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ABSTRACT 

Non-small cell lung cancer (NSCLC) constitutes ~80% of all lung cancer cases.  It is 

often treated with conventional chemotherapy and has survival rates of only 7% at 5 

years.  Survival rates improve if it is diagnosed early and can be surgically removed, 

however over half of all cases are at stage IV at diagnosis. There is a need for new 

therapeutic targets as well as better detection.  This project aimed to functionally 

characterise a new genetic subset of NSCLC characterised by LKB1 loss and KRAS 

activation (LKB1null/KRASmut).  The association of mutations is interesting as the 

signalling pathways are linked by RHEB.  Loss of LKB1 may lead to over activation of 

RHEB which inhibits wild type BRAF but not mutant BRAF thus blocking MAPK 

signalling.  NSCLC with LKB1 mutations may therefore have a general requirement 

for an activation of the MAPK cascade to overcome suppression of MAPK signalling 

by RHEB.  Following from this, subsequent experiments showed this genetic subset 

to be sensitive to MEK inhibition and mTOR inhibition.  The sensitivity to MEK 

inhibition is not due to downstream effects on cyclin D1 as reported for melanoma. 

Comparison of gene expression in this genetic subset compared to other NSCLC cell 

lines revealed a unique expression signature. Analysis of this signature revealed a 

metabolic profile dominated by truncation of the citric acid cycle at the pyruvate 

dehydrogenase reaction. We further characterised these cells using 13C and proton 

NMR spectroscopy.  These data confirmed truncation of the citric acid cycle in the 

LKB1/KRAS mutant subset and suggests this genetic subset of lung cancer creates 

the Warburg Effect through inactivation of the pyruvate dehydrogenase complex.  

The NMR spectroscopy highlighted further metabolic changes including the reliance 

of this subset on both glucose and glutamine metabolism despite the ideal growth 

conditions of cell culture.  The in vitro phenotypic data presented in this study make a 

strong case for these changes being “hard-wired” by the mutation states and thus 

present further opportunities for their investigation as potential avenues for 

therapeutic development. 
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