Analysis of genome-wide, cancer-associated mutation datasets in mouse and human

Jenny Mattison Wellcome Trust Sanger Institute Trinity College University of Cambridge

This dissertation is submitted for the degree of Doctor of Philosophy September 2008

Declaration

This thesis describes work carried out between April 2005 and September 2008 under the supervision of Dr Tim Hubbard and Dr David Adams at the Wellcome Trust Sanger Institute, while member of Trinity College, University of Cambridge. This dissertation is the result of my own work and contains nothing that is the outcome of work done in collaboration with others, except as specified in the text and Acknowledgements. No part of this dissertation nor anything substantially the same has been, or is being, submitted for any qualification at this or any other university. This dissertation does not exceed the page limit set by the Biology Degree Committee.

Jenny Mattison September 2008

Abstract

The complexity of human cancer genomes complicates the identification of those mutations that drive the tumourigenic process. Integrative analyses, particularly cross-species comparisons, provide a means of distinguishing likely driver mutations from the background of passenger mutations that arise in unstable cancer genomes. This thesis describes the analysis of human and mouse experimental datasets to identify human cancer gene candidates.

In mice, candidate cancer genes can be 'tagged' using insertional mutagens such as retroviruses and transposons. The analysis of more than 1,000 mouse tumours generated by insertional mutagenesis is described. Insertion sites are mapped to the mouse genome and are used to identify candidate cancer genes. The distribution of insertions within and around candidate genes is analysed to predict the likely mechanisms of mutagenesis and, therefore, the possible structure and function of the mutated gene products. Candidates are also characterised by comparison with other human and mouse cancer-associated mutation datasets, and co-operating cancer genes are identified in an attempt to better understand cancer gene pathways.

The mouse insertional mutagenesis results are then compared to genome-wide copy number data for human cancers. The Wellcome Trust Sanger Institute has generated comparative genomic hybridisation (CGH) data for ~700 human cancer cell lines using the Affymetrix 10K SNP array and, more recently, for ~600 human cancer cell lines using the high resolution Affymetrix SNP 6.0 array. Regions of copy number change in human cancers often encompass many genes, and it can be difficult to determine which genes contribute to the cancer phenotype. In this thesis, the human CGH data are processed into regions of copy number change and the mouse candidate cancer genes identified by retroviral insertional mutagenesis are used to narrow down the candidates in amplicons and deletions. The over-representation of mouse candidate oncogenes in regions of copy number gain suggests that a significant proportion of genes contributing to retrovirus-induced tumourigenesis in the mouse are also amplified in, and contribute to the development of, human cancers. Candidate oncogenes and tumour suppressor genes that are recurrently mutated in both human tumours and murine lymphomas are identified as strong candidates for a role in tumourigenesis.

Acknowledgements

First and foremost I would like to thank my supervisors Tim Hubbard and David Adams for giving me the opportunity to carry out this project, and for all their advice, support and encouragement along the way. Many thanks also to my thesis committee, Paul Edwards, Andy Futreal and Julian Parkhill, for their guidance and advice. The project would not have been possible without the work of Anton Berns' lab at the Netherlands Cancer Institute (NKI), who generated the mouse tumours in the retroviral insertional mutagenesis screen, and the Wellcome Trust Sanger Institute Cancer Genome Project (CGP), led by Mike Stratton and Andy Futreal, who generated all of the copy number data used in this thesis. At the NKI, I would like to thank Anthony Uren, Jaap Kool, Jos Jonkers, Lodewyk Wessels, Maarten van Lohuizen and Anton Berns for enabling me to participate in their exciting study, and for providing me with the data that I needed for my project. I am particularly grateful to Anthony Uren and Jaap Kool for helping me to understand the intricacies of insertional mutagenesis, and Jeroen de Ridder for performing the statistical analysis required to identify common insertion sites in the data. Also thanks to Anthony Cox and Daoud Sie for discussions and advice on mapping the insertions. Among the CGP team, I am particularly grateful to Richard Wooster and Adam Butler for giving me access to the copy number data, and Graham Bignell for helping me to understand it. Thanks also to Chris Greenman for his helpful statistical advice, and Helen Davies, who provided the TP53 and CDKN2A mutation statuses for the human cancer cell lines. For the *Sleeping Beauty* data, I extend my gratitude to Lara Collier at the University of Minnesota, who performed the screen. Many thanks also to Fanni Gergely at the Cambridge Research Institute, who carried out the functional validation of OSK. I would also like to thank all members of the Hubbard Research Group, past and present, who have opened my eyes to a strange new world and have been a pleasure to work with. Thanks particularly to Matias Piipari for extracting the information I needed from TRANSFAC, and Andreas Prlic for general IT support! On a personal note, I thank my parents and my sister Laura for lavishing affection on me, and my grandma Ethel, whose enthusiasm for science and research is as strong as ever at the age of 96. I would also like to acknowledge the little person-to-be who has made thesis writing something of a challenge, but whom I love already. Finally, I thank my husband Simon for supporting me in my endeavour, and particularly for putting up with me over the last few months. I guess it is my turn to vacuum.

Table of Contents

Chapter 1	Introduction	1
1.1 Ou	tline of introduction	1
1.2 An	introduction to cancer	1
1.2.1	Definition and classification	1
1.2.2	Epidemiology	2
1.2.3	The multi-stage theory of carcinogenesis	4
1.2.4	The hallmarks of cancer	7
1.2.5	Cancer genes	7
1.2.6	Pathways in cancer	10
1.2.7	Treatment of cancer	13
1.3 Ge	nome-wide approaches for human cancer gene discovery	14
1.3.1	Gene resequencing	14
1.3.2	Gene expression profiling	17
1.3.3	Copy number analysis	18
1.3.4	Epigenetic profiling	29
1.3.5	Genome-wide mapping of transcription factor binding sites	31
1.4 Ca	ncer gene discovery in the mouse	34
1.4.1	The mouse as a model for studying cancer	34
1.4.2	Forward genetic screens in the mouse	39
1.5 Cre	oss-species comparative analysis for cancer gene discovery	58
1.6 Aii	ns of this thesis	61
Chapter 2	Identifying insertion sites and candidate cancer genes by insertional	
mutagenes	is in the mouse	63
2.1 Int	roduction	63
2.2 De	scription of the datasets	64
2.2.1	The retroviral dataset	64
2.2.2	The Sleeping Beauty dataset	69
2.2.3	Known cancer genes in the Cancer Gene Census	70
2.3 Ma	pping the sequence reads using SSAHA2	70
2.4 Ac	counting for unmapped reads	73
2.5 Fil	tering the mapped reads	79

2.6 Ide	ntification and filtering of insertion sites
2.7 Est	imating the coverage of the mutagenesis screens
2.8 An	alysis of the distribution of insertions around mouse genes
2.9 Ass	signing insertions to genes
2.10 Id	entifying statistically significant common insertion sites
2.10.1	Monte Carlo simulations
2.10.2	Kernel convolution
2.10.3	Final set of candidate genes
2.11 D	iscussion
Chapter 3	Analysis of mouse candidate cancer genes identified by insertional
	107
3.1 Inu	roduction
3.2 Col	mparative analyses between the insertional mutagenesis data and other cancer-
related da	IU8
3.2.1	Description of the datasets
3.2.2	Comparison with insertional mutagenesis data
3.3 Co	mparison of candidate cancer genes in the MuLV and Sleeping Beauty
datasets	
3.4 Det	termining the mechanisms of MuLV insertional mutagenesis 125
3.4.1	Analysing the distribution of intragenic insertions 125
3.4.2	Analysing co-occurring insertions in candidate genes disrupted by MuLV
and T2	2/Onc
3.4.3	Identification of tumour suppressor genes inactivated by MuLV 138
3.4.4	Identifying retroviral insertions in regulatory features
3.4.5	Expression analysis of MuLV-induced tumours
3.5 Ide	ntification of co-operating cancer genes in the MuLV dataset 148
3.5.1	Genotype-specific cancer genes
3.5.2	Co-occurrence and mutual exclusivity of disrupted genes 153
3.6 Dis	scussion
Chapter 4	Using mouse candidate cancer genes to narrow down the candidates in

regions of copy number change in human cancers 161 4.1 Introduction 161

		-
4.2	Description of the datasets	162

	4.2	2.1	Mouse candidate cancer genes identified by retroviral insertional	
	mu	itage	enesis	162
	4.2	2.2	Copy number data for human cancer cell lines	164
	4.2	2.3	Copy number variants (CNVs)	166
4	.3	Pro	cessing the copy number data	166
4	.4	Cha	aracterising gains and losses in cancer genomes	173
4	.5	Cor	mparative analysis of mouse candidate cancer genes and CGH data fr	om
h	uma	ın ca	incers	175
	4.5	5.1	Global comparison	175
	4.5	5.2	Identification of individual candidates for a role in human cancer	190
4	.6	Cor	mparison of methods for calling gains and losses	208
4	.7	Glo	bal comparison of mouse candidate cancer genes and human CNVs .	215
4	.8	Dis	cussion	
~		_		
Cha	pte	r 5	Identifying human cancer genes in high-resolution copy number	· data223
5	.1	Intr	roduction	223
5	.2	Des	scription and processing of the datasets	
	5.2	2.1	High-resolution copy number data	224
	5.2	2.2	Additional datasets	229
5	.3	Coi	mparative analysis of human high-resolution CGH data versus mouse	;
ir	isert	tiona	al mutagenesis data	229
	5.3	8.1	Global comparison	229
	5.3	8.2	Identifying individual cancer gene candidates	
5	.4	Cor	mparison between high-resolution and 10K CGH data	253
5	.5	Ide	ntification of co-operating cancer genes	
	5.5	5.1	Genotype-specific cancer genes	
	5.5	5.2	Co-occurrence of amplified and deleted candidate cancer genes	
5	.6	Dis	cussion	273
Cha	nto	r 6	Summary and Conclusions	276
Clia	ipte	10	Summary and Conclusions	270
Ref	eren	ices		
App	end	lices	5	337
թոհ	lice	tion		365

List of Figures

1.1	Summary of cancer incidence in 2004 and deaths from cancer in 2005 for the	
most co	ommon sites of cancer in males and females in the UK.	3
1.2	The clonal evolution of cancer.	5
1.3	Mutations in different genes in the same pathway can have an equivalent	
effect.		11
1.4	Array design and whole-genome sampling assay for the Affymetrix SNP	
array.		20
1.5	End sequence profiling of tumour DNA.	28
1.6	Overview of ChIP-PET for mapping transcription factor binding sites.	32
1.7	Generation of a conditional knockout allele in ES cells.	37
1.8	Structure of a retroviral provirus.	41
1.9	The mechanisms of mutagenesis of murine leukaemia virus include enhancer	
mutatio	on, promoter mutation and premature termination of gene transcription.	43
1.10	Isolation of retroviral insertion sites by inverse PCR and splinkerette PCR.	47
1.11	Structure of the Sleeping Beauty transposon.	54
2.1	Workflow for identifying mouse candidate cancer genes from sequencing read	ds
generat	ted in a retroviral insertional mutagenesis screen.	65
2.2	The number of sequence reads per tumour before mapping.	68
2.3	The lengths of retroviral reads that are unambiguously mapped, unmapped, an	nd
unmap	ped and uncharacterised.	74
2.4	BLAST scores for uncharacterised unmapped reads.	78
2.5	The filtering process for single mapping reads.	81
2.6	Determining the exact insertion site and orientation of retroviral and transpose	on
insertic	ons in the mouse genome.	83
2.7	Insertions in the mouse aminoadipate-semialdehyde synthase (Aass) gene are	
PCR ar	tefacts that map to an LTR-like sequence in the mouse genome	85
2.8	A high proportion of insertions in control samples map to the Myc gene.	86
2.9	The number of insertions per tumour and reads per insertion.	88
2.10	The number of genes with insertions in 100 bp intervals up to 20 kb upstream	in
the sen	se and antisense orientation and downstream in the sense and antisense orienta	tion
with re	spect to the gene.	91
2.11	Insertions around known cancer genes Pim1, Kit, Gata1 and Blm.	94

2.12	Insertions in $En2$ and $Foxf2$ are located at the splice junctions used to constru-	uct
the T2	2/Onc transposon and are contaminating sequences.	103
3.1	MuLV and T2/Onc insertions across the mouse genome.	120
3.2	Known and putative tumour suppressor genes identified in the Sleeping Beau	ıty
screer	1.	122
3.3	The distribution of MuLV insertions within candidate cancer genes.	126
3.4	Intragenic MuLV insertions in candidate cancer genes.	128
3.5	Co-occurring MuLV and T2/Onc insertions help to identify the mechanism of	of
mutag	genesis of genes Notch1, Rasgrp1 and Etv6.	133
3.6	Variation in the distribution of MuLV and T2/Onc insertions in Myb, Fli1 and	d
<i>Erg</i> m	nay reflect differences in the mechanisms of mutagenesis.	137
3.7	Smg6 and Foxp1 are putative tumour suppressor genes identified by MuLV	
inserti	ional mutagenesis.	141
3.8	Knockdown of QSK in human HeLa cells is associated with increased	
chrom	nosome lagging at anaphase.	159
4.1	The distance between the genomic coordinates of adjacent SNPs on the 10K	and
10K 2	2.0 SNP arrays.	167
4.2	The number of SNPs per human protein-coding gene on the 10K and 10K 2.	0
SNP a	arrays.	167
4.3	Altering the values for parameters in DNAcopy leads to differences in the re	gions
of cop	by number change detected by the algorithm, as demonstrated for ovarian cance	er cell
line 4	1M-CISR.	169
4.4	Graphical output from MergeLevels for human cancer cell lines 786-0 and A	N3-
CA.		171
4.5	The number of human cancer cell lines with segments of varying log ₂ -ratio	
follow	ving processing with DNAcopy and DNAcopy plus MergeLevels.	172
4.6	The number of human cancer cell lines with segments of varying copy numb	er
ratio f	following processing with DNAcopy plus MergeLevels.	172
4.7	Distribution of the lengths of amplicons, deletions and homozygous deletion	s in
713 h	uman cancer cell lines.	174
4.8	Overview of the method for identifying over-representation of the human	
orthol	logues of mouse candidate cancer genes in regions of human copy number	
chang	e.	176
4.9	Over-representation of human orthologues of genes nearest to CISs in ampli	cons

with boundaries extended beyond the first and last amplified SNP by a maximum

distan	ce of 0 kb, 200 kb, 500 kb, 1 Mb, 3 Mb, 5 Mb and up to the adjacent, non-ampl	ified
SNPs.		178
4.10	Over-representation of human orthologues of genes nearest to CISs in full-ler	gth
humar	n amplicons and shuffled full-length amplicons.	181
4.11	Over-representation of human orthologues of candidate cancer genes in regio	ns of
copy r	number change.	182
4.12	Over-representation of known oncogenes and known tumour suppressor gene	s in
region	s of copy number change in human cancer cell lines.	183
4.13	Over-representation of human orthologues of genes nearest to CISs with a P-	
value	of <0.001 in regions of copy number change in human cancer cell lines derived	
from s	solid tumours and haematopoietic and lymphoid cancers.	183
4.14	Over-representation of human orthologues of candidate cancer genes in region	ns of
copy r	number change in cancer cell lines derived from the upper aerodigestive tract,	
autono	omic ganglia, breast, large intestine, oesophagus and stomach.	185
4.15	Over-representation of human orthologues of genes nearest to CISs and genes	5
furthe	r from CISs in amplicons and deletions, where CISs have a <i>P</i> -value of <0.001 a	nd
< 0.05		187
4.16	Insertions appear to be associated with the gene nearest to the CIS, i.e.	
16000	014C10Rik and Slamf6, even though adjacent genes are also amplified.	189
4.17	Known human oncogenes EVI1, FGFR2 and KIT are amplified in human	
cance	r cell lines and are disrupted by retroviral insertional mutagenesis in mouse	
lymph	iomas.	193
4.18	Candidate oncogenes MMP13, SLAMF6 and RREB1 are amplified in human	
cance	r cell lines and are disrupted by retroviral insertional mutagenesis in mouse	
lymph	iomas.	195
4.19	Insertions assigned to <i>Heatr5a</i> may be associated with <i>Hectd1</i> or <i>EG544864</i> .	198
4.20	Candidate tumour suppressor genes WWOX and ARFRP2 are deleted in huma	n
cance	r cell lines and are disrupted by retroviral insertional mutagenesis in mouse	
lymph	iomas.	206
4.21	Under- and over-representation of human orthologues of candidate cancer gen	nes
in regi	ions of copy number variation.	216
5.1	Distance between adjacent copy number probes across the human genome.	226
5.2	Characterisation of amplicons and deletions in 598 human cancer cell lines	
analys	ed using high-resolution SNP array CGH.	228

X

5.3	Over-representation of CIS genes in amplicons and deletions of varying copy	7
numb	er threshold and number of cell lines across all cell lines, haematopoietic and	
lymph	noid cancer cell lines, and cell lines derived from solid tumours.	231
5.4	The minimal amplified regions within putative tumour suppressor genes CUG	GBP2
and <i>Ik</i>	<i>XZF3</i> are localised around specific exons.	238
5.5	Amplicons and deletions in the LGALS9 paralogue NP_001035167.2 overlap	with
a copy	y number variant from Redon et al. (2006).	241
5.6	All of the MuLV insertions assigned to the <i>Rcbtb2</i> gene are within a larger,	
unann	otated, EST transcript.	249
5.7	Intragenic deletions within NOTCH1 result in the formation of the oncogenic	;
NOT	CH-IC protein.	249
5.8	Mutations in the ETS1 gene result in removal of the Ets domain.	250
5.9	High-resolution and 10K SNP array CGH data for the entire genome of B-ce	11
lymph	noma cell line DOHH-2 and breast cancer cell line HCC1143.	254
5.10	Characterisation of amplicons and deletions in 598 human cancer cell lines	
analys	sed using 10K SNP array CGH.	256
5.11	Over-representation of CIS genes in amplicons of varying copy number three	shold
and nu	umber of cell lines in the 10K dataset.	258
5.12	SLA2 and NDRG3 and ZNF217 are amplified in a greater number of cell line	s in
the 10	K dataset than in the high-resolution dataset but do not contain SNPs in the 10	K
datase	et.	261

List of Tables

2.1	Characterisation of the insertional mutagenesis datasets.	66
2.2	The number of MuLV reads mapped using SSAHA2, with varying values for	r
param	eters seeds and skip, and BLASTN.	72
2.3	Repeat elements that are over-represented and under-represented among	
unmap	pped reads compared with unambiguously mapped reads.	77
2.4	Summary of the proportions of unmapped and unambiguously mapping read	S
that co	ontain vector sequences, or sequences of low complexity, low quality or short	
length		77
2.5	Number of intergenic insertions up to 20 kb upstream and downstream of known	own
oncog	enes and tumour suppressor genes from the Cancer Gene Census.	93
2.6	Maximum window sizes in kb for significant CISs for varying numbers of	
inserti	ons in the retroviral and Sleeping Beauty screens.	98
2.7	Comparison of the methods used to generate candidate cancer genes lists from	m the
retrovi	iral and Sleeping Beauty screens.	98
3.1	The human orthologues of mouse CIS genes can help to identify the critical	
gene(s	b) in regions of copy number change in acute lymphoblastic leukaemias from	
Mullig	ghan <i>et al.</i> (2007).	115
3.2	Over-represented GO terms among CIS genes identified using MuLV.	116
3.3	The predicted mutation types and mechanisms of mutagenesis based on the	
distrib	ution of MuLV insertions within and around candidate cancer genes.	131
3.4	Gene expression values for candidate cancer genes in insertion-containing	
tumou	rs compared with tumours that do not contain insertions.	147
3.5	Genes containing an over-representation or under-representation of insertions	s on a
given	tumour background compared with all other backgrounds and compared with v	wild-
type ir	nsertions only.	150
3.6	Gene pairs in which insertions co-occur more often or less often than expected	ed by
chance	2.	155
4.1	Description of the lists of mouse candidate cancer genes used for comparison	n with
humar	n cancer copy number data.	163
4.2	Tissues of origin of human cancer cell lines used in the 10K SNP array CGH	
analys	is.	165

4.3	The number of amplicons in which known cancer genes among genes nearest	to
CISs at	re identified when the amplicon boundaries are altered.	179
4.4	Genes that are nearest to CISs in mouse lymphomas and are also promising	
candid	ates for targets of amplification in human cancer cell lines.	192
4.5	miRNA genes that are nearest to CISs in mouse lymphomas and are amplified	1
and/or	deleted in human cancer cell lines.	198
4.6	Mouse genes that contain retroviral insertions within the coding region and ar	e
also pr	omising candidates for targets of amplification or deletion in human cancer cel	1
lines.		201
4.7	Mouse genes that contain retroviral insertions within the transcribed or transla	ated
region	and are also promising candidates for targets of deletion in human cancer cell	
lines.		203
4.8	Comparison of methods for detecting regions of copy number gain in 50	
randon	nly selected cancer cell lines.	212
4.9	<i>P</i> -values for the co-occurrence between genes from each gene list within CNV	/s
and reg	gions of copy number change in human cancer cell lines.	217
5.1	Tissues of origin of human cancer cell lines used in high-resolution copy num	ber
analysi	s.	225
5.2	Number of copy number probes per human autosome.	226
5.3	Lists of CIS genes that are in recurrent amplicons across all cell lines and acro	DSS
haemat	topoietic and lymphoid cancer cell lines only.	235
5.4	A list of CIS genes for which the maximum copy number across all cell lines	is
signific	cantly higher than expected by chance.	239
5.5	A list of CIS genes that are in recurrent deletions of copy number less than or	
equal t	o 0.6 across all cell lines and across haematopoietic and lymphoid cancer cell	
lines.		246
5.6	A list of CIS genes that are in recurrent deletions of copy number 0.3 or less	
across	all cell lines and across haematopoietic and lymphoid cancer cell lines only.	251
5.7	Comparison of the high- and low-resolution datasets based on the proportion of	of
CIS ge	nes and known cancer genes that are amplified and deleted.	258
5.8	A list of CIS genes that are in recurrent amplicons, recurrent deletions of copy	/
numbe	r 0.6 or less and recurrent deletions of copy number 0.3 or less in the 10K CGH	ł
dataset		260
5.9	A list of amplified and deleted CIS genes that are over- or under-represented i	n
cell lin	es that contain a mutation in TP53 or CDKN2A.	265

xiii

5.10 A list of CIS genes that are co-amplified or co-deleted across a significant number of human cancer cell lines. 269

5.11 A list of genes that are co-amplified, co-deleted or amplified and deleted across human cancer cell lines and are also co-disrupted by MuLV in mouse lymphomas. 271

Appendices

А	Human Ensembl genes and their mouse orthologues for known cancer genes i	n
the Car	ncer Gene Census.	337
B1	Sleeping Beauty CISs and predicted CIS genes obtained using the kernel	
convol	ution-based framework with a kernel width of 30 kb.	342
B2	MuLV CISs and predicted CIS genes obtained using the kernel convolution-b	ased
framew	vork with a kernel width of 30 kb.	342
C1	List showing other cancer-associated datasets in which the MuLV CIS genes	
appear		348
C2	List showing other cancer-associated datasets in which the Sleeping Beauty C	IS
genes a	appear.	353
D	Nearest and further genes from CISs with a <i>P</i> -value of <0.001 or <0.05 in lists	S
supplie	ed by the Netherlands Cancer Institute.	354
Е	Human cancer cell lines used in the 10K and SNP 6.0 CGH analyses.	361

Abbreviations

ALL	acute lymphoblastic leukaemia
AML	acute myeloid leukaemia
API	application programming interface
BAC	bacterial artificial chromosome
CGH	comparative genomic hybridisation
ChIP	chromatin immunoprecipitation
CIS	common insertion site
CML	chronic myelogenous leukaemia
CNV	copy number variation
COSMIC	Catalogue of Somatic Mutations in Cancer
CRUK	Cancer Research UK
DAS	distributed annotation system
ES	embryonic stem
EST	expressed sequence tag
ESP	end-sequence profiling
HGNC HUGO	Gene Nomenclature Committee
HMM	hidden Markov model
IARC	International Agency for Research on Cancer
IR/DR	inverted repeat/direct repeat
KC	kernel convolution
LINE	long interspersed nuclear element
LOH	loss of heterozygosity
LTR	long terminal repeat
MC	Monte Carlo
MCC	Matthew's Correlation Coefficient
MCR	minimal common region of amplification or deletion
MGI	Mouse Genome Informatics
MMTVmouse	mammary tumour virus
MuLV	murine leukaemia virus
NCBI	National Center for Biotechnology Information
NKI	Netherlands Cancer Institute
PCR	polymerase chain reaction
PET	paired-end ditag sequencing
RTCGD	Retroviral Tagged Cancer Gene Database
SB	Sleeping Beauty
SNP	single nucleotide polymorphism
SINE	short interspersed nuclear element
TFBS	transcription factor binding site
UTR	untranslated region
VISA	viral insertion site amplification
WGSA	whole-genome sampling assay
WHO	World Health Organization
WTSI	Wellcome Trust Sanger Institute