
Chapter 5

Additional gene mapping studies

Collaboration note This chapter contains work performed in collaboration

with Gemma Langridge and Dr. Keith Turner for bacterial transposon mutant

mapping (Langridge et al., 2009), and Francisco Cubillos and Dr. Gianni Liti

for yeast linkage analysis (Cubillos et al., 2011; Liti et al., 2009b).

Gemma and Keith developed the transposon mutant library, performed the ex-

periments, generated raw data, and did the high-level analysis; I contributed the

statistical analyses of the data. Similarly, Francisco and Gianni designed and

developed the yeast grid of crosses, performed the experiments, and high-level

analysis; I contributed the statistical analyses and parts of interpretation of the

data.

5.1 Gene mapping with one million bacterial

transposon mutants

One trait mapping approach available in prokaryotic and simple eukaryotic organ-

isms is generating a very large number of random mutants, and then examining

which mutants survive selection (Chapter 1.1.3). This is related to the work in

Chapter 4 on standing variation, but can access a wider variety of alleles. A

version of this approach based on transposon insertions was recently developed
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5.1 Gene mapping with one million bacterial transposon mutants

for the bacterium Salmonella enterica serovar Typhi (S. Typhi, Langridge et al.

(2009)).

5.1.1 Transposon insertion library for Salmonella Typhi

S. Typhi causes typhoid fever, and is responsible for hundreds of thousands of

deaths in the developing world every year (Crump et al., 2004). One approach

to fighting this disease agent is to map the genes essential for its survival in

the permissive condition, restrictive conditions associated with its lifecycle in

the human host, and under stress from therapeutic agents. To this end, our

collaborators created a transposon insertion library with on the order of 1,000,000

mutants, each harbouring one transposon insertion. This large mutant library was

then grown in a permissive condition and with added 10% ox bile to simulate gall

bladder environment, followed by DNA extraction from the pool, amplification

of DNA from the junction between transposon sequence and genomic DNA, and

high-throughput sequencing. Mapping the sequencing reads to the genome results

in a list of sites where some mutant had a transposon inserted.

Here, we focus on two mapping tasks. First, we look for essential genes that

do not allow insertions, followed by study of genes essential for growth in bile,

which is important for its persistence in the human host.

5.1.2 Mapping essential genes

To test whether a gene was essential, we quantified how unlikely it was to har-

bour a transposon insertion. Genes with no observed insertions are likely to be

essential, while genes with many insertions are obviously not. For every gene g of

length Lg, we calculated the insertion frequency fg = Ig
Lg

, where Ig is the observed

number of insertions.

We noted that the distribution of f was bimodal with modes at 0 and roughly

0.05, and heavy-tailed (Figure 5.1). The mode at 0 corresponds to the essential

genes that do not allow for any insertions, and the mode at 0.05 to all the other

genes. Under the assumption of uniform incorporation of the transposon, we

would expect the number of insertions in a gene to follow a Poisson distribution.

However, the distribution is considerably more dispersed, indicating presence of
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5.1 Gene mapping with one million bacterial transposon mutants

unknown biases and potential sequence-specificity. Standard approaches to deal

with overdispersion, such as using a negative binomial distribution, or a normal

distribution with variance proportional to mean, did not give a substantially

better fit, and were not straightforward to interpret.
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Figure 5.1: Histogram of per-base insertion frequency of individual genes. The
blue line corresponds to the Gamma fit to the right mode (non-essential model),
while the red line corresponds to the Gamma fit to the left mode (essential model).

Instead of modelling the generative process, we modelled the data directly.

We fit Gamma distributions for the two modes of the distribution of the insertion

site count in every condition using the R MASS library. For each fg, we calculated

the probabilities corresponding to the right tail of the essential model and left tail

of the non-essential model. This represents our belief of observing an insertion

index that is at least as extreme for both individual models. For every gene g,

we calculated the base 2 logarithm of the likelihood ratio (Lg) between the two

model fits, and classified the gene as essential (Lg < −2, essential model at least
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5.2 Gene mapping with grid of yeast crosses

4 times more likely), non-essential (Lg > 2, non-essential model at least 4 times

more likely), or uncertain (|Lg| < 2).

We found 349 essential genes at false discovery rate less than 0.07. The

analysis of these genes is presented in Langridge et al. (2009).

5.1.3 Mapping condition-specific essential genes

Next, we looked for genes essential for growth in bile. These genes should not

be essential in general, but insertions in them should be observed less than in

the permissive condition. There were three timepoints for growth in bile, we

compared the data from each to the data from permissive condition. We analyse

number of mapped reads instead of insertion events to avoid many more com-

parisons of very low frequency (1-2 insertions) events. From the raw data, it

was clear that several genes had reduced insertion frequencies as assessed by the

number of sequenced reads (Figure 5.2a).

For each pair of conditions (A,B), we calculated the log2 fold change ratio

Sg,A,B in the number of observed reads Rg,A, Rg,B for every gene g as Sg,A,B =
Rg,A+100

Rg,B+100
. The correction of 100 reads in the numerator and denominator smooth

out the high scores for genes with very low numbers of observed reads, and cor-

responds to a prior belief that if there is an insertion present, there should be an

abundance of reads mapping to it.

Again, we modelled the data directly. We fit a normal model to the mode of

distribution of SA,B over all genes, and calculated p-values for each gene according

to the fit (Figure 5.2b). This procedure results in an ordered gene list. We chose

an arbitrary cutoff, and considered a gene to be condition-specific if the fold-

change between the conditions was greater than 4, which corresponds to p-value

of 10−5, and false discovery rate of 2.5× 10−4. These genes are analysed in depth

in Langridge et al. (2009).

5.2 Gene mapping with grid of yeast crosses

Baker’s yeast Saccharomyces cerevisiae has been successfully used in linkage stud-

ies over the last decade, focusing mainly on two F1 crosses (Ehrenreich et al.
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5.2 Gene mapping with grid of yeast crosses
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Figure 5.2: (a) Scatter plot of log2 read counts in two conditions. 100 is added
to each gene’s counts for smoothing. (b) Histogram of gene read count log2 fold
change. The blue line corresponds to normal fit to the mode, red line is the cutoff
used to determine condition-specificity.
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5.2 Gene mapping with grid of yeast crosses

(2009); Mancera et al. (2008); Steinmetz et al. (2002); Zheng et al. (2010), Chap-

ter 1.1.1). However, a single cross gives restricted information about context-

dependent allele effects, and is limited to variants present only in the two parental

strains.

5.2.1 Grid of yeast crosses

To explore the effects of alleles in different genetic contexts, our collaborators gen-

erated a grid of crosses between all five clean (non-mosaic) lineages of S. cerevisiae

sequenced as part of the Saccharomyces Genome Resequencing Project (Liti et al.,

2009a). One of the strains (of Malaysian origin) was effectively reproductively

isolated, and thus not included for further analysis. The remaining six crosses

between the four strains captured 64% of the segregating sites identified by Liti

et al. (2009a).

Ninety-six F1 segregants were isolated from 24 meiotic events for each cross.

Every segregant was genotyped at 171 evenly spaced markers, followed by quan-

titative characterisation of growth curves in different conditions. Three growth

environments were shared between all crosses, while the rest of the 32 tested

environments were cross specific.

5.2.2 Recombination analysis

First, we characterised the global recombination landscape in the six crosses.

We called a recombination event between two consecutive genotyped loci in one

haploid segregant if the two observed alleles came from different parents.

We determined the average recombination rate ρk in each cross k as the num-

ber of observed recombination events divided by the genome size. We then used

a Poisson model with mean ρk to assess the significance of hot- and coldspots in

each cross k. A hotspot was deemed significant if the probability of observing

as least as many recombination events under the model was less than α = 0.005

(FDR< 10%) in at least one cross. Similarly, coldspots were called significant, if

the probability of observing up to that many recombination events was less than

0.005.
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5.2 Gene mapping with grid of yeast crosses

Figure 5.3: Observed recombination rate in each of six crosses, as well as a
reference cross from previous work. Recombination hotspots are highlighted with
a filled circular marker.
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5.2 Gene mapping with grid of yeast crosses

In addition, we used data from Mancera et al. (2008), who established a

high-resolution crossover map in another cross using 56 meiotic events. For each

marker we genotyped, we took the closest called genotype from their data for

every segregant, and repeated our analysis on this dataset.

We found 32 hotspots (Figure 5.3) and 48 coldspots. Nine of the hotspots were

not recovered with the high-resolution data form Mancera et al. (2008); seven

of the nine were cross-specific, and the remaining two strain-specific, present

in all crosses with one strain. We found ten of sixteen centromeric regions to

be recombination coldspots in some cross, consistent with their reduced rate of

meiotic recombination (Choo, 1998) while no other coldspots were shared between

more than three crosses. These results suggest that hotspots, but not coldspots,

are mostly conserved. In-depth analysis of these data is given in Cubillos et al.

(2011).

5.2.3 Linkage mapping

We then mapped QTLs in all six crosses to determine the regions linked to growth

phenotypes in different conditions. Linkage analysis was performed with the

rQTL software (Broman et al., 2003) using the non- parametric (Kruskal-Wallis)

test for QTLs and normal model for variance explained. LOD> 2.63 was used

as cutoff (FDR< 5%) giving less than one QTL by chance per trait. We used

the same approach to find strain-specific QTLs by performing one against all

tests, pooling data from all crosses with a strain. We also searched for epistatic

interactions using the normal model (Chapter 1.4.1), taking LOD> 5.8 (FDR<

5%) as a cutoff.

We found a plethora of QTLs. Two hundred and thirty-three marker-trait

pairs were significant. Many of them were specific to a cross or strain, and other

combinations were represented as well (Figure 5.4a). We found additional QTLs

by pooling the genotypes across crosses (Figure 5.4b), and also detected putative

epistatic interactions. Again, more analyses of the QTLs are provided in Cubillos

et al. (2011).
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5.2 Gene mapping with grid of yeast crosses

Figure 5.4: Paraquat growth rate QTLs found in each cross independently (a)
and in a one-against-all test for the WA strain (b). The phenotyping approach
and conditions used are described in Cubillos et al. (2011).
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