 1.32E-03 15.1
XII 635380 Factor 11 0.00E+00 19.2
XII 635380 Factor 12 1.50E-03 14.9
XII 635380 Factor 23 2.53E-02 10.0
XIII 28622 Factor 18 3.12E-02 9.8
XIII 28622 Factor 23 2.36E-03 14.1
XIII 28622 Factor 7 2.56E-02 10.1
XIV 418269 Factor 5 0.00E+00 61.4
XIV 418269 Factor 30 3.37E-02 9.6
XIV 418269 Factor 8 1.67E-03 14.7
XV 96633 Factor 18 4.94E-02 8.7
XV 96633 Factor 4 0.00E+00 19.9
XV 96633 Factor 5 2.38E-02 10.3
XV 96633 Factor 24 9.55E-03 11.6
XV 838599 Factor 17 2.54E-02 10.1
XV 838599 Factor 21 2.25E-03 13.8

Table B.14: Associations to loci with more than one freeform factor association.
Q-value and average LOD score are given for all factors associated to each locus.
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Locus Chr Pos. 1. Probes
with trans
associa-
tions

2. Probes
with down-
stream fac-
tor associ-
ations

3. (2.)
with
stronger
factor as-
sociation

1.&2 1.&2.
1.

1.&3.
1.

1.&3.
1.&2

AMN1 2 555575 51 73 73 3 0.06 0.06 1.00
HAP1 12 644082 66 53 53 31 0.47 0.47 1.00
PHO84 13 46084 31 454 454 11 0.35 0.35 1.00
MKT1 14 449639 218 514 508 21 0.10 0.07 0.71
IRA2 15 174364 271 1443 1438 164 0.61 0.59 0.97

Table B.15: trans eQTL peaks with at least 50 associations. For each peak,
the number of significant associations to probe expression levels (1.), number of
associations for Yeastract factor activations significantly associated with the peak
(2.), number of genes more strongly associated with the factor than the peak locus
genotype (3.) are given, together with the number and fraction of trans eQTLs
explained by the factors, fraction of trans eQTLs more strongly associated with
the factor, and fraction of trans eQTLs associated with a factor that are more
strongly associated with the factor.

Sample Generation Replica Type Ploidy Condition Timepoint Coverage
WA-NA Initial R1 F6 T0 6 1 Pool Haploid Permissive 0 23.8
WA-NA Initial R2 F6 T0 6 2 Pool Haploid Permissive 0 13.1
WA-NA Heat R1 F6 T4 6 1 Pool Haploid Heat 40C 2 19.3
WA-NA Heat R2 F6 T4 6 2 Pool Haploid Heat 40C 2 25.7
WA-NA Initial R1 F6 S1 6 1 Segregant Haploid Permissive 0 20.3
WA-NA Initial R2 F6 S1 6 2 Segregant Haploid Permissive 0 27.4
WA-NA Mock R1 F12 T4 12 1 Pool Haploid Permissive 2 115.4
WA-NA Heat R1 F12 T4 12 1 Pool Haploid Heat 40C 2 129.3
WA-NA Mock R2 F12 T4 12 2 Pool Haploid Permissive 2 105.7
WA-NA Initial R2 F12 T0 12 2 Pool Haploid Permissive 0 107.3
WA-NA Heat R2 F12 T2 12 2 Pool Haploid Heat 40C 1 54.8
WA-NA Heat R2 F12 T4 12 2 Pool Haploid Heat 40C 2 83.7
WA-NA Heat R2 F12 T6 12 2 Pool Haploid Heat 40C 3 65.9
WA-NA Diploid-heat R2 F12 T6 12 2 Pool Diploid Heat 40C 3 32.6
WA-NA Diploid-heat R1 F12 T4 12 1 Pool Diploid Heat 40C 2 88.6
WA-NA Paraquat R1 F12 T4 12 1 Pool Haploid Paraquat 2 150

Table B.16: Average sequencing coverage at segregating sites for different inter-
cross generations, ploidies, conditions, and selection timepoints.
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Chromosome Location Combined change (R1 + R2)
1 11998 0.38
1 207560 0.29
2 472111 0.33
4 1444248 -0.26
4 373030 0.3
4 430662 0.35
4 474894 0.39
4 572931 0.53
4 700611 -0.35
7 1081499 -0.59
8 261643 0.28
9 77497 0.27
10 420908 0.27
10 450702 0.26
10 492479 0.26
10 613016 0.45
12 388635 -0.38
12 491120 -0.28
12 967942 -0.35
14 49576 0.3
15 184627 0.39
15 580877 -0.28

Table B.17: Regions selected for during intercross rounds between F6 and F12
generations.
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Chromosome Location Combined allele frequency change (R1 + R2)
1 119382 0.31
2 472031 -0.52
2 517350 -0.68
4 1313885 0.42
4 454021 -0.31
4 496586 -0.3
7 131690 0.3
7 859960 0.83
9 292345 -0.32
10 234117 -0.39
10 420908 -0.42
10 679911 -0.28
12 140165 0.38
12 730764 -0.28
13 743221 -0.27
13 893719 -0.56
14 480623 0.46
15 1032447 -0.76
15 179760 -1.27

Table B.18: Heat QTLs detected with artificial selection. All loci with total allele
frequency change of at least 0.3, and at least 0.1 in both replicas are given.
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Gene F12 T4 F12 T0 Change T0 - T4
Q0045 0.4 36.5 -36.1
Q0250 2 37 -35
Q0255 1.7 36.1 -34.4
Q0060 0.3 31.9 -31.6
Q0115 1.2 32 -30.8
Q0275 1.8 32.3 -30.5
Q0105 3.3 32.8 -29.5
Q0050 0.2 27.7 -27.5
Q0120 1.6 28.3 -26.7
Q0070 0.2 26 -25.8
Q0085 1.9 26.1 -24.2
Q0065 0.2 22 -21.8
Q0182 0.7 18.3 -17.6
Q0032 0.9 12.3 -11.4
Q0142 0.3 11.3 -11
YLR162W 44.5 55.4 -10.9
Q0140 3.3 13.2 -9.9
Q0130 2.7 11.4 -8.7
Q0144 2.2 10.8 -8.6
Q0143 0.7 7.9 -7.2
Q0080 0.1 6.2 -6.1
YDR366C 11.5 17.6 -6.1
Q0110 0.7 6 -5.3
Q0010 13.7 18 -4.3
Q0092 0 3.5 -3.5
Q0017 0.1 2.5 -2.4
YEL074W 4.1 5.9 -1.8
YIR044C 1.1 2.9 -1.8
YIL174W 0.7 1.9 -1.2
YJL225C 2.1 3.3 -1.2
YNL337W 1.6 2.8 -1.2
YOL166C 1.6 2.8 -1.2
YHR216W 3.4 4.4 -1
YLR465C 2.6 0.9 1.7
YDR340W 8.3 3.9 4.4

Table B.19: Genes changing in copy number upon selection.
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