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Chapter 2   Identifying insertion sites and candidate 

cancer genes by insertional mutagenesis in the 

mouse 

 

2.1 Introduction 

When a retroviral or transposon insertional mutagen inserts into the mouse genome, it 

acts as a molecular tag that facilitates the identification of genes that it disrupts.  As 

discussed in Section 1.4.2.1.2, the elucidation of the mouse genome sequence and the 

development of high-throughput, PCR-based technologies for insertion site identification 

have allowed for larger scale mutagenesis screens that can identify a higher proportion of 

insertions across larger numbers of tumours.  1,005 mouse tumours were generated in a 

retroviral insertional mutagenesis screen performed by the Netherlands Cancer Institute 

(NKI).  Murine leukaemia virus (MuLV) was used as the insertional mutagen, and 

insertions into the mouse genome were identified using splinkerette PCR (see Section 

1.4.2.1.2).  In a separate study at the University of Minnesota, 73 mouse tumours were 

generated by insertional mutagenesis using the Sleeping Beauty T2/Onc transposon (see 

Section 1.4.2.2.1).  Genomic DNA flanking the retroviral and transposon insertion sites 

was sequenced at the Wellcome Trust Sanger Institute.  This chapter begins with a 

description of the retroviral and transposon insertional mutagenesis datasets.  While I did 

not contribute to the generation of tumours or sequence reads, all statistics are the result 

of my own analyses.  A dataset of known cancer genes, compiled by the Sanger Institute 

Cancer Genome Project, is also described.  This is followed by an account of the work 

undertaken to process the sequence reads into insertion sites, to filter out erroneous reads 

and insertion sites, and to measure the coverage of the screen.  A relatively high 

proportion of reads could not be mapped, and the nature of non-mapping reads was 

therefore investigated.  The remainder of the chapter focuses on the methods used to 

identify candidate cancer genes in the vicinity of mapped insertions.  The identification of 

genes that are being mutated by retroviral insertions is complicated by the presence of 

enhancer mutations that may act at long range (see Section 1.4.2.1.2).  Insertions were 

assigned to genes by defining rules based on an analysis of the distribution of insertions 

around mouse genes.  Statistically significant common insertion sites (CISs) were defined 

using Monte Carlo simulations (Suzuki et al., 2002) and a kernel convolution-based 
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framework (de Ridder et al., 2006), and CIS genes identified by the two approaches were 

compared.  Data from the retroviral screen forms the principal mouse dataset used in this 

thesis, and is therefore discussed in greater detail than data from the transposon screen.  

The main steps involved in identifying candidate cancer genes from retroviral sequence 

reads are summarised in Figure 2.1.  Unless otherwise stated, P-values provided in this 

chapter were generated using the Chi-squared test for independence. 

 

2.2 Description of the datasets 

2.2.1 The retroviral dataset 

Mice of the FVB strain were engineered with a range of genetic backgrounds in order to 

identify cancer genes that collaborate with the loss of tumour suppressor genes (see 

Section 1.4.2.1.3).  1,005 tumours were generated, of which 22.7%, 12.5% and 23.0% 

were on a p19ARF-/- (Cdkn2a-/-), p53-/- or wildtype genetic background, respectively.  The 

remaining tumours were generated on a background deficient in p15, p16, p21 or p27, or 

a combination of these (Table 2.1A).  Equal numbers of males and females were used 

(500 each of males and females, 1 hermaphrodite and 4 unknown).  The vast majority (at 

least 90.9%) of tumours originated in the spleen, thymus or lymph nodes (Table 2.1B).  

The 1-tailed Fisher Exact Test was performed to determine whether genetic background 

or gender was associated with particular tumour types.  Wildtype and p19-/- genetic 

backgrounds were over-represented in tumours of the thymus (P=4.67x10-6 and 

P=9.87x10-5, respectively), while among tumours of the spleen, there was an over-

representation of p53-/- (P=5.05x10-5) as well as wildtype and p19-/- genetic backgrounds 

(P=0.0240, and P=1.84x10-4, respectively).  Lymph node tumours were over-represented 

in p16-/-p19-/- mice (P=1.10x10-5) and in mice with a deficiency in p21 or p21 and p27 

(p21-/-, P=2.32x10-13; p21-/-p27+/-, P=4.34x10-4; p21-/-p27-/-, P=2.17x10-4; p21+/-p27+/-, 

P=0.0128).  It is possible that these results represent a subjective bias in the selection of 

tumours.  Alternatively, they may indicate that different genetic backgrounds are 

predisposed to different tumour types.  Most striking was the over-representation of the 

p16-/-p19-/- genotype among tumours in the liver (P=1.04x10-32).  At least 24 of the 33 

liver tumours have been identified as tumours of the liver nodule.  These are commonly 

observed in p16-/-p19-/- mice infected with MuLV and may be lymphomas that have 

spread to the liver or they may be histiocytic sarcomas, which are a poorly-defined class 

of  haematopoietic neoplasm  (Lund et al., 2002).    There  was  no  significant  difference  



Final set of candidate genes

LTR and adapter sequences identified

in reads using cross_match

Reads mapped using SSAHA2

Mapped reads filtered to remove

possible contaminants

Exact insertion coordinates and

orientations determined

Overlapping reads clustered into
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Figure 2.1.  Workflow for identifying mouse candidate cancer genes from sequencing

reads generated in a retroviral insertional mutagenesis screen.
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Table 2.1. Characterisation of the insertional mutagenesis datasets.  (A) The number

of tumours from mice with different genetic backgrounds in the MuLV screen.  (B)

The number of tumours of each tissue type in the MuLV screen.  (C) The number of

tumours of each tissue type in the Sleeping Beauty T2/Onc screen.

A B

C

Genotype
Number of 

tumours

wildtype 231

p19-/- 228

p53-/- 126

p16-/-, p19-/- 91

p15-/- 55

p21-/-, p27+/- 54

p21-/- 43

p27+/- 38

p21-/-, p27-/- 36

p27-/- 36

p16+/-, p19+/- 26

p21+/-, p27+/- 17

p15-/-, p21-/- 15

p21+/-, p27-/- 5

p53+/- 2

p21+/- 2

Total 1005

Tissue

Number of 

tumours

spleen 468

thymus 227

lymph node 125

spleen; lymph node 71

unknown 52

liver 33

thymus; spleen 15

spleen nodule 4

spleen; liver 3

kidney nodule 2

scapular tumour 1

uterine tract 1

uterine tumour 1

fascial lymphoma 1

uterine tumour; lymph node 1

Total 1005

Tissue

Number of 

tumours

spleen 38

thymus 22

lymph node 10

brain tumour 2

unknown 1

Total 73
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between the number of males and females with tumours from different tissues or genetic 

backgrounds. 

 

Following the isolation of tumour DNA, most samples were subjected to two separate 

splinkerette PCRs using different restriction enzymes, Sau3AI and Tsp509I, in order to 

increase the number of insertions that could be identified in the screen (see Section 

1.4.2.1.2).  The PCR products were shotgun cloned, and 96 reads were sequenced per 

PCR.  Everything described from this point onwards is the result of my own work.  The 

reads were converted to a CAF (Common Assembly Format) file, which contains the 

DNA sequence, base quality, and the coordinates of sequencing and cloning vector 

sequences within the read.  The CAF file was then converted to FASTA format, in which 

the vector sequences were masked.  The resulting dataset comprised 159,303 sequence 

reads from 2,060 PCRs.  14,767 reads from 199 PCRs were discarded because they were 

of unknown identity or had been flagged as invalid due to possible sample mix-up, no 

obvious tumour when killed, or contaminated or low quality PCR.  The remaining 

144,536 reads included 134,985 that were generated from 1,734 PCRs performed on 

1,005 mouse tumours.   For 62% of tumours, the dataset contained reads obtained from 2 

PCR experiments, i.e. using both restriction enzymes, while for 33% of tumours, reads 

were only available for a single experiment.  The remaining 5% of tumours were 

subjected to 3 or 4 PCRs, in which additional reactions using Sau3AI and/or Tsp509I 

were performed.  The number of reads per tumour is shown in Figure 2.2.  To facilitate 

the identification of PCR artefacts, 1,180 reads were also generated from 24 PCRs 

performed on uninfected mice.  Finally, 8,371 reads were generated from 103 PCRs 

performed on samples that were harvested from mice 5 or 10 days post-MuLV infection.  

There has been limited time for cell re-infection, and thus for tumour initiation and 

progression, in these “short infection time” mice.  A high proportion of insertions in 

samples from these mice are therefore expected to map to sites in the genome where the 

virus prefers to insert (“hotspots”) and that may not contribute to tumourigenesis. 

 

Cross_match (Green, unpublished) was used to identify and mask the retroviral LTR (5’-

GCTAGCTTGCCAAACCTACAGGTGGGGTCTTTCA-3’) and splinkerette adapter 

(5’-CCACTAGTGTCGACACCAGTCTCATTCAGCCAC-3’) in order to prevent 

erroneous mapping of reads to regions of the mouse genome that resemble these 

sequences.  The minimum length of the perfectly matching sequence (minmatch) and the 

minimum alignment score (minscore) were each set to 10.   These  parameters  were  used  



Figure 2.2.  The number of sequence reads per tumour before mapping.  Up to 96

reads were sequenced for each PCR.  The bimodal distribution reflects the fact that 62%

of tumours were subjected to 2 linker-mediated PCRs, while for 33% and 5% of tumours,

1 PCR or more than 2 PCRs, respectively, were performed.
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for all cross_match runs, unless otherwise specified.  Among the reads from tumour 

DNA, 110,318 (81.7%) contained LTR and adapter sequences, 9,534 (7.1%) contained an 

LTR but no adapter, 12,592 (9.3%) contained an adapter but no LTR, and 2,541 (1.9%) 

contained neither. 

 

2.2.2 The Sleeping Beauty dataset 

This smaller screen comprised 73 tumours, of which 60 were from wildtype mice on a 

mixed C57BL/6J/FVB background, and 13 were from Bloom (Blm)-deficient mice from 

the same strain.  Blm-deficient tumours may be more likely to harbour mutations that 

inactivate tumour suppressor genes (see Section 1.4.2.1.1).  These tumours, and 31 

wildtype tumours, were generated from a transposon array (LC76) located on 

chromosome 1.  The remaining wildtype tumours were generated from an array (LC68) 

on chromosome 15.  As in the MuLV screen, tumours developed almost exclusively in 

the spleen, thymus and lymph node (Table 2.1C) since mice have a propensity for these 

tumour types. 

 

Insertions were cloned using linker-mediated PCR in which genomic DNA flanking both 

sides of the insertion was amplified to maximise insertion site identification (see Section 

1.4.2.2.1).  The restriction enzymes BfaI and NlaIII were used to clone DNA flanking the 

5’ and 3’ IR/DRs, respectively.  As in the retroviral screen, PCR products were shotgun 

cloned and 96 reads were sequenced.  All work described hereafter is my own.  The initial 

dataset comprised 16,674 sequences.  Although steps were taken to minimise the 

amplification of transposons within the concatemer (see Section 1.4.2.2.1), the sequence 

data inevitably contain some reads that map to the concatemer.  Transposons in the 

concatemer are flanked by the sequence 5’-TATAGGGATCC-3’ and therefore any reads 

containing this sequence are likely to represent transposons that have not mobilised.  89 

concatemer sequences were removed using cross_match (Green, unpublished).   

 

The presence of the transposon IR/DR provides evidence that the genomic DNA is 

directly flanking an insertion.  Using cross_match, IR/DR elements were identified and 

masked in 15,630 reads (94.2% of the total), and the rest were discarded.  The linker, 

which was identified in 12,209 (78.1%) of the remaining reads, and extra vector sequence 

from the PROMEGA pGEM-T easy vector T7 promoter-multiple cloning site-SP6 

promoter were also screened out with cross_match.  3,716 reads (23.8%) contained fewer 
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than 25 bp of unmasked sequence after screening, and as these would be too short for 

mapping, they were removed from the dataset.  Tumour details were not available for a 

further 1,123 reads, and so these were also removed.  The final dataset comprised 10,791 

reads generated from 138 PCRs.  This included 60 tumours for which genomic DNA 

flanking both sides had been amplified and sequenced, and 11 tumours for which only 

one side had been amplified.  For the remaining 2 tumours, both sides had been amplified, 

and PCR had been performed twice on one or both sides.   

 

2.2.3 Known cancer genes in the Cancer Gene Census 

The Cancer Gene Census is a list of genes for which there is strong evidence of a role in 

cancer (Futreal et al., 2004; see Section 1.2.5.2).  The complete working list dated 

13/02/2007 was downloaded from http://www.sanger.ac.uk/genetics/CGP/Census/.  The 

Ensembl (Hubbard et al., 2007) Perl Application Programming Interface (API) was used 

to extract the Ensembl identifiers for each gene in the list from Ensembl version 48.  

Ensembl provides annotation on a selection of eukaryotic genomes, and it has been used 

throughout this project to obtain information about the mouse and human genomes.  The 

API provides standardised methods for accessing data in the Ensembl MySQL databases 

through Perl scripts and it insulates developers from changes at the database level.  From 

the 363 genes in the Cancer Gene Census, 354 human Ensembl genes were identified.  

352 mouse Ensembl genes have a human orthologue in the Cancer Gene Census.  314 

mouse genes have an orthologue with somatic mutations in cancer and 67 have an 

orthologue with germline mutations, including 32 that have an orthologue with both 

mutation types.  The orthologues of 285 mouse genes bear mutations that are dominant at 

the cellular level, 66 bear recessive mutations, of which 2 are X-linked, and 1 has both 

dominant and recessive mutations.  205 have been implicated in leukaemia and/or 

lymphoma, 102 have been implicated in epithelial tumourigenesis and 84 have been 

implicated in mesenchymal tumourigenesis.  The most common type of mutation is 

translocation, which affects the orthologues of 263 mouse genes.  A list of the human 

cancer genes with mouse orthologues is provided in Appendix A. 

 

2.3 Mapping the sequence reads using SSAHA2 

As discussed in Section 1.4.2.1.2, SSAHA2 (Ning et al., 2001) is a fast DNA alignment 

algorithm that is suited to mapping large numbers of insertions to the mouse genome.  
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The parameters of SSAHA2 were adjusted to maximise the number of mapped reads, and 

therefore to identify as many insertions as possible.  A test set of 25,000 reads from the 

retroviral screen was mapped to the NCBI m34 mouse genome assembly.  SSAHA2 

preprocesses the query sequence (the read) and the subject (sequences in the NCBI m34 

database) into consecutive k-tuples of k contiguous bases, called the word size or k-mer.  

Lowering the k-mer increases the sensitivity, and therefore yields more hits, but it also 

increases CPU time, and a k-mer of 13 or 14 is generally recommended for large 

databases, such as genome assemblies.  The default k-mer of 12 was used for all runs of 

SSAHA2, since this offers a small gain in sensitivity without impacting too heavily on the 

speed.  The “seeds” parameter defines the number of exact words that must match in the 

subject.  Lowering the seeds increases the sensitivity, resulting in a higher proportion of 

low (<95%) identity and ambiguous mappings, but also more high identity unambiguous 

mappings (Table 2.2A).  Initially, seeds 3 was chosen because seeds 2 yielded only 8 

additional high identity unambiguous mappings and required more CPU time.  By 

default, sequences are processed into consecutive k-mers with no overlap.  Reducing the 

parameter “skip” increases the overlap between k-mers and should provide greater 

sensitivity.  For seeds 3, decreasing skip to 4 (8 base overlap) and 6 (6 base overlap) did 

not increase numbers of high identity, single mapping reads.  For higher seeds, numbers 

did increase but were lower than for seeds 3 alone (Table 2.2B).  SSAHA2 with seeds 3 

yielded more mappings than NCBI BLASTN (Altschul et al., 1990; Table 2.2A) and was 

significantly faster.  BLASTN parameters were set for moderately sized (~500 bp) 

genomic DNA (-G 1, -E 3, -W 30, -F ‘m D’, –U, -e 1e-20). 

 

The full set of 144,536 retroviral reads was mapped to the NCBI m36 mouse build using 

SSAHA2 with seeds 3 and default values for all other parameters.  Alignments with low 

identity were not segregated in this larger analysis because they may simply represent 

sequencing reads of poor quality and, if they are erroneous, they should be picked up in 

the filtering process (see Section 2.5).  86,290 reads (59.7%) mapped to a single location, 

28,484 (19.7%) mapped to multiple locations, and 29,762 (20.6%) did not map at all.  

Further runs of SSAHA2 were performed with lower seeds to map as many of the 

unmapped reads as possible.  3,866 (13.0%) of unmapped reads could be mapped using 

seeds 2, and the same results were obtained with seeds 1.  This is surprising, since the 

difference between seeds 3 and 2 was minimal when the 25,000-read test dataset was 

used.  In the test set, analysis with seeds 2 did increase the number of alignments with 

<95% identity (Table 2.2A), and it is therefore likely that a proportion of the additional  



Mapping 5 4 3 2 BLAST

Single 13470 13894 14158 14164 14010

None 7060 6002 4971 3870 5960

Low 1837 2110 2414 3253 1365

Multiple 2633 2994 3457 3713 3665

Total 25000 25000 25000 25000 25000

SSAHA2 seeds

Mapping default skip 4 skip 6 default skip 4 skip 6

Single 14158 13699 13854 13470 13875 14004

None 4971 4187 4044 7060 3959 5096

Low 2414 3301 3281 1837 3301 2413

Multiple 3457 3813 3821 2633 3865 3487

Total 25000 25000 25000 25000 25000 25000

seeds 3 seeds 5

Table 2.2.  The number of MuLV reads mapped using SSAHA2, with varying values

for parameters seeds and skip, and BLASTN. (A) Lowering the number of seeds

increases the number of reads mapped by SSAHA2.  (B) Increasing the overlap

between k-mers decreases the number of reads mapped using seeds 3 but increases

the number mapped using seeds 5.  Mapping types are Single (read maps to a single

location in the genome), None (read unmapped), Low (read maps with an identity lower

than 95%) and Multiple (read maps to multiple locations in the genome).

B

A
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unambiguous mappings obtained using SSAHA2 with seeds 2 on the entire dataset have a 

low identity.  The difference may also reflect developments in the algorithm in the time 

between the two analyses.  The default minimum Smith-Waterman score is 30, and 

reducing this to 20 further increased the number of unmapped reads that could be mapped 

to a single location using seeds 2 to 4,382 (14.7%).  The final set of mappings comprised 

90,672 reads (62.7%) that mapped unambiguously and 29,769 (20.6%) that mapped to 

multiple locations.  24,095 (16.7%) remained unmapped. 

 

Based on the observations for the retroviral dataset, the 10,791 reads of the Sleeping 

Beauty dataset were mapped to NCBI m36 using SSAHA2 with default parameters plus 

seeds 2 and score 20.  5,470 (50.7%) mapped to a single genomic location, 1,859 (17.2%) 

mapped to multiple locations, and 3,462 (32.1%) did not map at all. 

 

2.4 Accounting for unmapped reads 

Even after maximising the number of reads that could be mapped using SSAHA2, there 

was still a high proportion of unmapped reads in both the retroviral and Sleeping Beauty 

datasets.  The lengths of the 96,072 single-mapping, and 24,095 non-mapping, retroviral 

reads are shown in Figures 2.3A and 2.3B, respectively.  Since it is not known which part 

of the read, if any, is genomic DNA, all bases that were not masked as vector, LTR or 

linker were counted.  2,143 (8.9%) of the unmapped reads were exactly 132 base pairs in 

length and a high proportion of these shared an identical sequence flanked by LTR and 

splinkerette sequences.  One read of length 132 bp was submitted to SSAHA2 and 

BLASTN on the Ensembl website (http://www.ensembl.org/).  As expected, there were 

no matches to NCBI m36 using SSAHA2 with near exact or no optimisation.  Using 

BLASTN optimised for near exact matches (–E 10 –B 100 –filter dust –RepeatMasker –

W 15 –M 1 –N -3 –Q 3 –R 3), there were 96 hits, all of which were low scoring.  The hit 

with the lowest E-value and P-value (both 4.2x10-7) was an alignment of 50 bp with a 

score of 22 and 86% identity to chromosome 8:126312491-126312540.  The sequence 

was also submitted to the Ensembl Trace Server (http://trace.ensembl.org), which 

contains millions of single-pass DNA sequencing reads from over 1,000 different species.  

The full length of the read matched with 100% identity to 6 clones from the free-living 

nematode species Pristionchus pacificus.  Since it was unclear how DNA from this 

organism would have become incorporated into the screen, a 132 bp read was also 

submitted    to    NCBI    VecScreen    (http://www.ncbi.nlm.nih.gov/VecScreen/),   which  



A

B

C

Figure 2.3.  The lengths of retroviral reads that are unambiguously mapped (A),

unmapped (B), and unmapped and uncharacterised (C).  The reads of length 63 bp

and 132 bp, which underwent further investigation, are shown.

132 bp

63 bp
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searches for vector contamination in nucleic acid sequences by using BLAST to query the 

UniVec database.  The entire sequence aligned to the MuLV retroviral vector pLNL6 

with 100% identity and no gaps.  Therefore, it appears that the 132 bp sequences are 

composed entirely of retroviral sequence, to which an adapter has been ligated. 

 

There were 657 sequences of length 63 bp.  One such sequence was submitted to 

BLASTN optimised for near exact matches, and one hit – an alignment of 18 bp with 

100% identity to chromosome 15:90360616-90473373 – was obtained.  The highest 

scoring hit obtained in a search against the Trace Server was just 75.9% identity, to a 

sequence from an unknown source.  A VecScreen search revealed a 100% identity match 

along the entire length of the unmasked sequence to the cloning vector pBR322.  Since 

these reads contain an adapter sequence, it is likely that they represent contamination 

during linker-mediated PCR. 

 

Other reads containing the pLNL6 and pBR322 vector sequences were identified using 

cross_match.  19.4% of unmapped reads contained the pLNL6 sequence, while a further 

4.8% contained the pBR322 sequence.  In contrast, only 0.32% and 0.08% of reads 

mapping to a single location had matches to pLNL6 and pBR322, respectively.  

RepeatMasker (Smit et al., 1996-2004) was used to identify repeat regions within the 

remaining unmapped reads.  13.6% contained low-complexity regions.  Such regions are 

difficult to sequence, and these reads may have failed to map because they were not 

correctly sequenced.  Alternatively, low-complexity regions may be the result of 

polymerase stuttering, where the polymerase transcribes the same nucleotide multiple 

times during PCR amplification, and the read may therefore no longer bear a close 

enough resemblance to the corresponding region of the mouse genome.  The proportion 

of low-complexity regions was significantly lower in reads that mapped unambiguously 

(6.2%, P=0). 

 

A further 26.6% of unmapped retroviral reads were below the minimum length (25 bp) 

that could be mapped using SSAHA2 with the chosen parameter values.  Of the 

remaining sequences, 0.73% comprised more than 50% Ns (i.e. unknown nucleotides), 

and 1.2% contained other types of repeat element identified by RepeatMasker.  This 

compared with 0.11% and 0.18%, respectively, for reads mapping to a single location 

(P=0 for both).  The 2-tailed Fisher Exact test was used to determine whether there was 

any significant difference between the numbers of each type of repeat identified by 
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RepeatMasker in the mapped and unmapped reads.  All types of low-complexity region 

were over-represented in the unmapped reads, as were simple repeats and a selection of 

retrovirus-related repeat elements (HAL1, GSAT_MM, L1MEd, LTR/ERV1, MuLV-int, 

MuRRS-int, RLTR4_MM-int and RLTR6-int, see Table 2.3A).  This supports the theory 

that many of the reads could not be mapped either because they contain low complexity 

regions, or because they contain retroviral sequence and may not contain any genomic 

DNA.  There were also numerous under-represented repeat elements among the 

unmapped reads (Table 2.3B).  These included elements that one would expect to find in 

genomic DNA, such as 4.5SRNA and LINEs and SINEs, and elements that are specific to 

the genomes of rodents, such as the endogenous LTR MTE2a, and to the mouse in 

particular, such as the SINE B2_Mm2. 

 

In summary, 15,996 (66.4%) of unmapped reads contained vector sequences or sequences 

of low complexity, low quality or short length (Table 2.4).  The remaining 8,099 reads 

were searched against the Ensembl Trace Server using SSAHA2 with seeds 5.  5.1% had 

matches in the archive, of which 90.5% had matches to sequences of mouse origin.  All of 

the non-mouse matches had an identity of less than 91%, except one, which matched with 

100% identity to 2 sequences, with trace names rtn1ut06.g and rtn1yp83.g, from Rattus 

norvegicus.  As rat and mouse are closely related, it is possible that this read does contain 

DNA from the mouse genome, but that it does not align to the mouse genome because of 

a genome assembly error.  245 reads mapped to mouse sequences in the Ensembl Trace 

Server with greater than 90% identity.  The 8,099 uncharacterised reads were also 

searched against NCBI m36 using NCBI BLASTN.  2,901 (35.8%) had BLAST hits, but 

most had very low scores, just above the score threshold (half had a score of less than 33, 

90% had a score of less than 59; Figure 2.4).  The mapping algorithms of BLASTN and 

SSAHA2 therefore show small differences in output that may not significantly affect the 

final set of reliable mappings.  Of the reads with BLAST hits, 76 also had hits to mouse 

sequences in the Ensembl Trace Server.  However, there were also 295 reads that had hits 

to mouse sequences in the Trace Server but no BLAST hits.  Again, these potentially 

represent sequences that have been incorrectly omitted from the mouse build. 

 

Of the 5,198 (20.9%) remaining non-mapping reads, 4,363 were from tumours, 62 were 

from non-infected mice and 773 were from short infection time mice.   Reads from 

control samples  were  highly over-represented  (P=6.62x10-172).   There was also a highly  



Table 2.3.  Repeat elements that are over-represented (A) and under-represented (B)

among unmapped reads compared with unambiguously mapped reads.  Over-

represented elements include low-complexity regions and retrovirus-related elements,

while under-represented elements include many that are frequently found in mouse

genomic DNA.  P-values were calculated using the 2-tailed Fisher Exact Test.

Table 2.4.  Summary of the proportions of unmapped and unambiguously mapping

reads that contain vector sequences, or sequences of low complexity, low quality or

short length.  “>50% Ns” refers to sequences where the identity of more than 50% of

bases is unknown.  “Other repeats” refers to sequences containing repeat regions other

than low complexity regions that were identified using RepeatMasker.

A B

Unmapped 

reads (%)

Unambiguous 

mappings (%)

MMLV vector sequence 19.37 0.32

pBR322 4.84 0.08

low complexity 13.63 6.19

<=25 bp in length 26.62 0

>50% Ns 0.73 0.11

Other repeats 1.19 0.18

Total 66.38 6.88

Repeat Element P-value

A-rich 0

AT_rich 0

C-rich 7.64E-241

CT-rich 1.94E-09

G-rich 0

GA-rich 0

GC_rich 0

GSAT_MM 3.76E-04

HAL1 2.76E-05

L1MEd 2.02E-03

LTR/ERV1 9.60E-21

MuLV-int 1.87E-26

MuRRS-int 2.23E-08

RLTR4_MM-int 5.83E-45

RLTR6-int 8.18E-03

Simple_repeat 0

T-rich 8.15E-301

polypurine 4.87E-47

polypyrimidine 4.47E-07

Repeat Element P-value Repeat Element P-value

4.5SRNA 7.90E-04 LTR/ERVL 1.21E-10

B1F 3.74E-22 LTR/MaLR 1.21E-82

B1F1 6.41E-08 Lx8 2.67E-13

B1F2 1.03E-14 Lx9 9.04E-08

B1_Mur1 1.07E-11 MIR 3.08E-20

B1_Mur2 1.05E-18 MIR3 8.14E-06

B1_Mur3 5.32E-05 MIRb 8.48E-23

B1_Mur4 1.09E-07 MTD 4.17E-13

B1_Mus1 5.17E-05 MTE-int 2.38E-08

B1_Mus2 5.55E-09 MTE2a 2.02E-05

B2_Mm2 4.07E-03 MTE2b 1.30E-06

B3 5.49E-49 MTEa 8.20E-07

B3A 3.50E-25 ORR1D2 3.79E-10

B4 1.93E-20 ORR1E 1.21E-04

B4A 7.06E-45 Other 2.10E-03

BC1_Mm 8.00E-03 PB1 2.48E-12

DNA/MER1_type 1.44E-27 PB1D10 1.99E-31

DNA/MER2_type 5.23E-04 PB1D9 5.99E-09

ID 8.22E-03 RMER15 2.11E-04

ID4 3.79E-10 RMER30 1.26E-04

ID4_ 2.25E-10 RSINE1 7.00E-60

ID_B1 5.29E-69 SINE/Alu 9.88E-176

L1M 4.16E-04 SINE/B2 3.31E-73

L1M2 4.90E-03 SINE/B4 1.45E-182

L1MC3 8.00E-03 SINE/ID 9.77E-23

L1_Rod 3.19E-05 SINE/MIR 3.24E-47

L2 4.73E-07 THER1_MD 3.16E-03

LINE/L1 1.16E-65 URR1A 5.15E-03

LINE/L2 5.59E-13 URR1B 1.09E-07

LTR/ERVK 6.24E-07 scRNA 1.99E-04
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Figure 2.4.  BLAST scores for uncharacterised unmapped reads.  The majority of

sequences that do not map with SSAHA2 but map with BLASTN have a low BLAST

score.
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significant under-representation (P=0) of reads containing both an LTR and an adapter 

sequence (1,972 reads) compared with those containing no LTR (1,065 reads) or no 

adapter (1,031 reads).  These findings suggest a high presence of erroneous, 

contaminating reads.  In addition, many reads were very short (Figure 2.3C) and may 

have failed to map due to the presence of a small number of differences from the 

reference genome sequence.  Such differences may correspond to polymorphisms 

between the mouse strain FVB, from which the reads are derived, and strain C57BL/6J, 

upon which the mouse reference genome is based.  17.7% of reads were greater than 800 

bp in length.  The quality of reads rapidly deteriorates after ~700-900 bases of 

sequencing, which suggests that these are mostly of very poor quality or are chimeric 

sequences (discussed in Section 2.5). 

 

There was also a highly significant over-representation of non-mapping reads without 

linker sequences (P=1.61x10-96) in the Sleeping Beauty dataset.  Most of the non-mapping 

sequences flanked by an IR/DR and linker were short, with 50.2% being shorter than the 

25 bp threshold for SSAHA2.  As with the retroviral reads, there was a higher proportion 

of low-complexity sequences among unmapped Sleeping Beauty reads greater than 25 bp 

in length (3.1%) than among those that mapped unambiguously (2.4%).  There was also a 

significant over-representation of GC-rich elements (P=1.44x10-4), and an under-

representation of the LINE L1M2 (P=0.00265) and the rodent-specific LTR MTD 

(P=2.85x10-4) and SINEs B3 (P=0.00348), B3A (P=0.00265), PBID10 (P=2.65x10-3) and 

RSINE1 (P=2.74x10-4). 

 

2.5 Filtering the mapped reads 

During PCR amplification, unrelated sequences can hybridise to one another, resulting in 

clones comprising chimeric sequences.  It is important that retroviral reads contain the 

LTR sequence since, if the part of the read that maps to the genome is directly adjacent to 

the LTR, the location of the mapped DNA is likely to be the true location of the retroviral 

insertion.  For reads that contain an LTR and an adapter, these sequences should directly 

flank the genomic DNA.  Therefore, for each read, the coordinates of the LTR and 

adapter sequences identified by cross_match were compared to the coordinates of the 

region that mapped to the mouse genome using SSAHA2.  If the gap between these 

regions was within 5 bp, the read was accepted.  Since the junction between the LTR and 

the genomic DNA is most important, reads were also accepted if the DNA that mapped to 
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the genome was within 5 bp of the LTR but there was a gap between the genomic DNA 

and the adapter, or if the read did not contain an adapter sequence.  Base miscalling in 

low quality reads may result in a SSAHA2 alignment that does not extend right up to the 

LTR sequence even though the LTR and genomic DNA are directly adjacent.  Therefore, 

up to a distance of 30 bp, reads were accepted if the sequence between the LTR and the 

aligning genomic DNA did not contain any restriction sites for Tsp509I (i.e. 5’-AATT-3’) 

or Sau3AI (i.e. 5’-GATC-3’), depending on which had been used in the PCR.  If a 

restriction site intercepts the LTR and genomic DNA, it is possible that the genomic DNA 

that immediately flanks the LTR, and represents the true location of the virus in the 

genome, may not have been mapped because it is too small or of poor quality but that it 

has ligated to a contaminating DNA fragment that has been mapped. 

 

The components within the read should be in the configuration LTR-genome-adapter or 

adapter-genome-LTR.  Therefore, any reads that had a different configuration were 

discarded.  For example, the configuration LTR-adapter-genome suggests that a 

contaminating fragment of genomic DNA has ligated to the end of the adapter, and that 

the true flanking region of the LTR could not be mapped because it is too short or of poor 

quality.  Reads containing multiple LTR or adapter sequences were subjected to the same 

filtering criteria, whereby reads were discarded if the sequence for one LTR did not 

directly abut the genomic sequence or the adapters intercepted the LTR and genomic 

sequence.  Reads with no LTR were rejected unless an LTR identified by reducing the 

minimum score for cross_match to 5 followed the rules outlined above for stronger LTR 

matches. 

 

81,846 reads (90.3%) were retained after filtering.  Both accepted and rejected reads with 

gaps of greater than 5 bp were subjected to further analysis.  If the average quality 

(Phred) score of the gap region was less than 30, the read was accepted as the gap may 

contain miscalled bases, causing SSAHA2 to prematurely terminate extension of the 

alignment across the full length of the genomic DNA within the read.  Reads were also 

accepted if they mapped to the same location as other reads from the same tumour that 

did not contain a gap.  The final set of accepted reads totalled 81,910 (90.3%).  The 

filtering procedure is summarised in Figure 2.5.  There were significantly more reads of 

greater than 800 bp in length among removed reads (39.5%) than retained reads (6.7%, 

P=0) and removed reads mapped to the genome with a lower percentage identity (92.6% 

± 5.9) than retained reads (99.0% ± 2.3). 
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Figure 2.5.  The filtering process for single mapping reads.  Blue boxes contain the

counts for accepted or rejected reads at each stage, where the top number in each box

refers to the count for retroviral reads and the bottom number refers to the count for

transposon reads.  Final counts for the accepted and rejected reads are shown in the green

and red box, respectively.
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29,769 reads mapped to multiple locations in the mouse genome.  These may be chimeric 

or low quality reads, or they may represent retroviruses that have inserted into duplicated 

or repetitive regions of the genome.  15,036 reads were identified where at least one of 

the mappings matched the criteria used for filtering single mapping reads.  For 8,429 of 

these reads, only one mapping matched the criteria, and this was retained in the dataset 

while other mappings were discarded.  Among the remaining 6,607 reads, there were 465 

where only one mapping had an alignment of 100% identity.  These mappings were 

retained and all others were discarded.  In total, 8,894 (29.9%) of reads that mapped 

ambiguously were retained.  As with the unambiguous mappings, there was a significant 

over-representation of reads greater than 800 bp in length in the removed reads (13.4%) 

compared to the retained reads (8.9%, P=3.40x10-28).  The retained reads were pooled 

together with the retained single mapping reads, giving a total of 90,804 reads. 

 

Transposon insertions were filtered using the same criteria, except that gaps between 

IR/DRs and genomic DNA were scanned for NlaIII (5’-CATG-3’) or BfaI (5’-CTAG-3’) 

restriction sites, depending on whether the IR/DR was from the left or right end of the 

transposon.  5,340 (97.6%) of reads mapping to a single genomic location and 941 

(50.6%) of those mapping ambiguously were accepted.  The filtering of reads that 

mapped unambiguously is summarised in Figure 2.5. 

 

2.6 Identification and filtering of insertion sites 

As 96 reads were sequenced for each PCR, there may be multiple reads that correspond to 

the same insertion site.  The exact genomic coordinates and orientation of the retroviral or 

transposon insertion represented by each read were determined using the coordinates and 

orientation of the genomic DNA, resolved by SSAHA2.  The methods are summarised in 

Figure 2.6.  Reads from a single PCR mapping to within 2 kb were then clustered into a 

single insertion site, resulting in 29,553 retroviral insertion sites and 2,821 transposon 

insertion sites across all PCRs. 

 

It is possible that endogenous LTR sequences within the mouse genome could be the 

target of non-specific PCR amplification in the retroviral screen.  NCBI BLASTN, 

adjusted to search for short sequences (Word size 7, E value 10,000, filter OFF), was 

therefore used to identify sequences in NCBI m36 that resembled the MuLV LTR.  In a 

preliminary   analysis   on   NCBI  m34,   all  15  bp  fragments   of   the   LTR   sequence  



Sequence read

Antisense orientationSense orientation

Insertion site

5’ LTR

3’ LTR5’ LTR 3’ LTR5’ LTR

IR/DR-L IR/DR-R IR/DR-LIR/DR-R

Sense orientation Antisense orientation

IR/DR-L IR/DR-R

A

B

Sequence reads

Figure 2.6.  Determining the exact insertion site and orientation of retroviral (A) and

transposon (B) insertions in the mouse genome.  Adapter sequences are shown in red;

genomic DNA is shown in green.  A. The point of insertion is the genomic nucleotide

adjacent to the 5’ LTR of the MuLV retrovirus (shown in blue) in the sequence read.

Alignment to the forward strand of the mouse genome indicates that the retrovirus has

inserted in the 5’-3’ orientation and the insertion site corresponds to the last nucleotide in

the reported alignment.  Alignment to the reverse strand indicates that the retrovirus has

inserted in the 3’-5’ orientation and the insertion site corresponds to the first nucleotide in

the alignment.  B.  As for retroviral insertions, except that there are two sets of reads,

containing a left or right IR/DR sequence.  The T2/Onc transposon is shown in pink.
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5’-GCTAGCTTGCCAAACCTACAGGTGGGGTCTTC-3’ were used as query 

sequences, but 99% of the insertions near LTR-like sequences in short infection time 

mice were identified using LTR fragments 5’-GCTTGCCAAACCTAC-3’ and 5’-

CTTGCCAAACTACA-3’, and therefore only these fragments were used in the current 

analysis.  All of the apparent insertions in the uninfected control samples should be PCR 

artefacts, while short infection time DNA is expected to contain a higher proportion of 

PCR artefacts than tumour DNA.  Among the 1,399 reads mapping to LTR-like sites, 

there were significantly more from uninfected samples and from short infection time 

samples than expected by chance (P=3.17x10-26 and P=0, respectively).  These findings 

support the theory that reads mapping to sites that resemble the retroviral LTR are the 

result of non-specific PCR amplification and do not represent real insertion sites.  For 

example, 174 samples contain an insertion in the aminoadipate-semialdehyde synthase 

(Aass) gene, but the insertions are adjacent to a 14 bp sequence that precisely matches the 

MuLV LTR and are therefore likely to be false positives.  Figure 2.7 shows these 

insertions displayed in Ensembl.  The Distributed Annotation System (DAS) server 

ProServer was used to display both the retroviral and the transposon insertion sites in the 

context of the mouse genome in Ensembl contigview.  Ensembl is a DAS client that can 

integrate genome annotation information from multiple servers, enabling users to view 

and compare annotations from multiple sources in a single display.  All 1,399 reads at 

675 LTR-like sites were removed from the dataset. 

 

Apparent insertions in non-infection and short infection time samples were removed from 

the dataset, but a decision was made not to remove tumour insertions that mapped to the 

same locations.  A preliminary analysis, in which the reads were mapped to mouse build 

NCBI m34, showed that many of the reads from non-infection and short infection time 

samples mapped to cancer genes that are known targets of retroviral insertional 

mutagenesis.  Insertions within 5 kb of Myc were identified in 41.7% of non-infection 

samples, 26.2% of short infection time samples and 30.4% of tumour samples (see Figure 

2.8).  Similarly, the proportions of insertions from non-infection and short infection time 

samples in and around Mycn were 12.5% and 35.9%, respectively, but just 8.9% in 

tumour samples.  Findings for the short infection time dataset could indicate that Myc and 

Mycn are insertion hotspots, or that selection for Myc and Mycn insertions occurs at an 

early time point.  However, these explanations do not justify the presence of such 

insertions in non-infection samples.  As all non-infection insertions map to only 142 

distinct coordinates, it seems an unlikely coincidence that Myc and Mycn are targeted by  



Figure 2.7.  Insertions in the mouse aminoadipate-semialdehyde synthase (Aass) gene

are PCR artefacts that map to an LTR-like sequence in the mouse genome.    174

samples contain an insertion in this region (46 are shown here as triangles).  Insertions

from tumours, short infection time samples and uninfected samples are shown as red,

green and blue triangles, respectively.  The LTR-like sequence is circled.
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Figure 2.8.  A high proportion of insertions in control samples map to the Myc gene.

This figure shows some of the insertions in and around the Myc gene.  Insertions from

tumours, short infection time samples and uninfected samples are shown as red, green and

blue rectangles, respectively.
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non-specific primer binding, and there are no LTR-like sequences near these genes.  The 

insertions may result from contamination during PCR or, even more worryingly, 

unintended infection of mice in the animal facility.  The control samples are useful for 

picking out possible contaminants, like those described above that map to LTR-like 

sequences, but discarding all tumour insertions that map to the same sites as control 

insertions would most likely result in the removal of a considerable number of real 

insertions.   

 

The insertion sites identified in individual PCRs were clustered into 22,579 retroviral 

insertion sites from 997 tumours.  The average number of inserts per tumour was 23.49 ± 

11.42 (Figure 2.9A).  There were, on average, 3.72 ± 6.21 reads per insert (Figure 2.9B).  

The 2,821 transposon insertion sites identified in individual PCRs were clustered into 

2,643 insertion sites from 73 tumours.  There was an average of 36.21 ± 18.55 inserts per 

tumour, and 2.38 ± 4.08 reads per insert. 

 

2.7 Estimating the coverage of the mutagenesis screens 

Measuring the overlap of insertion sites between PCRs for an individual tumour gives 

some indication of the proportion of insertions that were identified in the screens.  There 

were 616 tumours for which retroviral insertions had been identified from one PCR using 

Sau3A1 and one using Tsp509I.  These contained 10,733 and 8,580 insertions identified 

using Sau3A1 and Tsp509I, respectively, of which 2,968 were identified using both 

enzymes.  The overlap between PCR experiments was therefore 18.2%, rising to 32.9% if 

insertions represented by a single read were omitted.  More than one enzyme is required 

because individual enzymes do not cut the genomic DNA sufficiently close to all 

insertions to enable PCR amplification of the intervening sequences.  Since the overlap 

between PCRs is low, it seems likely that even two enzymes do not give sufficient 

coverage.  However, the difference between the 2 PCRs may also result from insufficient 

sequencing, such that genomic DNA flanking an insertion is amplified but is not 

sequenced.  This may explain why a high proportion of insertion sites represented by a 

single read are not identified by both PCRs, since they are more likely to be rare 

insertions that have a low representation in the PCR mixture and are less likely to be 

sequenced. 

 



Figure 2.9.  The number of insertions per tumour (A) and reads per insertion (B).

A

B
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For 3 tumours, genomic DNA was also digested using BstYI, and 384 reads were 

sequenced.  Reads were mapped to NCBI m34 and were compared to Sau3A1 and 

Tsp509I reads from the same tumours, also mapped to NCBI m34.  There was a 39.0% 

overlap between insertion sites identified from PCRs using Sau3A1 and BstY1, and a 

23.4% overlap between those identified from PCRs using Tsp509I and BstYI.  A higher 

overlap is expected between Sau3A1 and BstYI because the BstYI target site (5’-

RGATCY-3’) contains the target sequence for Sau3A1.  BstYI cuts less frequently than 

Sau3A1 and Tsp509I.  For reads generated using Sau3A1 or Tsp509I, the average distance 

between the LTR and the restriction site at which the DNA was cut was 308.41 bp, but 

for reads generated using BstYI, the average distance was 386.52 bp.  It is therefore 

difficult to directly compare the PCRs because fragments of BstYI-digested DNA will be 

longer, on average, and there is likely to be a higher proportion that cannot be amplified 

by PCR.  For insertion sites that were identified using Sau3A1 or Tsp509I but not using 

BstYI, the genomic DNA within the corresponding reads was scanned for BstYI target 

sites.  Likewise, for insertion sites that were uniquely identified using BstYI, the genomic 

DNA was scanned for Sau3A1 and Tsp509I target sites.  If the sequencing depth of 96 

reads was sufficient, insertion sites should only be uniquely identified using BstYI if there 

are no Sau3A1 and Tsp509I target sites close enough to the insertion site for successful 

PCR.  A BstYI target site was identified at a distance equal to, or closer than, the Sau3A1 

or Tsp509I site in reads corresponding to 2 out of 15 unique Sau3A1 insertion sites and 4 

out of 20 unique Tsp509I insertion sites.  However, for Sau3A1 and Tsp509I, a target site 

was identified at a distance equal to, or closer than, the BstYI site for 21/21 and 14/29 

unique BstYI insertions, respectively.  This suggests that more insertion sites could be 

obtained by increasing the sequencing depth to 384 reads per PCR, and that an even 

greater depth may be required to saturate the screen.  However, as only 3 tumours were 

used in this analysis, and different enzymes were used to generate the digested DNA for 

96-read and 384-read sequencing, it is difficult to reach any firm conclusions about the 

number of enzymes and the sequencing depth required for maximum coverage.  

 

For the Sleeping Beauty screen, there were 60 tumours for which 2 PCRs were performed 

using restriction enzymes BfaI and NlaIII.  Only 159 insertions (6.9%) were shared from 

1,161 insertion sites identified using BfaI and 1,310 identified using NlaIII. 
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2.8 Analysis of the distribution of insertions around mouse genes 

The long-range effects of MuLV enhancer mutations can complicate the identification of 

mutated genes.  Analysing the distribution of insertions around mouse genes, and in 

particular, around the mouse orthologues of known cancer genes, can help to define rules 

for predicting which gene is being mutated by an insertion.  The genomic coordinates and 

orientation of all mouse protein-coding and miRNA genes were extracted from Ensembl 

using the Perl API version 45_36f, and insertions were counted in 100 bp intervals up to 

20 kb upstream and downstream of each gene.  The gene orientation was used to 

determine the orientation of insertions with respect to each gene.  Figures 2.10A-D show 

the number of genes that contain insertions in each 100 bp interval upstream and 

downstream in the sense and antisense orientation with respect to each gene.  In the full 

set of genes, the number of sense and antisense insertions peak at around 500-600 bp 

upstream, and a similar pattern is observed around the mouse orthologues of known 

cancer genes.  These sense and antisense insertions are likely to represent promoter and 

enhancer mutations, respectively (see Section 1.4.2.1.1), with the peak representing the 

optimal distance for mutation.  Downstream insertions show a relatively uniform 

distribution with similar proportions of insertions in the sense and antisense orientation.  

This may indicate that most are randomly occurring non-oncogenic insertions, or that 

there is no optimum distance for an enhancer mutation that acts downstream of a gene.  It 

is also likely that some of these insertions are affecting adjacent genes, and variation in 

the distance between genes may contribute to the observed distribution.  There is also no 

obvious pattern in the downstream counts of cancer genes with insertions.  The plots in 

Figures 2.10A-D show the counts of genes with insertions up to 20 kb upstream or 

downstream, regardless of whether adjacent genes intercept the 20 kb region.  However, 

counting only as far as the adjacent gene gives a similar distribution, with peaks at 500-

600 bp upstream in both orientations, and an essentially uniform distribution downstream.  

Counting actual insertions, rather than the number of genes containing insertions, skews 

the distribution towards genes containing larger numbers of insertions.  For example, Myc 

contains many enhancer mutations, and the highest peak might represent the optimal 

distance for an enhancer mutation of Myc, rather than for all genes.  However, once again 

the highest peak is at 500-600 bp upstream.  A similar distribution is also obtained by 

counting only the genes that contain insertions represented by more than one read.   

 



Figure 2.10.  The number of genes with insertions in 100 bp intervals up to 20 kb

upstream in the sense (A) and antisense (B) orientation and downstream in the sense

(C) and antisense (D) orientation with respect to the gene.  Counts of cancer genes

with insertions in each interval are shown in yellow.

A

B

C

D
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Known oncogenes and tumour suppressor genes with intergenic insertions up to 20 kb 

upstream and/or downstream are shown in Tables 2.5A and 2.5B, respectively.  Tumour 

suppressor genes are expected to contain intragenic insertions that result in truncated, 

inactivated, transcripts. Of the 12 tumour suppressor genes flanked by intergenic 

insertions, only 1 has insertions represented by more than one read.   This suggests that 

“singleton” insertions, i.e. insertions represented by a single read, are less likely to 

contribute to oncogenesis.  They may be rare insertions that are not in the dominant 

tumour lineage or have integrated into a single lineage late on in tumour development, or 

they may be PCR artefacts.  8 known oncogenes had insertions within 2 kb upstream in 

the sense orientation, and 22 had insertions within 20 kb.  These numbers fell to 5 and 9, 

respectively, if singleton insertions were removed.  Likewise, there were 9 oncogenes 

with antisense insertions within 2 kb upstream, and 29 with insertions within 20 kb, but 

only 5 and 13, respectively, without singletons.  As well as representing rare insertions, 

singleton insertions may result from limitations in PCR and sequencing depth.  Therefore, 

in order to maximise the number of candidates that could be identified, singleton 

insertions were retained in the analysis since, if they are not important in tumourigenesis, 

they should not form statistically significant CISs (see Section 2.10). 

 

Insertions around the Pim1 oncogene (Figure 2.11A) suggest that downstream sense and 

antisense insertions can contribute to tumourigenesis.  Downstream sense insertions also 

appear to affect the Kit oncogene (Figure 2.11B).  However, there are fewer oncogenes 

with downstream sense insertions than upstream insertions, and even fewer with 

downstream antisense insertions.  For some of the genes, e.g. Gata1 (Figure 2.11C), it 

does appear that the downstream insertions are in fact mutating an adjacent gene.  These 

observations concur with prior work, in suggesting that upstream antisense and sense 

insertions, corresponding to enhancer and promoter mutations, respectively, are the most 

common forms of mutation.  Downstream insertions, while less common, appear to be 

more frequent in the sense orientation, which is the proposed orientation for downstream 

enhancer mutations (see Section 1.4.2.1.1). 

 

Of the 22 oncogenes that had sense insertions within 20 kb upstream, 20 were still 

identified when the upstream limit was set to the 3’ end of the upstream gene.  All 9 

genes without singleton insertions were similarly identified.  Likewise, 23 out of 29 

genes, including all 13 genes without singletons, that had antisense insertions within 20 

kb  upstream  were  still  identified.    9  out  of  14  genes  containing  downstream  sense  



Table 2.5.  Number of intergenic insertions up to 20 kb upstream and downstream of

known oncogenes (A) and tumour suppressor genes (B) from the Cancer Gene

Census.  “20 kb all” and “2 kb all” give the total number of insertions up to 20 kb and 2

kb upstream/downstream.  “2 kb no singletons” and “20 kb no singletons” give the

number of insertions represented by more than 1 read.  “Within limits” gives the number

of insertions up to the adjacent upstream or downstream gene.

Insertion 

orientation Mouse Ensembl ID

Gene 

name 20 kb all

20 kb no 

singletons 2 kb all

2 kb no 

singletons

Within 

limits

ENSMUSG00000003068 Stk11 2 0 0 0 2

ENSMUSG00000009863 Sdhb 2 0 0 0 0

ENSMUSG00000036712 Cyld 2 0 0 0 0

ENSMUSG00000009863 Sdhb 6 0 0 0 0

ENSMUSG00000003068 Stk11 2 0 0 0 2

ENSMUSG00000013663 Pten 2 0 0 0 2

ENSMUSG00000026526 Fh1 2 0 0 0 0

ENSMUSG00000028687 Mutyh 2 0 0 0 0

ENSMUSG00000034023 Fancd2 2 0 0 0 0

ENSMUSG00000030528 Blm 4 2 0 0 4

ENSMUSG00000024947 Men1 2 0 0 0 0

ENSMUSG00000025231 Sufu 2 0 0 0 0

ENSMUSG00000044702 Palb2 2 0 0 0 0

ENSMUSG00000040084 Bub1b 3 0 0 0 3

ENSMUSG00000024947 Men1 2 0 0 0 0

Upstream 

sense

Upstream 

antisense

Downstream 

sense

Downstream 

antisense

B

A Insertion 

Orientation Mouse Ensembl ID

Gene 

Name 20 kb all

20 kb no 

singletons 2 kb all

2 kb no 

singletons

Within 

limits

ENSMUSG00000031103 Elf4 39 18 33 13 39

ENSMUSG00000018654 Ikzf1 22 14 0 0 22

ENSMUSG00000062312 Erbb2 13 0 0 0 1

ENSMUSG00000022346 Myc 12 9 11 8 12

ENSMUSG00000006362 Cbfa2t3 11 4 2 0 11

ENSMUSG00000026923 Notch1 8 4 0 0 8

ENSMUSG00000000409 Lck 7 6 6 5 7

ENSMUSG00000034342 Cbl 7 3 0 0 6

ENSMUSG00000024014 Pim1 6 4 6 4 6

ENSMUSG00000029204 Rhoh 5 0 0 0 5

ENSMUSG00000032688 Malt1 3 0 0 0 3

ENSMUSG00000036986 Pml 3 0 0 0 0

ENSMUSG00000025408 Ddit3 2 0 2 0 2

ENSMUSG00000037169 Mycn 2 0 2 0 2

ENSMUSG00000000184 Ccnd2 2 2 2 2 2

ENSMUSG00000059248 Sept9 2 0 0 0 2

ENSMUSG00000020893 Per1 2 0 0 0 2

ENSMUSG00000021377 Dek 2 0 0 0 2

ENSMUSG00000021356 Irf4 2 0 0 0 2

ENSMUSG00000027829 Ccnl1 2 0 0 0 2

ENSMUSG00000066306 Numa1 2 0 0 0 2

ENSMUSG00000003282 Plag1 2 0 0 0 0

ENSMUSG00000022346 Myc 388 303 383 299 388

ENSMUSG00000026923 Notch1 19 10 0 0 19

ENSMUSG00000024014 Pim1 16 11 15 10 16

ENSMUSG00000070348 Ccnd1 14 9 5 3 14

ENSMUSG00000018654 Ikzf1 14 9 0 0 14

ENSMUSG00000000184 Ccnd2 13 7 4 2 13

ENSMUSG00000006362 Cbfa2t3 13 8 0 0 13

ENSMUSG00000006389 Mpl 10 0 4 0 6

ENSMUSG00000022952 Runx1 8 6 0 0 8

ENSMUSG00000003282 Plag1 8 0 0 0 0

ENSMUSG00000059248 Sept9 6 2 0 0 6

ENSMUSG00000042817 Flt3 5 2 4 2 5

ENSMUSG00000031103 Elf4 4 0 2 0 4

ENSMUSG00000043962 Akt3 3 0 3 0 3

ENSMUSG00000048251 Bcl11b 3 0 2 0 0

ENSMUSG00000030745 Il21r 3 0 0 0 3

ENSMUSG00000034342 Cbl 3 0 0 0 3

ENSMUSG00000025958 Creb1 2 2 0 0 2

ENSMUSG00000020453 Patz1 2 0 0 0 2

ENSMUSG00000021457 Syk 2 0 0 0 2

ENSMUSG00000021356 Irf4 2 2 0 0 2

ENSMUSG00000056234 Ncoa4 2 0 0 0 2

ENSMUSG00000022797 Tfrc 2 0 0 0 2

ENSMUSG00000032698 Lmo2 2 0 0 0 2

ENSMUSG00000002028 Mll1 2 0 0 0 2

ENSMUSG00000025408 Ddit3 2 2 0 0 0

ENSMUSG00000041358 Nut 2 0 0 0 0

ENSMUSG00000000409 Lck 2 0 0 0 0

ENSMUSG00000029438 Bcl7a 2 0 0 0 0

ENSMUSG00000024014 Pim1 17 9 2 0 17

ENSMUSG00000038227 Hoxa9 6 2 0 0 3

ENSMUSG00000022346 Myc 5 2 0 0 5

ENSMUSG00000020325 Fstl3 4 2 0 0 0

ENSMUSG00000010755 Cars 3 0 3 0 0

ENSMUSG00000032097 Ddx6 3 0 0 0 3

ENSMUSG00000034041 Lyl1 2 0 0 0 3

ENSMUSG00000057329 Bcl2 2 0 0 0 2

ENSMUSG00000069305 Hist4h4 2 0 0 0 2

ENSMUSG00000029204 Rhoh 2 0 0 0 2

ENSMUSG00000005672 Kit 2 0 0 0 2

ENSMUSG00000034165 Ccnd3 2 0 0 0 0

ENSMUSG00000004895 Prcc 2 2 0 0 0

ENSMUSG00000028718 Stil 2 0 0 0 0

ENSMUSG00000031162 Gata1 9 8 0 0 5

ENSMUSG00000024014 Pim1 5 2 0 0 5

ENSMUSG00000030745 Il21r 4 2 0 0 4

ENSMUSG00000069305 Hist4h4 3 0 0 0 3

ENSMUSG00000020453 Patz1 3 0 0 0 0

ENSMUSG00000068860 Gm128 3 0 0 0 0

ENSMUSG00000070002 Ell 3 2 0 0 0

ENSMUSG00000026656 Fcgr2b 2 0 0 0 2

ENSMUSG00000020167 Tcfe2a 2 0 0 0 0

ENSMUSG00000034041 Lyl1 2 0 0 0 0

Upstream 

sense

Upstream 

antisense

Downstream 

sense

Downstream 

antisense
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Figure 2.11.  Insertions around known cancer genes Pim1 (A), Kit (B), Gata1 (C) and

Blm (D).  Insertions are shown as black bars in the context of Ensembl genes, shown in

red.  Insertions above and below the blue bar are in the sense and antisense orientation,

respectively.

A

D

C

B
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insertions, and 5 out of 10 genes containing downstream antisense insertions, were still 

identified when the downstream limit was set to the 5’ end of downstream gene.  The 

lower proportion for genes with downstream sense insertions, and lower still for 

downstream antisense insertions, most likely reflect the fact that these insertions are less 

likely to contribute to oncogenesis.  The same applies to tumour suppressor genes, of 

which only 4 out of 12 were still identified when the upstream and downstream limits 

were set to adjacent genes.  Therefore, based on these results, it seems reasonable to 

assign insertions to a gene only if they are within the limits of adjacent genes. 

 

As indicated by the high proportion of singleton insertions and the presence of insertions 

beyond the boundaries of adjacent genes, it is likely that most of the tumour suppressor 

genes listed in Table 2.5 are not mutational targets.  However, the Blm gene contains an 

intragenic insertion, as well downstream sense insertions (Figure 2.11D).  It is possible 

that the intergenic insertions are not oncogenic, or that they are affecting a nearby gene, 

or there may be an error in the Blm gene prediction in Ensembl, such that the insertions 

appear to be intergenic but are in fact intragenic.  Alternatively, the insertions could be 

disrupting a downstream regulatory element, resulting in reduced transcription or gene 

inactivation. 

 

There is no obvious pattern in the distribution of transposon insertions upstream or 

downstream of genes.  This is not surprising for upstream antisense and downstream 

insertions, since the Sleeping Beauty transposon T2/Onc has low enhancer activity.  

However, insertions in the upstream sense orientation might be expected to follow a 

similar distribution to those in the retroviral screen.  The T2/Onc promoter is perhaps not 

as strong as the MuLV promoter and mostly mutates by producing truncated transcripts, 

rather than by increasing levels of the wildtype protein.  Alternatively, some of the 

apparent promoter mutations in the retroviral screen may in fact be enhancer mutations, 

or a high background of non-oncogenic T2/Onc insertions may be masking the true 

pattern of oncogenic mutations.  There is only one oncogene (Irf4) and no tumour 

suppressor genes with sense or antisense insertions up to 20 kb upstream or downstream.  

While this may in part reflect the smaller size of the dataset, it also suggests that 

oncogenic T2/Onc insertions are usually intragenic. 
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2.9 Assigning insertions to genes 

The coordinates and orientation of the longest transcript of all protein-coding and miRNA 

genes in the mouse genome were extracted from Ensembl version 45_36f using the API.  

Genes nestled within other genes were removed from the analysis, since these complicate 

the specification of gene boundaries for assigning intergenic insertions to genes.  

Intragenic retroviral insertions were assigned to the genes within which they resided.  For 

intergenic insertions, the flanking genes were identified.  If an insertion was upstream of 

the first gene or downstream of the last gene on a chromosome, it was assigned to the first 

or last gene, respectively.  If only one of the flanking genes was within 100 kb of the 

insertion, that gene was assigned the insertion.  If one of the flanking genes contained 

intragenic insertions, the intergenic insertions were also assigned to that gene.  Based on 

the observations of insertions around known cancer genes outlined in Section 2.8, if an 

insertion was in the downstream antisense orientation relative to one gene, but in a 

different orientation relative to the other gene, it was assigned to the other gene, and other 

intergenic insertions were also assigned to that gene.  Finally, for the remaining 

unassigned intergenic insertions, the nearest insertion to each gene was identified, and all 

insertions were assigned to the gene that had the nearest insertion.  Sleeping Beauty 

T2/Onc insertions were processed in a similar way, except that if an intergenic insertion 

was in the upstream sense orientation with respect to one gene, but in a different 

orientation with respect to another gene, it was assigned to the former gene. 

 

2.10 Identifying statistically significant common insertion sites 

Oncogenic insertions must be distinguished from a background of non-oncogenic 

insertions.  Insertions from different tumours that reside in the same genomic region, 

defined as common insertion sites (CISs), are more likely to contribute to tumourigenesis, 

but statistical approaches are required to determine whether a CIS is significantly 

different to the random, background distribution of insertions.  Monte Carlo simulations, 

and a more recent method that uses a kernel convolution-based statistical framework, 

have been applied to the retroviral and Sleeping Beauty datasets, and the results 

compared. 
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2.10.1 Monte Carlo simulations 

This method is based on the procedures described in Suzuki et al. (2002) and Mikkers et 

al. (2002).  The 26,144 retroviral insertions were randomised across the mouse genome 

(golden path length 2,661,205,088 bp, mouse build NCBI m36).   A wide range of 

window sizes were used, and the number of windows containing at least M insertions 

were counted, where M was a number of 2 or more (up to 14 for large window sizes).   

The randomised insertions were ordered across the genome (X[1] to X[26,144]), and windows 

were taken as the interval from X[i] to X[i+M-1] (see Suzuki et al., 2002).  If the distance 

between an insertion and the next M-1 insertions on the chromosome was less than the 

window size (X[i+M-1] – X[i]), it was counted as a CIS.  The next window was positioned at 

i+M.  100,000 iterations were performed, and mean counts and the 0.99 upper quantile 

were calculated for each number (M) of insertions.  This gives the number of CISs of M 

insertions that one would expect to find by chance in each window size, and the 

maximum number for P=0.01.  As in Mikkers et al. (2002), fractions (represented as Efr) 

of 0.001, 0.005 and 0.01 of the total number of insertion sites expected to be random CIS 

clusters were calculated.  These are 26.144, 130.72 and 261.44, respectively, for retroviral 

insertions, and 2.64, 13.22 and 26.43, respectively, for transposon insertions.  Maximum 

window sizes for significant CISs for varying values of M can then be calculated by 

finding the window size at which the upper quantile of the random distribution is less 

than the expected number of false CISs (Table 2.6). 

 

For each gene to which insertions had been assigned, the number of insertions was 

counted and the distance between insertions was calculated.  If any of the insertions fell 

within a window size that met the criteria for a significant CIS, the gene was accepted as 

a candidate cancer gene.  For an Efr of 0.001, 0.005 and 0.01, the number of identified 

candidates in the retroviral screen was 1,404, 1,677 and 1,829, respectively.  For the 

Sleeping Beauty screen, the number of candidates was 62, 91 and 115, respectively.  This 

approach differs from the method in Suzuki et al. (2002) in that insertions were 

considered in the context of each gene, and a consistent approach was used to identify all 

candidates.  In Suzuki et al. (2002), CISs were identified independently of genes, and 

then assigned to genes, but further genes were selected as candidates if they contained 

multiple insertions that were not in significant CISs.  In addition, the method in Suzuki et 

al. (2002) uses 3 fixed window sizes to define CISs, which, particularly in a screen of this 



Table 2.6.  Maximum window sizes in kb for significant CISs for varying numbers of

insertions in the retroviral (A) and Sleeping Beauty (B) screens.  Window sizes are

given for Efr (fraction of the number of insertion sites expected to be random CIS

clusters) of 0.001, 0.005 and 0.01, for which the corresponding numbers of false CISs are

26.144, 130.72 and 261.44 for retroviral insertions, and 2.64, 13.22 and 26.43 for

transposon insertions.  N/A is given where the window size is larger than any gene plus

100 kb of flanking sequence, and is therefore not relevant to the analysis.

A

B

Table 2.7.  Comparison of the methods used to generate candidate cancer genes lists

from the retroviral (A) and Sleeping Beauty (B) screens.  The accuracy, coverage and

Matthew’s correlation coefficient (MCC) are based on the number of known cancer genes

in the candidate gene lists.  KC = kernel convolution-based framework, MC Efr=0.001

and MC Efr=0.01 refer to Monte Carlo simulations using Efr (fraction of the number of

insertion sites expected to be random CIS clusters) of 0.001 and 0.01, All = all genes to

which insertions were assigned, regardless of whether they were statistically significant.

A

B

Efr 2 3 4 5 6 7 8

0.001 1 45 193 450 800 1200 1650

0.005 5 101 345 750 1200 1750 N/A

0.01 10 142 452 950 1500 2100 N/A

Number of insertions

2 3 4 5 6 7 8 9 10 11 12 13 14

0.001 0.1 5.0 19.5 45.0 80.0 120.0 168.0 220.0 275.0 333.0 391.5 455.0 521.0

0.005 0.5 10.0 35.0 75.0 120.0 175.0 235.0 299.5 366.0 437.5 510.0 586.0 663.0

0.01 1.0 14.4 45.7 95.0 150.0 210.0 280.0 351.5 425.5 505.0 587.5 671.0 757.0

Number of insertions

Efr

Method
Number of 

cancer genes

Number of non-

cancer genes Accuracy Coverage MCC

KC 42 487 0.0794 0.1193 0.1433

MC Efr=0.001 66 1144 0.0545 0.1875 0.1010

MC Efr=0.01 80 1500 0.0506 0.2273 0.0944

All 175 5483 0.0309 0.4972 0.0562

Method
Number of 

cancer genes

Number of non-

cancer genes Accuracy Coverage MCC

KC 6 21 0.2222 0.0170 0.3115

MC Efr=0.001 10 45 0.1818 0.0284 0.2708

MC Efr=0.01 11 90 0.1089 0.0313 0.1836

All 59 1279 0.0441 0.1676 0.0767
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size, could result in some CISs being missed.  Therefore, this method uses the approach in 

Mikkers et al. (2002) to define maximum window sizes for all values of M. 

 

2.10.2 Kernel convolution 

As discussed in Section 1.4.2.1.2, the Monte Carlo (MC) method may not be suitable for 

very large datasets.  Significant CISs were therefore also identified using the kernel 

convolution (KC)-based statistical framework (de Ridder et al., 2006).  A list of 

insertions was supplied to the Netherlands Cancer Institute, where Jeroen de Ridder 

produced and returned a list of genomic coordinates corresponding to CISs generated 

using the KC method.  In this method, a kernel function is placed at every insertion in the 

dataset and the number of insertions at any genomic position can be estimated by 

summing all the kernel functions.  Insertions in close proximity to one another will 

produce a higher peak in the estimated number of insertions (de Ridder et al., 2006, also 

discussed in Section 1.4.2.1.2). 

 

867 retroviral cross-scale CISs were identified using the KC-based framework with 

P=0.05.  These are all the CISs identified using a range of kernel widths (0.05, 0.1, 0.25, 

0.5, 1, 2.5, 5, 10, 30, 50, 100 and 150 kb).  The kernel width controls the smoothness of 

the estimated number of insertions (de Ridder et al., 2006).  In other words, it controls the 

size of the genomic region in which neighbouring insertions affect the estimate of the 

number of insertions at the observed insertion.  For each CIS, the flanking genes were 

identified using the Ensembl API version 45_36f and were compared to the genes 

identified using MC simulations.  Among the 867 KC CISs, there were 765 where the 

nearest or further gene was represented in the Efr=0.01 MC list of candidates.  Genes 

flanking the remaining 102 KC CISs may be missing from the MC list because insertions 

have been misassigned or because of differences between the two statistical approaches.  

As described in Section 1.4.2.1.2, for large screens, the statistically significant window 

size in the MC method may be so small that it is less than the width of biologically 

relevant CISs, causing these to be missed.  Many of the CISs unique to the MC analysis 

are likely to be false positives since, at an Efr of 0.01, 261.44 randomly occurring CISs 

are expected. 

 

652 CISs identified using a kernel width of 30 kb (P=0.05) were chosen for further 

analysis since this width, which was also used in Uren et al. (2008), should capture a high 
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proportion of biologically relevant CISs without splitting independent CISs or merging 

CISs that represent different types of mutation within a gene.  For example, in genes that 

are mutated by multiple mechanisms, upstream enhancer mutations may form one CIS, 

while intragenic or downstream enhancer mutations may form another.  For intragenic 

CISs, the gene containing the CIS was defined as the candidate cancer gene.  For 

intergenic CISs, the flanking genes were compared to the list of candidates generated 

using Monte Carlo (MC) simulations.  Where one of the flanking genes was within the 

MC list, this was chosen as the candidate gene.  Where both nearest genes were within the 

MC list, both were initially included in the KC list because it is possible that a CIS could 

be mutating multiple nearby genes.  Where neither nearest gene was in the MC list, the 

nearest genes were compared to a list of all genes to which insertions had been assigned, 

rather than just those to which significant CISs had been assigned using MC simulations.  

Genes could not be identified for 26 CISs, and these were assigned to genes manually, by 

observing insertions in the context of genes using the Ensembl DAS track (see Section 

2.6).  102 CISs were assigned to more than 1 gene, and these were also assessed manually 

to determine whether one gene could be removed from the list.  14 CISs were removed 

where all insertions mapped to the same genomic coordinates, as these are likely to be 

artefacts. The final dataset comprised 630 CISs assigned to 608 genes.  30 CISs were 

associated with more than 1 gene, and 37 genes contained more than 1 CIS. 

 

The lists of genes generated by the KC and MC methods were compared to the list of 

mouse orthologues of known cancer genes (see Section 2.2.3) and the Matthew’s 

correlation coefficient (MCC) was calculated. 

 

 

 

TP is the number of cancer genes in the candidate cancer gene list (true positives), FP is 

the number of non-cancer genes in the list (false positives), TN is the number of non-

cancer genes not in the list (true negatives), and FN is the number of cancer genes not in 

the list (false negatives).  Genes that were not in the list were calculated as all 18,017 

mouse genes with human orthologues, as identified in Ensembl version 48, minus those in 

the list.  MCC is used in machine learning as a measure of the quality of a prediction and 

it takes into account the counts of true and false positives and negatives to generate a 

single number that can be compared across predictions.  The candidate cancer gene lists 
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generated from the retroviral screen are expected to contain known cancer genes, and 

these can therefore be used as a measure of the quality of the list.  MCC is a more useful 

measure than accuracy or coverage alone, especially when comparing lists of different 

lengths.  For example, a short list may have high accuracy but low coverage, and for a 

longer list, the reverse may be true.  MCC returns a value between -1 and +1, where +1 is 

a perfect prediction (i.e. in this case, the list contains all known cancer genes and no non-

cancer genes), 0 is a random prediction, and -1 is an inverse prediction.  The MCC score, 

plus accuracy and coverage, for the KC list and each MC list are shown in Table 2.7A 

(page 98).  All MCCs generated in this analysis are positive but are very small because 

many of the genes are not known cancer genes.  The KC list had the lowest coverage but 

the highest accuracy, and achieved the highest MCC score.  As expected, the MC list 

generated using a Efr of 0.001 achieved a higher MCC score than the Efr=0.01 list since 

there should be 10-fold reduction in the number of randomly occurring CISs, and the 

higher accuracy more than compensated for the lower coverage.  The list containing all 

genes that were assigned to insertions, rather than just those with statistically significant 

insertions, achieved the highest coverage but performed worst overall.  Despite the fact 

that the list of known cancer genes is incomplete, measurement of the MCC score enables 

direct comparison of the gene lists and is likely to be meaningful.  In light of these 

findings, the KC list was judged to be most accurate and was chosen for the cross-species 

comparative analyses performed in Chapter 5. 

 

In order to gain an impression of whether the correct genes had been chosen for the KC 

CISs, known oncogenes were identified within the list of genes flanking each CIS.  37 

oncogenes had been chosen, while 16 had not.  Of the unselected oncogenes, 3 were 

genes nearest to the CIS, and 13 were further away.  The insertions around these genes 

were analysed in the context of the mouse genome in Ensembl contigview.  Only one 

oncogene nearest the CIS and one further away appeared to have been wrongly assigned, 

and for one additional nearest oncogene, it appeared that both this gene, and the correctly 

assigned gene might be mutational targets.  The list of CIS genes was modified to include 

these three genes (Rhoh, Cbl and Ccnd2), but the results of the MCC comparison and 

analysis of the distribution of insertions suggest that, by and large, the most likely 

candidate gene has been selected. 

 

Of the 39 cross-scale Sleeping Beauty CISs identified by the KC method, 36 were also 

present in the Efr=0.01 MC list.  The remaining 3 were a long way from the nearest gene, 
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further than the 100 kb limit used in the MC simulations.  As Sleeping Beauty has low 

enhancer activity, these are likely to be non-oncogenic insertions that have preferentially 

inserted into a particular genomic region, or are mutating a gene that has not been 

identified in the Ensembl gene build.  79 genes from the Efr=0.01 MC list were not 

identified by the KC method.  5 KC genes were missing from the MC list generated using 

an Efr of 0.001, and in all cases the CIS was greater than 100 kb from the gene, and 27 of 

the Efr=0.001 MC genes were not identified by KC.  The KC method is designed 

primarily for large datasets and may therefore miss a significant proportion of 

biologically relevant CISs in the Sleeping Beauty dataset.  However, the MCC score is 

highest for the candidate gene list generated using the KC method, and other lists follow 

the same pattern as the corresponding lists generated from the retroviral dataset (Table 

2.7B, page 98). 

 

21 Sleeping Beauty CISs were identified using the KC-based framework with a kernel 

width of 30 kb and P=0.05 (Appendix B1), but 5 were situated close to the transposon 

array on chromosome 1, and 4 were situated close to the array on chromosome 15.  These 

were removed from the list because they are likely to result from “local hopping” of the 

transposon (see Section 1.4.2.2.1).  The T2/Onc splice acceptor and splice donor 

sequences are derived from exon 2 of the En2 gene and exon 1 of the Foxf2 gene, 

respectively (Collier et al., 2005).  Statistically significant CISs were identified in both 

these genes, and the insertions were found to cluster around the splice junctions used to 

construct T2/Onc (Figure 2.12).  These CISs most likely represent artefacts resulting from 

the mapping of T2/Onc sequences, rather than flanking genomic sequences, to the mouse 

genome, and they were removed from the dataset.  This leaves just 10 CISs and so, for the 

purposes of comparison with the retroviral dataset, discussed in Chapter 3, the more 

inclusive MC lists of candidate cancer genes were also used. 

 

2.10.3 Final set of candidate genes 

Following a survey of the candidate genes identified from the retroviral screen by the 

kernel convolution-based method, it became clear that some insertions mapped to exactly 

the same coordinates.  This is unlikely to occur by chance, except where mutation of a 

very localised region of a gene is required for oncogenesis.  There were 26 animals from 

which 2 tumours had been collected, 70 from which 3 tumours had been collected, and 3 

from which 4 tumours had been collected.   Where a tumour has spread to a different site,  



Figure 2.12.  Insertions in En2 (A) and Foxf2 (B) are located at the splice junctions

used to construct the T2/Onc transposon and are contaminating sequences.

Insertions are shown as pink lines in the context of the Ensembl gene, shown in red.

Insertions above and below the blue line are in the sense and antisense orientation,

respectively.

A

B
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a high proportion of insertions may be shared by both the original tumour and the 

secondary tumour, and this will influence the identification of significant CISs.  

Therefore, where 2 or more insertions from different tumours in the same animal occurred 

within 50 base pairs of one another, all but 1 of the insertions were removed from the 

dataset.  A distance of 50 bp was chosen by counting the number of insertions that co-

occurred within varying distances, and taking the distance at which the number levelled 

off.  This reduced the dataset to 22,180 insertions.  In addition, there is the possibility that 

insertions may map to the same position because of contamination during PCR.  

Therefore, if there were 2 or more sites in the genome where insertions from 2 tumours 

co-occurred within 10 bp, 1 of the co-occurring insertions was removed from the dataset 

at each location.  A 10 bp window was used since it allows for a small amount of 

variation in the alignment of sequences using SSAHA2 (see Section 2.5), without 

significantly risking the removal of insertions that happen to fall into dense CISs.  If the 

co-occurrence has resulted from aerosol contamination, it is assumed to be more likely 

that the insertion represented by the fewest number of reads is the contaminant and, 

therefore, in each case, this insertion was removed.  The kernel convolution-based 

approach was applied to the final dataset of 20,114 insertions, and this resulted in 439 

candidate cancer genes, of which 416 had a single CIS, 18 had 2 CISs, 2 had 3 CISs, 2 

had 4 CISs and 1 had 5 CISs.  The total number of CISs was 447, of which 24 were 

assigned to 2 genes.  The CISs and associated genes are shown in Appendix B2. 

 

2.11 Discussion 

The aim of this chapter was to generate a reliable list of candidate cancer genes from 

insertional mutagenesis screens performed using the retrovirus MuLV and the Sleeping 

Beauty transposon T2/Onc.   In order to maximise the number of insertions that could be 

identified within tumours, SSAHA2 was optimised to enable the mapping of as many 

reads as possible.  The high number of unmapped reads was found to result from a high 

proportion of very short reads, especially in the Sleeping Beauty dataset, as well as reads 

containing genomic DNA of low complexity or low quality and reads that contained 

contaminating vector sequences.  A small proportion may also result from errors in the 

mouse genome assembly.  There did not seem to be any significant advantage in using 

BLASTN to map the reads, and as SSAHA2 is a faster algorithm, it is a good choice for 

mapping large numbers of reads.  However, a possible alternative to SSAHA2 for future 

screens is the BLAST-Like Alignment Tool, BLAT (Kent, 2002).  The UCSC Genome 
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Browser website (http://genome.ucsc.edu/, Kent et al., 2002) uses BLAT to map users’ 

sequences to the genome, and, because of its high speed and accuracy, BLAT has recently 

replaced BLAST as the default DNA search algorithm on the Ensembl website.  

Nevertheless, given the modest differences between SSAHA2 and BLAST (Altschul et 

al., 1990), it is likely that BLAT would also perform similarly since the short, repetitive 

and low quality non-mapping reads can only be mapped at the expense of accuracy. 

 

The reads were filtered to remove those in which the genomic DNA did not appear to 

represent the true location of the insertion.  A gap between the genomic and retroviral 

DNA can result from low quality sequencing or the presence of unrelated DNA fragments 

within the clone, and efforts were made to retain low quality reads, whilst removing 

contaminating chimeric sequences.  Comparisons between PCRs performed on the same 

tumours suggested that using more restriction enzymes and increasing the sequencing 

depth should increase the number of insertions that can be identified.  Advances in 

sequencing technologies, such as 454 sequencing (see Section 1.4.2.1.2), will enable the 

use of more restriction enzymes and a greater depth of sequencing at a lower cost per 

read, thereby facilitating the identification of a higher proportion of insertions. 

 

Identifying the genes that are most likely to have been mutated by insertions is hampered 

by the presence of enhancer insertions that can act at long range.  Analysis of the 

distribution of insertions around mouse genes, and in particular, known cancer genes, 

suggested that the optimal distance is around 500-600 bp upstream, although the distance 

can be much greater, e.g. enhancer mutations can act as far as 270 kb downstream of the 

Myc promoter (Lazo et al., 1990).  It appears that downstream insertions are less likely to 

be oncogenic, although those in the sense orientation with respect to upstream genes may 

be more likely to contribute to oncogenesis.  Enhancers can act over large distances via 

chromatin loop interactions, and they may therefore affect the activity of multiple genes 

(Uren et al., 2005).  However, analysis of the distribution of insertions around cancer 

genes suggests that, in general, enhancer insertions affect the promoters of the nearest, 

flanking genes. 

 

Two approaches, Monte Carlo simulations (Suzuki et al., 2002) and a kernel convolution-

based statistical framework (de Ridder et al., 2006), have been used to identify 

statistically significant CISs in the retroviral and transposon screens.  Known cancer 

genes can be used as a partial set of true positives to evaluate candidate cancer genes in 
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the vicinity of CISs, and Matthew’s Correlation Coefficient was used to show that the 

kernel convolution-based framework gives the most reliable set of candidate cancer 

genes.  The final set of candidates generated from the Sleeping Beauty screen comprises 

just 10 genes, reflecting the small size of the initial dataset and problems in mapping the 

reads.  439 candidates were identified from the MuLV screen, thereby supporting the 

theory that many genes contribute to tumourigenesis.  The candidate cancer genes are 

analysed and characterised in Chapter 3. 

 

 

 

 

 

 


