Chapter 4 Using mouse candidate cancer genes to narrow down the candidates in regions of copy number change in human cancers

4.1 Introduction

As discussed in Section 1.3.3, copy number changes are a common feature of cancer genomes, and can be identified using comparative genomic hybridisation (CGH)-based techniques. However, regions of copy number change are often large and encompass many genes, making it difficult to identify the "critical" genes that contribute to the tumourigenic process. Candidate cancer genes identified by insertional mutagenesis in the mouse can be used in a cross-species oncogenomics approach to narrow down the candidates within regions of copy number change in human tumours. The use of cross-species comparative analysis for cancer gene discovery is discussed in Section 1.5. In this chapter, mouse candidate cancer genes are used to identify orthologous candidates within regions of copy number change in 713 human cancer cell lines generated using SNP array CGH. The analyses were performed as part of a collaboration with the Netherlands Cancer Institute (NKI), published in Cell (Uren *et al.*, 2008), and therefore, rather than using the mouse candidates were provided by the NKI.

The datasets are introduced in Section 4.2. This is followed, in Section 4.3, by a description of the methods used to process the copy number data into regions of copy number change, and gains and losses within the human cancer cell lines are characterised in Section 4.4. In Section 4.5.1, the mouse and human datasets are compared to determine whether retroviral insertional mutagenesis is relevant to the discovery of amplified and deleted cancer genes in humans. Promising cancer gene candidates that are both disrupted by insertional mutagenesis in the mouse and amplified or deleted in human cancers are presented in Section 4.5.2. A range of algorithms have been developed for identifying regions of copy number change within CGH data, and these are described and compared in Section 4.6. Finally, in Section 4.7, the mouse candidate cancer genes are combined with copy number variation (CNV) data from apparently healthy individuals to determine whether there is any overlap between candidates and regions of CNV.

Since the ploidy of the cell lines, and therefore the exact copy number of alterations, is difficult to establish, the terms "gain and "amplicon" are used interchangeably throughout this thesis to mean any gain of copy number, irrespective of the size or nature of the alteration.

4.2 Description of the datasets

As well as the datasets described below, the set of known cancer genes from the Cancer Gene Census (Futreal *et al.*, 2004) was also used. This is described in Section 2.2.3.

4.2.1 Mouse candidate cancer genes identified by retroviral insertional mutagenesis

As mentioned in the introduction, some of the work described in this chapter was undertaken as part of a collaboration with the NKI (Uren et al., 2008, reprinted on p.365). The gene lists used in this chapter were therefore provided by the NKI but were generated from the analysis of insertion sites identified in the retroviral insertional mutagenesis screen described in Chapter 2. There were 6 lists of putative tumour suppressor genes. These included 3 lists comprising all genes in which there were insertions in the entire transcribed region, including UTRs and introns, only in the translated region (no UTRs) but including introns, and only in the coding region (no UTRs or introns). These lists are described throughout this thesis as genes in the transcribed region, translated region, and coding region, respectively. A further 3 lists contained genes with insertions in the same regions, but only where insertions comprised 2 or more sequence reads. Insertions represented by only 1 read are considered less likely to contribute to tumourigenesis (see Section 2.8) and are therefore predicted to have a reduced overlap with human deletions. 2 additional lists contained genes that were closest to CISs with *P*-values of less than 0.05 and 0.001, as determined using the kernel convolution (KC)-based statistical method (de Ridder et al., 2006, see Sections 1.4.2.1.2 and 2.10.2). From these, lists were also generated for genes that were adjacent to CISs of P<0.05 and P<0.001 but were further away than the closest gene. For each gene list, the human orthologues and their genomic coordinates were extracted from Ensembl version 37 using Ensembl BioMart (see Section 3.2.1). Table 4.1 shows the number of mouse genes and human orthologues in each gene list. The P<0.001 and P<0.05 CISs and their associated nearest and further mouse genes

		Number of mouse	Number of human	% of human
	Number of	genes with human	orthologues in CIS	orthologues in
Gene List	mouse genes	orthologues	gene list	CIS gene list
ORF only	266	240	41	17.1
ORF only (no singletons)	86	75	22	29.3
Translated region only	3024	2647	216	8.2
Translated region only (no singletons)	1331	1163	173	14.9
Transcribed region only	3773	3316	275	8.3
Transcribed region only (no singletons)	1706	1498	227	15.2
CIS nearest P<0.05	559	424	196	46.2
CIS nearest P<0.001	355	265	155	58.5
CIS further P<0.05	505	362	85	23.5
CIS further P<0.001	313	219	66	30.1

Table 4.1. Description of the lists of mouse candidate cancer genes used for comparison with human cancer copy number data. "[ORF, Translated region, Transcribed region] only" are lists of genes containing insertions only in the open reading frame, translated region (but including introns) or transcribed region, respectively. "no singletons" means that the list does not include genes that only contain insertions represented by a single read. "CIS nearest P<0.05" and "CIS nearest P<0.001" contain genes nearest to CISs identified by the kernel convolution (KC)-based method. "CIS further P<0.05" and "CIS further P<0.001" contain genes that flank CISs identified by the KC-based method but are not the nearest genes. The columns labelled "Number/% of human orthologues in CIS gene lists" show the overlap of each list with the list of candidate cancer genes generated and described in Chapters 2 and 3.

are listed in Appendix D. Due to their length, the lists of candidate tumour suppressor genes are not included, but are available on request.

Table 4.1 also shows the overlap of each gene list with the list of candidate cancer genes generated and described in Chapters 2 and 3 (shown in Appendix B2 and referred to here as the CIS gene list). The CIS gene list contains only genes that are associated with a significant CIS and this, together with the fact that the screen identifies mainly oncogenes, accounts for the small overlap with the tumour suppressor gene lists, in which genes may contain any number of insertions. The differences between the CIS gene list and the remaining lists may reflect differences in gene selection, i.e. a more sophisticated method was used to assign insertions to genes in the CIS gene list, and in read and insertion site processing, which were more conservative for the CIS gene list. Candidates from the CIS gene list are used in Chapter 5, where it is compared to higher resolution human CGH data (Section 5.3), as well as to the CGH data described in this chapter (Section 5.4).

4.2.2 Copy number data for human cancer cell lines

Comparative genomic hybridisation (CGH) data were generated by the Wellcome Trust Sanger Institute (WTSI) Cancer Genome Project for 713 human cancer cell lines from 29 tissues. A list of all cell lines and their tissue of origin is provided in Appendix E and is summarised in Table 4.2. None of the chosen cell lines had a common ancestor, according to cell line identity typing also performed by the WTSI Cancer Genome Project (http://www.sanger.ac.uk/genetics/CGP/Genotyping/synlinestable.shtml). This is important, since an amplicon or deletion might otherwise appear to be recurrent simply because it is within synonymous cell lines. CGH was performed using two Affymetrix GeneChip® Human Mapping Arrays. The 10K array, which comprises 11,555 SNPs, was used for 313 cell lines, while the 10K 2.0 array, comprising 10,204 SNPs, was used for the remaining 400 lines. 10,136 SNPs were shared between the two arrays, and both used the Affymetrix GeneChip® Mapping 10K assay, described in Section 1.3.3.2. The SNPs were mapped to the NCBI 35 human genome assembly. The mean distance between SNPs was 258.50 (±634.21) kb in the 10K array, and 292.82 (±683.49) kb in the 10K 2.0 array. The minimum distance was 2 bp and 11 bp for the 10K and 10K 2.0 arrays, respectively, and the maximum distance was 24.81 Mb for both arrays. 9.4% of human protein-coding genes in Ensembl v37 (extracted using Ensembl BioMart, see

	Number of
Tissue of origin	cell lines
Lung	131
Haematopoietic and lymphoid	117
Breast	43
Skin	42
Central nervous system	40
Unknown	39
Large intestine	38
Autonomic ganglia	29
Bone	23
Kidney	21
Soft tissue	20
Oesophagus	20
Stomach	19
Upper aerodigestive tract	19
Ovary	18
Pancreas	14
Urinary tract	13
Liver	11
Thyroid	11
Cervix	11
Endometrium	10
Biliary Tract	6
Pleura	5
Testis	3
Vulva	2
Prostate	2
Eye	2
Placenta	2
Adrenal gland	1
Small intestine	1
Total	713

Table 4.2. Tissues of origin of human cancer cell lines used in the 10K SNP arrayCGH analysis.

Section 3.2.1) contained at least one SNP in the 10K array, while 9.0% contained at least one SNP in the 10K 2.0 array. Genes were defined as the longest Ensembl gene transcript. The 10K and 10K 2.0 arrays contained an average of 0.176 (\pm 0.735) and 0.157 (\pm 0.648) SNPs per protein-coding gene, respectively. The interSNP distances and number of SNPs per gene are shown in Figures 4.1 and 4.2, respectively. The largest gaps between adjacent SNPs occur at the centromeres, while some gaps correspond to other regions of the genome that have not been assembled, e.g. due to highly repetitive sequences.

For each cell line, the raw intensity values were normalised internally. This involved calculating the value for each SNP as a total of all the SNPs on the array, and obtaining a copy number ratio for each SNP by dividing the SNP value by the value for the same SNP from a pool of reference normal samples. This is the point at which I received the data. The copy number data for all cell lines are available for download from ftp://ftp.sanger.ac.uk/pub/CGP/10kData. Data generated on the 10K and 10K 2.0 arrays is pooled in subsequent analyses and is collectively referred to as 10K data.

4.2.3 Copy number variants (CNVs)

CNVs are regions within the genome that vary in copy number. Germline CNV regions identified within 270 HapMap samples from Redon *et al.* (2006) were downloaded from http://www.sanger.ac.uk/humgen/cnv/data/cnv_data/. Merged CNVs identified using the Whole Genome Tilepath (WGTP) array and Affymetrix GeneChip Human Mapping 500K early access array (500K EA) were used. The WGTP array comprises 26,574 BAC clones, while the 500K EA array covers 474,642 SNPs. The WGTP and 500K EA platforms are complementary, since they are able to detect smaller and larger CNVs, respectively (Kehrer-Sawatzki, 2007). There are 1,447 merged CNVs that cover ~12% of the genome. 1,390 CNVs that mapped to autosomes in the NCBI 35 human build were used in this analysis.

4.3 Processing the copy number data

The copy number ratios at individual SNPs must be processed into regions of copy number change. As discussed in Section 1.3.3.2, a variety of methods have been

Figure 4.1. The distance between the genomic coordinates of adjacent SNPs on the 10K (A) and 10K 2.0 (B) SNP arrays.

Figure 4.2. The number of SNPs per human protein-coding gene on the 10K (A) and 10K 2.0 (B) SNP arrays.

developed for this purpose. At the time of the analysis, most of the available algorithms had been developed primarily for conventional array CGH, i.e. using large genomic clones (see Section 1.3.3.2). In a comparison of 11 methods, DNAcopy (Olshen *et al.*, 2004) performed consistently well (Lai *et al.*, 2005), and a comparison of 3 segmentation methods by Willenbrock and Fridlyand (2005) demonstrated that DNAcopy performed better than GLAD (Hupe *et al.*, 2004) and HMM (Fridlyand *et al.*, 2004). A further benefit of DNAcopy is that it is freely available as an R package in BioConductor (http://www.bioconductor.org/). BioConductor is an open source software project that provides tools, mostly written in R, for analysing genomic data. DNAcopy (version 1.4.0) was therefore chosen as the method for detecting regions of copy number change in the 10K CGH data.

DNAcopy uses a method called circular binary segmentation (CBS) to identify changepoints in CGH data, which is input as log₂ intensity ratios at consecutive positions in the genome. The change-points correspond to positions in the genome where the DNA copy number has significantly changed. For each cell line, the copy number ratios for all SNPs were converted to log₂-ratios and were smoothed, using a method within DNAcopy, to remove single point outliers before segmentation. Copy number ratios of 0 were given a log₂-ratio of -6. Change-points may result from local trends in the data, and therefore all change-points that were less than 3 standard deviations apart were removed. Default parameters were used for the segmentation. Different values were tested for the parameter alpha but, upon visual inspection of the graphical outputs, the default value of alpha=0.01 appeared to be most suitable. Increasing alpha increases the sensitivity, resulting in more change-points but, potentially, more false positive change-points. Decreasing alpha results in fewer change-points, and regions of copy number change may therefore be missed. Increasing the number of standard deviations below which changepoints were removed resulted in the loss of potentially important change-points. Figure 4.3 shows an example of how changing the parameters can affect the output of DNAcopy for chromosomes 1 and 6 of ovarian cancer cell line 41M-CISR. The removal of changepoints less than 3 standard deviations apart results in the loss of a change-point in chromosome 1 (Figure 4.3B). However, the slight difference in copy number between the 2 arms of the chromosome may be due to trends in the data, and the difference in copy number is small. Increasing the number of standard deviations to 4 results in the loss of a change-point in chromosome 6, for which there is a clear step in copy number that does look real (Figure 4.3C). Increasing alpha from 0.01 to 0.05 results in the inclusion of

Figure 4.3. Altering the values for parameters in DNAcopy leads to differences in the regions of copy number change detected by the algorithm, as demonstrated for chromosomes 1 and 6 of ovarian cancer cell line 41M-CISR. (A) Default parameters. (B) Default parameters and removal of change-points less than 3 standard deviations apart. (C) Default parameters, smoothing and removal of change-points less than 4 standard deviations apart. (D) Alpha = 0.05 plus smoothing. (E) Copy number for chromosome 1, with values averaged across 3 consecutive SNPs. (F) Copy number for chromosome 6, with values averaged across 3 consecutive SNPs. Figures E and F taken from the WTSI Cancer Genome Project website are (http://www.sanger.ac.uk/genetics/CGP/) and give a clearer picture of the copy number across the chromosome. Figures A-D are extracted from the output of DNAcopy. Removing change-points that are close together results in fewer regions being detected, and the larger the number of standard deviations below which change-points are removed, the more regions are missed. Increasing alpha leads to the inclusion of additional changepoints and, therefore, regions of copy number change.

additional change-points in chromosome 1 (Figure 4.3D). Since the data is relatively low resolution, it is highly possible that a region of copy number change may be represented by just 1 or 2 SNPs. However, it is also possible that such SNPs are anomalies and, to avoid the identification of false positives, this is the preferred assumption.

DNAcopy identifies changes in DNA copy number but does not indicate which regions are unchanged and which are gains or losses. It is therefore the responsibility of the user to set thresholds for calling gains and losses based on the mean log₂-ratios of predicted segments. A disadvantage of DNAcopy is that it operates on individual chromosomes rather than the entire genome and the mean log₂-ratios of segments representing no copy number change, or representing a gain or loss of a certain number of copies, will differ slightly across the genome. This makes it difficult to determine what is "normal" and therefore to call gains and losses, and the exact number of copies within a gain or loss cannot be clearly determined. Willenbrock and Fridlyand (2005) have developed an algorithm called MergeLevels that merges segments across the genome that are not significantly different from one another and so produces a more interpretable set of copy number levels. Combining DNAcopy and MergeLevels was found to be more effective than using DNAcopy alone (Willenbrock and Fridlyand, 2005). MergeLevels is freely available within an R/BioConductor package called aCGH. Therefore, for each cell line, the DNAcopy segmentation results were merged across all autosomes using MergeLevels with default parameters, which were considered appropriate upon inspection of the graphical outputs. Example outputs for the kidney cancer cell line 786-0 and endometrial cancer cell line AN3-CA are shown in Figure 4.4. The merged segments with a log₂-ratio closest to 0 were defined as the level of no copy number change and, to enable comparison across cell lines, this log₂-ratio was set to 0 and all other log₂-ratios were normalised accordingly. Figure 4.5A shows the distribution of log₂-ratios of the segments predicted by DNAcopy across all cell lines, while Figure 4.5B shows the distribution of log₂-ratios of the merged segments. The log₂-ratios of the merged segments show a series of peaks and troughs that may reflect distinct copy number levels. The large peak at -6 represents segments for which the copy number ratio of individual SNPs was 0. The log₂ratios of the merged segments were converted to copy number ratios (Figure 4.6), and troughs in the distribution were used to set thresholds for subsequent analyses (see Sections 4.4 and 4.5.1.1).

Figure 4.4. Graphical output from MergeLevels for human cancer cell lines 786-0 (A) and AN3-CA (B). Black dots represent the log_2 -ratios for individual SNPs ordered across the genome. The mean log_2 -ratios for segments identified by DNAcopy are shown in red. Merged segments generated by MergeLevels are shown in blue. Segments are merged across chromosomes into a set of copy number levels. The x-axis shows the position within the genome, while the y-axis measures the log_2 -ratio. Vertical lines represent the division of chromosomes.

Chapter 4

Figure 4.5. The number of human cancer cell lines with segments of varying log₂ratio following processing with DNAcopy (A) and DNAcopy plus MergeLevels (B).

Figure 4.6. The number of human cancer cell lines with segments of varying copy number ratio following processing with DNAcopy plus MergeLevels. Troughs in the data were used to set thresholds for the analysis of gains and losses.

4.4 Characterising gains and losses in cancer genomes

All segments with a copy number of 1.6 or more were designated gains, and all segments with a copy number of 0.6 or less were designated losses. Segments with a copy number of 0.2 or less were designated homozygous deletions. Each of these thresholds was within a trough in the distribution of copy numbers for merged segments in Figure 4.6. The average number of gains per cancer cell line was $1.47 (\pm 2.02)$, and the average size across all cell lines was 21.37 (±34.15) Mb. Amplicons contained an average of 213.68 (± 341.45) genes. The average number of losses per cell line was 4.43 (± 3.69) and the average size was 19.56 (±33.83) Mb, encompassing 195.62 (±338.32) genes. The average number of homozygous deletions was 1.53 (±1.99) per cell line. The average size was 0.98 (±2.68) Mb, encompassing 19.64 (±20.69) genes. Therefore, homozygous deletions were significantly smaller than amplicons and heterozygous deletions and contained fewer genes. Homozygous deletions have been previously shown to contain fewer genes than other regions of the genome (Cox et al., 2005, see Section 1.3.3.3), and this analysis shows that, in general, the deletion of both copies of a gene is more likely to be deleterious to a cell than the loss of one copy or the gain of copies. The distributions of amplicon and deletion lengths are shown in Figure 4.7.

For each cancer type, the number of cell lines containing gains was counted, and the 2tailed Fisher Exact Test was used to determine whether there was any significant difference between the observed and expected number of each cancer type. Cell lines derived from the oesophagus were over-represented ($P=7.11\times10^{-4}$), suggesting that oesophageal tumours are particularly prone to genomic instability. Haematopoietic and lymphoid cancer cell lines were under-represented ($P=5.32\times10^{-5}$), reflecting the fact that they often contain balanced translocations that do not show a change in DNA copy number (see Section 1.3.3.4) and that, in some cases, few genetic events are thought to be required for tumour development. For example, acute lymphoblastic leukaemias contain an average of 3.83 deletions and focal amplifications are rare (Mullighan *et al.*, 2007). Since most cell lines contained deletions, there was no significant difference between the observed and expected numbers of cancer types containing deletions.

Figure 4.7. Distribution of the lengths of amplicons (A), deletions (B) and homozygous deletions (C) in 713 human cancer cell lines. Amplicons are defined as regions with a copy number greater than or equal to 1.6. Deletions and homozygous deletions are defined as regions with a copy number less than or equal to 0.6 and 0.2, respectively.

4.5 Comparative analysis of mouse candidate cancer genes and CGH data from human cancers

4.5.1 Global comparison

The purpose of the global comparison is to determine whether the human orthologues of candidate cancer genes identified by retroviral insertional mutagenesis by the Netherlands Cancer Institute are over-represented within regions of copy number change in the human cancer cell lines. Specifically, an over-representation of candidate oncogenes in human amplicons, and candidate tumour suppressor genes in human deletions, suggests that the retroviral insertional mutagenesis screen is relevant to human cancer, and may help to identify human cancer gene candidates within regions of copy number change.

4.5.1.1 Method

Rather than setting single copy number thresholds for gains and losses, a range of copy number thresholds were investigated. Thresholds were set as the centre-point of troughs in the graph shown in Figure 4.6, since these may represent transitions in the number of gene copies. The chosen thresholds were copy number ratios of less than or equal to 0.9, 0.6 and 0.2, and greater than or equal to 1.1, 1.6, 2.1, 2.5, 2.7, 3.1, 3.8, 4.3, 4.8, 5.2 and 5.9. The genomic coordinates of the human orthologues of all mouse genes were extracted from Ensembl version 37 using Ensembl BioMart. For each gene list described in Section 4.2.1, the number of mouse genes with human orthologues was counted. The same number of genes was selected randomly from among all mouse genes with human orthologues and this was repeated 1,000 times. For each of the 1,000 iterations, the number of human orthologues that resided within human cancer cell line segments with a mean copy number above or below a given threshold was counted. This produced a normal distribution of counts. The number of human orthologues of mouse candidate cancer genes in segments above or below each threshold was also counted. The Z-test was used to calculate the probability of obtaining a number greater than or equal to the observed count for the mouse candidates, based on the distribution of counts for the randomised genes. The procedure is summarised in Figure 4.8.

Figure 4.8. Overview of the method for identifying over-representation of the human orthologues of mouse candidate cancer genes in regions of human copy number change.

4.5.1.2 Setting the boundaries of amplicons and deletions

The start and end coordinates of the copy number segments generated by DNAcopy and MergeLevels correspond to the first and last SNPs for which the log₂-ratios are not significantly different to other SNPs in the segment. Therefore, the copy number can be determined for all coordinates between these positions. It is, however, impossible to determine the copy number for coordinates within the interval between the first SNP and the preceding SNP, which corresponds to the end coordinate of the preceding segment, and between the last SNP and the proceeding SNP, which corresponds to the start coordinate of the proceeding segment. As shown in Section 4.2.2, the distance between SNPs can be very large, especially across unassembled regions of the genome such as centromeres. Setting the boundaries of an amplicon or deletion as the end of the previous segment and start of the next segment, or even using half-way points, could therefore result in a very high number of false positives among genes predicted to be amplified or deleted.

In order to choose an appropriate distance for the boundaries of amplicons and deletions, the global comparison was performed using a range of distances. Assuming that CIS genes are more likely to be amplified or deleted in human cancers than are other genes, the most appropriate distance should be that which gives the highest over-representation of CIS genes. The list of genes nearest to CISs with P<0.001 was used in this analysis. Amplicon boundaries were extended beyond the first and last amplified SNP by a distance of 0 kb, 200 kb, 500 kb, 1 Mb, 3 Mb and 5 Mb, or as far as the adjacent SNP, whichever was closer. The results are shown in Figure 4.9. The association between CIS genes and amplicons was strongest when the boundaries were not extended at all. However, at lower copy numbers and in greater numbers of cell lines at higher copy number, the association was less significant than when the boundaries were extended to 500 kb. Extending the boundaries to 1 Mb and beyond resulted in a considerable decrease in the association between CIS genes and amplicons. Therefore, 500 kb was chosen as the most suitable distance.

Known oncogenes from among the CIS genes that were identified within full-length amplicons (i.e. where the amplicon was extended as far as the adjacent, non-amplified SNPs) were compared to those identified within amplicons with a 0 kb or 500 kb extension of the amplicon boundaries (Table 4.3). While the non-extended amplicons

Chapter 4

Figure 4.9. Over-representation of human orthologues of genes nearest to CISs in amplicons with boundaries extended beyond the first and last amplified SNP by a maximum distance of 0 kb (A), 200 kb (B), 500 kb (C), 1 Mb (D), 3 Mb (E), 5 Mb (F) and up to the adjacent, non-amplified SNPs (G). Each box represents the significance of the association between the selected genes and amplicons/deletions at a given copy number threshold and cell line number. P<0.0001, black; P<0.001, dark grey, P<0.05, light grey. Columns represent amplicons, with (from left to right) copy number thresholds of greater than 1.1, 1.6, 2.1, 2.5, 2.7, 3.1, 3.8, 4, 4.8, 5.2 and 5.9. Rows represent the number of cell lines, which increases in increments of 1, up to a cut-off of 16 cell lines. For example, the box in the bottom right-hand corner of each figure represents the P-value for the over-representation of CIS genes that occur in amplicons of copy number greater than or equal to 5.9 in at least 16 cancer cell lines.

Copy number	Gene	Full length	0 kb	500 kb
4.8	МҮС	14	10	14
	MYCN	9	4	9
	CCND1	1	1	1
4.3	МҮС	14	10	14
	MYCN	9	4	9
	CCND1	1	1	1
	ZFPN1A1	1	1	1
	LMO2	1	1	1
	CCND3	2	0	2
2.7	МҮС	29	22	29
	MYCN	12	7	12
	CCND1	4	4	4
	ZFPN1A1	1	1	1
	LMO2	2	2	1
	CCND3	3	0	2
	CCND2	1	1	1
	PIM1	2	1	2
	EVI1	1	1	1
	IRF4	1	1	1

Table 4.3. The number of amplicons in which known cancer genes among genes nearest to CISs are identified when the amplicon boundaries are altered. "Full length" applies to amplicons extended to the next, non-amplified SNP. "0 kb" applies to amplicons where the start and end correspond to the first and last amplified SNP. "500 kb" applies to amplicons extended to a maximum of 500 kb. Copy number values are given as the minimum copy number of amplicons.

missed some of the occurrences of amplified *MYC* and *MYCN* that were identified in the full-length amplicons, all occurrences were identified in the amplicons extended by up to 500 kb. Likewise, occurrences of amplified *CCND3* and *PIM1* were identified in the 500 kb amplicons but not the non-extended amplicons.

To demonstrate that the observed association between candidate cancer genes and human amplicons was real, full-length amplicons were shuffled across the genome. The length and mean copy number of each amplicon were conserved, but the location was shuffled. The method from Section 4.5.1.1 was then performed on the shuffled amplicons. As shown in Figure 4.10, the association of candidates with regions of copy number gain was completely abolished.

4.5.1.3 Comparison with lists of candidate cancer genes

Having chosen 500 kb as the maximum distance for extending amplicon and deletion boundaries, the method of Section 4.5.1.1 was applied to all of the gene lists outlined in Section 4.2.1. The results are shown in Figure 4.11. The lists of genes nearest to CISs with P < 0.001 or P < 0.05 are lists of candidate oncogenes, with those nearest to CISs with P < 0.001 being stronger candidates for a role in tumourigenesis. This is reflected in the results, since both lists showed an over-representation of candidates within regions of amplification, but the association was stronger for genes near to a CIS with P < 0.001. For both gene lists, the association became significant at copy number 1.6 and above, but for low-level copy numbers, the association was generally strongest for genes that were amplified in higher numbers of cell lines. Figure 4.12A shows the over-representation of known oncogenes within regions of copy number gain. The pattern of association was very similar to that obtained using genes nearest to CISs with P < 0.001, suggesting that this list contains oncogenes that are relevant to human cancer. Almost all of the mouse tumours generated in the retroviral screen were lymphomas, and therefore it could be assumed that the candidate cancer genes identified in the screen are only relevant to similar cancers within humans. Therefore, the human cancer cell lines were divided into haematopoietic and lymphoid cell lines and all other cell lines (from solid tumours) and the global comparison was performed on each subset using genes nearest to CISs with P < 0.001. As shown in Figure 4.13, the association was much weaker when only haematopoietic and lymphoid cell lines were considered. This may be partly because amplification is not a common mechanism of mutation in these cell types (see Section

Figure 4.10. Over-representation of human orthologues of genes nearest to CISs in full-length human amplicons (A) and shuffled full-length amplicons (B). Each box represents the significance of the association between the selected genes and amplicons/deletions at a given copy number threshold and cell line number. P<0.0001, black; P<0.001, dark grey, P<0.05, light grey. Copy number thresholds below 1 represent deletions, with (from left to right) copy number thresholds of less than 0.2, 0.6 and 0.9. Copy number thresholds above 1 represent amplicons, with (from left to right) copy number thresholds of greater than 1.1, 1.6, 2.1, 2.5, 2.7, 3.1, 3.8, 4.3, 4.8, 5.2 and 5.9. The number of cell lines increases in increments of 1, up to a cut-off of 16 cell lines.

Figure 4.11. Over-representation of human orthologues of candidate cancer genes in regions of copy number change. (A) Genes nearest to CISs with P<0.001. (B) Genes nearest to CISs with P<0.05. (C) Genes with insertions within the transcribed region. (D) Genes with insertions but no singletons in the transcribed region. (E) Genes with insertions within the translated region. (F) Genes with insertions but no singletons in the translated region. (H) Genes with insertions but no singletons in the coding region. (H) Genes with insertions but no singletons in the coding region. (H) Genes with insertions but no singletons in the coding region. (H) Genes with insertions but no singletons in the coding region. Each box represents the significance of the association between the selected genes and amplicons/deletions at a given copy number threshold and cell line number. P<0.0001, black; P<0.001, dark grey, P<0.05, light grey. Columns from left to right represent copy number thresholds of less than 0.2, 0.6 and 0.9 (deletions) and greater than 1.1, 1.6, 2.1, 2.5, 2.7, 3.1, 3.8, 4.3, 4.8, 5.2 and 5.9 (amplicons). The number of cell lines increases in increments of 1, up to a cut-off of 16 cell lines.

Figure 4.12. Over-representation of known oncogenes (A) and known tumour suppressor genes (B) in regions of copy number change in human cancer cell lines. Each box represents the significance of the association between the selected genes and amplicons/deletions at a given copy number threshold and cell line number. P<0.0001, black; P<0.001, dark grey, P<0.05, light grey. Copy number thresholds below 1 represent deletions, with (from left to right) copy number thresholds of less than 0.2, 0.6 and 0.9. Copy number thresholds above 1 represent amplicons, with (from left to right) copy number thresholds of greater than 1.1, 1.6, 2.1, 2.5, 2.7, 3.1, 3.8, 4.3, 4.8, 5.2 and 5.9. The number of cell lines increases in increments of 1, up to a cut-off of 16 cell lines.

Figure 4.13. Over-representation of human orthologues of genes nearest to CISs with a *P*-value of <0.001 in regions of copy number change in human cancer cell lines derived from solid tumours (A) and haematopoietic and lymphoid cancers (B). See Figure 4.13 above for a description of how to interpret the figures.

4.4), but may also reflect the fact that the set of cell lines is smaller and therefore the comparison lacks power. Importantly, the pattern of association in solid tumours was similar to that for all cell lines and was highly significant. This demonstrates the relevance of retroviral insertional mutagenesis to the discovery of cancer genes in diverse human cancers, and shows that analysis of the full set of human cancer cell lines is warranted. Each cancer type provided in Table 4.2 was then separately tested for an association with the candidate cancer genes. Splitting the cancer cell lines into different types reduces the power of the analysis, and for most tumour types there was no clear association. However, cell lines derived from the autonomic ganglia, breast, upper aerodigestive tract, large intestine, oesophagus and stomach did show a significant overlap between mouse candidates and regions of copy number gain, although in the large intestine cell lines, there was also a significant overlap with regions of copy number loss (Figure 4.14).

The remaining lists are expected to contain candidate tumour suppressor genes. The results were similar for genes with insertions in transcribed and translated regions (Figure 4.11C-F). In both cases, including all genes containing insertions, rather than just those containing insertions represented by more than one read, generated a more significant association. This suggests that insertions represented by a single read ("singletons") in this retroviral screen are often important in tumourigenesis. As discussed in Section 2.7, the screen is not fully saturated due to the use of an insufficient number of enzymes in PCR and insufficient sequencing depth. Therefore, singleton insertions may result from these limitations, rather than because they are rare in the tumour mixture. However, for genes with insertions in the coding region, the reverse was observed, with a significant association only occurring when singleton insertions were omitted (Figure 4.11G-H, see below). As expected for tumour suppressor genes, the lists of genes with insertions in the transcribed and/or translated region were associated with deletions of copy number less than or equal to 0.6. However, the significance of the association was weak. When singleton insertions were included, there was also evidence of a weak association with regions of copy number gain. This is not surprising since the lists are likely to be contaminated with candidate oncogenes, as well as genes that do not play a role in tumourigenesis. The gene lists are long and yet tumour suppressor genes are less likely to be identified by insertional mutagenesis than are oncogenes and, as shown in Chapter 3, oncogenes are often disrupted by intragenic insertions. The association between known tumour suppressor genes and regions of copy number change is shown in Figure 4.12B.

Figure 4.14. Over-representation of human orthologues of candidate cancer genes in regions of copy number change in cancer cell lines derived from the upper aerodigestive tract (A), autonomic ganglia (B), breast (C), large intestine (D), oesophagus (E) and stomach (F). Each box represents the significance of the association between the selected genes and amplicons/deletions at a given copy number threshold and cell line number. P<0.0001, black; P<0.001, dark grey, P<0.05, light grey. Columns from left to right represent copy number thresholds of less than 0.2, 0.6 and 0.9 (deletions) and greater than 1.1, 1.6, 2.1, 2.5, 2.7, 3.1, 3.8, 4.3, 4.8, 5.2 and 5.9 (amplicons). The number of cell lines increases in increments of 1, up to a cut-off of 16 cell lines.

There was a more significant over-representation of genes within deletions of copy number less than or equal to 0.6, but also in deletions of copy number less than or equal to 0.2. However, the fact that the pattern was broadly similar for genes with insertions in transcribed and translated regions is encouraging, and suggests that the lists do contain tumour suppressor genes that are relevant to human cancer.

The results for genes containing insertions within the coding region did not show the expected pattern for tumour suppressor genes (Figure 4.11G-H). As mentioned above, when singleton insertions were included, a significant association was not observed with either amplicons or deletions. Omission of singleton insertions resulted in a pattern of association representative of oncogenes, i.e. showing an over-representation of genes within amplicons. The identities of genes that reside within human amplicons and deletions are provided in Section 4.5.2.

4.5.1.4 Determining whether the nearest gene to a CIS is the most likely candidate cancer gene

As discussed in Chapter 2, it can be difficult to determine which gene is being mutated by insertions within a CIS, especially when the insertions are intergenic and disrupt genes by enhancer mutation. CISs are often assigned to the nearest gene. Therefore, to test whether this is a sensible assumption, the overlap of the human CGH data with candidate genes nearest to CISs was compared to that observed for the next nearest genes to CISs. The method was performed as described in Section 4.5.1.1, whereby the number of genes closest to CISs that occurred within amplicons or deletions was compared to the number of randomly occurring genes in amplicons or deletions. This was then repeated for genes adjacent to, but further from, CISs. Thresholds in this analysis were the same as for previous comparisons. The method was performed on CISs with a P-value of <0.05 and < 0.001, and the results are shown in Figure 4.15. As previously shown, there was a more significant over-representation within human amplicons of genes nearest to CISs with P < 0.001 than P < 0.05. However, for both significance levels, the clear overlap between human amplicons and genes nearest to CISs was almost absent for genes further from CISs. This suggests that the nearest gene to a CIS is generally the disrupted gene. *Plekhf1* and *Ltap* (also known as *Vangl2*) were the only two genes in the set of genes that are further from the CIS for which the human orthologues were amplified to a copy number greater than or equal to 5.2. However, in both cases, the nearest gene to the CIS

Figure 4.15. Over-representation of human orthologues of genes nearest to CISs (above) and genes further from CISs (below) in amplicons and deletions, where CISs have a *P*-value of <0.001 (A) and <0.05 (B). Each box represents the significance of the association between the selected genes and amplicons/deletions at a given copy number threshold and cell line number. *P*<0.0001, black; *P*<0.001, dark grey, *P*<0.05, light grey. Copy number thresholds below 1 represent deletions, with (from left to right) copy number thresholds of less than 0.2, 0.6 and 0.9. Copy number thresholds above 1 represent amplicons, with (from left to right) copy number thresholds of greater than 1.1, 1.6, 2.1, 2.5, 2.7, 3.1, 3.8, 4.3, 4.8, 5.2 and 5.9. The number of cell lines increases in increments of 1, up to a cut-off of 16 cell lines.

(1600014C10Rik and Slamf6, respectively) was also amplified, and analysis of the insertions around these genes suggests that the nearest gene is more likely to be disrupted by MuLV (Figure 4.16). *PLEKHF1* and *LTAP* may therefore be non-tumourigenic passengers within the amplified regions. *Tpcn2* and *Ccnd1* are neighbouring genes that both have nearby CISs, and both human orthologues were amplified, suggesting that both may be involved in tumourigenesis. For the remaining 9 genes nearest to CISs that were amplified to a copy number greater than or equal to 5.2, a human orthologue could not be found for the further gene. This explains why the lists of human orthologues of nearest genes are longer than the lists of human orthologues of further genes (see Table 4.1). Therefore, in some cases, the further gene may have an unidentified human orthologue that is also amplified in cancer. However, the fact that the nearest gene list contains a higher proportion of genes with human orthologues is itself significant, since cancer and cancer-related functions, such as cell growth, are well-studied and implicated genes may therefore be more likely to be conserved between species.

To investigate whether the difference between comparisons of nearest and further genes is most likely to be due to the further gene not being amplified or not having a human orthologue, the 66 human orthologues nearest to CISs that were amplified to a copy number greater than or equal to 2.7 were analysed in greater detail. 10 of the amplified genes, including *TPCN2* and *CCND1*, were neighbouring genes for which both mouse orthologues had nearby CISs. For 27 genes, the human orthologue of the further gene could not be identified. For a further 27 genes, the further gene was also amplified and, in all cases, both the nearest and the further genes were amplified in the same number of cell lines. There were only 2 amplified nearest genes, *Slc9a8* and *Mafk*, for which the further gene, *B4galt5* and *1110015K06Rik* respectively, had a human orthologue that was not amplified, suggesting that the nearest genes are the likely candidate cancer genes. In both cases, the human and mouse regions containing these genes are syntenic, and thus the lack of amplification is not due to a break in synteny in the human genome.

The reciprocal analysis was also performed, whereby the 36 human orthologues further from CISs that were amplified to copy number 2.7 or above were also investigated. 29 had neighbouring, nearer genes that were also amplified. This number is higher than the reciprocal count of 27 genes because 2 of the genes were adjacent to nearer genes that had more than one adjacent gene because they contained multiple CISs. For the 7 remaining

Figure 4.16. Insertions appear to be associated with the gene nearest to the CIS, i.e. *1600014C10Rik* (A) and *Slamf6* (B), even though adjacent genes are also amplified. Insertions are shown as black vertical lines. Those above the blue bar labelled DNA(contigs) are in the sense orientation, those below are in the antisense orientation. Ensembl genes are shown in red.

genes, there was no human orthologue for the nearest gene to the CIS. Therefore, it appears that the stronger overlap between the human amplicons and the human orthologues of genes nearest to CISs mainly reflects the inability to identify human orthologues for a higher percentage of the genes further from CISs. Since amplicons are generally large and encompass many genes (see Section 4.4), this is the more sensible explanation. However, several genes nearest to CISs were amplified in the absence of the further gene, while there were no examples of the reciprocal association. Choosing the nearest gene is the simplest method for assigning insertions to genes and will correctly identify genes that contain intragenic CISs. There is no evidence to suggest that genes nearest to CISs are preferentially amplified, but the fact that they are more likely to have a human orthologue does indicate that they may be the more likely candidates for a role in cancer. However, a more sophisticated method for assigning insertions to genes, such as the approach described in Sections 2.9 and 2.10, is likely to yield the most reliable list of cancer gene candidates. Comparative analyses involving these genes are discussed in Chapter 5.

4.5.2 Identification of individual candidates for a role in human cancer

For each gene list, the amplicons and deletions containing the human orthologues of candidate cancer genes were analysed in more detail to find the most promising candidates for a role in human cancer. The minimal amplified/deleted region was calculated by taking all of the amplicons/deletions in which the gene resided and finding the most 3' start coordinate and the most 5' end coordinate. The identities of other genes within the minimal region were established using the coordinates of human genes in Ensembl v37. For each gene within a minimum amplified or deleted region, the total number of cell lines in which that gene was amplified or deleted was calculated. In order to filter out the less likely candidates, genes in amplicons were discarded if they were co-amplified with known oncogenes or other mouse candidates from the gene list. Likewise, genes in deletions were discarded if they were co-deleted with known tumour suppressor genes or other mouse candidates from the gene list.

4.5.2.1 Candidate oncogenes among genes nearest to CISs

4.5.2.1.1 Protein-coding genes

The strongest candidates from the list of genes nearest to CISs with P<0.001 are shown in Table 4.4. Among 242 genes amplified to copy number 1.6 or above, 60 co-occurred with 1 or more known oncogenes and 128 co-occurred with other candidates in the list, of which 105 co-occurred with genes that were amplified in a greater number of cell lines. The filtered list of 54 candidates contained 14 known oncogenes, including *EVI1* and *FGFR2*, for which the murine insertions and human amplicons of less than 70 Mb are shown in Figure 4.17. 70 Mb is an arbitrary cut-off, but omits amplicons that are very large and for which there is therefore a low degree of certainty that the CIS genes are the targets of amplification. The kinase insert domain protein receptor gene (*KDR*) was amplified in 5 cell lines. Analysis of the insertions around *Kdr* in the mouse suggests that the adjacent gene, known oncogene *Kit*, may in fact be disrupted by the insertions assigned to *Kdr* (see Figure 2.11B, page 94). Likewise, the minimal amplified region containing *KDR* also contained *KIT*, which was amplified in an additional cell line (Figure 4.17) and is therefore the more likely target of amplification.

Further implicated oncogenes were also identified (Table 4.4). For example, the homeobox gene *MEIS1* is implicated in neuroblastoma. It was found to be amplified in the neuroblastoma cell line IMR-32 and was overexpressed in further neuroblastoma cell lines (Jones *et al.*, 2000). The single cell line in which it was amplified (to copy number 9.8) in this analysis was the neuroblastoma cell line GI-LI-N, which, according to the cell line typing analysis of the Cancer Genome Project (see Section 4.2.2), shares 96.0% identity with IMR-32, suggesting that they are derived from the same cancer. Even genes that are rarely amplified may therefore contribute to tumourigenesis. Likewise, the NF- κ B transcription factor family member *NFKB1* was amplified to copy number 4.8 in one cell line (HH) derived from an adult T-cell lymphoma-leukaemia. Polymorphisms of *NFKB1* are associated with susceptibility to a number of cancers, including oral squamous cell carcinoma, myeloma, and cancers of the colon, liver and breast (for review, see Sun and Zhang, 2007). Interestingly, *NFKB1* maps to a region that is involved in translocations in certain types of acute lymphoblastic leukaemia (Liptay *et al.*, 1992).

Other implicated oncogenes that were amplified in human cancer and disrupted by retroviral insertions include matrix metalloproteinase-13 (*MMP13*) and mothers against decapentaplegic homolog 7 (*SMAD7*). *MMP13* shows recurrent amplification and overexpression in cervical cancer (Narayan *et al.*, 2007) and 2 of the 12 cell lines in this

-				Number of	Genes in minimal	Maximum copy	Known
CIS P-value	Gene name	Mouse Ensembl ID	Human Ensembl ID	cell lines	amplified region	number	oncogene?
0.001	Мус	ENSMUSG0000022346	ENSG00000136997	71	3	5.9+	Y
0.001	Ccnd1	ENSMUSG0000031071	ENSG00000110092	24	10	5.9+	Y
0.001	Nmyc1	ENSMUSG0000037169	ENSG00000134323	14	9	5.9+	Y
0.001	Slamf6	ENSMUSG0000015314	ENSG00000162739	14	21	5.9+	
0.001	Smad7	ENSMUSG0000025880	ENSG00000101665	6	27	5.9+	
0.001	Fgfr2	ENSMUSG0000030849	ENSG0000066468	5	7	5.9+	Y
0.001	Kdr	ENSMUSG0000062960	ENSG00000128052	5	15	5.9+	
0.001	Tnfrsf7	ENSMUSG0000030336	ENSG00000139193	5	26	5.9+	
0.001	Meis1	ENSMUSG0000020160	ENSG00000143995	1	2	5.9+	
0.001	Mmp13	ENSMUSG0000050578	ENSG00000137745	12	21	4.8	
0.001	Nfkb1	ENSMUSG0000028163	ENSG00000109320	1	7	4.8	
0.001	Zfp217	ENSMUSG0000052056	ENSG00000171940	43	15	4.3	
0.001	Zfpn1a1	ENSMUSG0000018654	ENSG00000185811	18	103	4.3	Y
0.001	Ccnd3	ENSMUSG0000034165	ENSG00000112576	8	37	4.3	Y
0.001	Lmo2	ENSMUSG0000032698	ENSG00000135363	4	43	4.3	Y
0.001	Pim1	ENSMUSG0000024014	ENSG00000137193	7	12	3.8	Y
0.001	Ccnd2	ENSMUSG0000000184	ENSG00000118971	6	15	3.8	Y
0.001	Evi1	ENSMUSG0000027684	ENSG00000085276	17	27	3.1	Y
0.001	Btq2	ENSMUSG0000020423	ENSG00000159388	10	35	3.1	
0.001	Cd72	ENSMUSG0000028459	ENSG00000137101	8	26	3.1	
0.001	Rreb1	ENSMUSG0000039087	ENSG00000124782	7	10	3.1	
0.001	Aarsl	ENSMUSG0000023938	ENSG00000124608	6	19	3.1	
0.001	Taok3	ENSMUSG0000061288	ENSG00000135090	3	9	3.1	
0.001	Ntn1	ENSMUSG0000020902	ENSG0000065320	2	31	3.1	
0.001	Pik3r5	ENSMUSG0000020901	ENSG00000141506	2	31	3.1	
0.001	Eif4e3	ENSMUSG0000030068	ENSG00000163412	2	33	3.1	
0.001	Irf4	ENSMUSG0000021356	ENSG00000137265	7	27	2.7	Y
0.001	Ubb	ENSMUSG0000019505	ENSG00000170315	5	72	2.5	
0.001	Cd69	ENSMUSG0000030156	ENSG00000110848	4	52	2.5	
0.001	Lrrc5	ENSMUSG0000046079	ENSG00000171492	2	25	2.5	
0.001	Ptpn1	ENSMUSG0000027540	ENSG00000196396	42	27	2.1	
0.001	Sla2	ENSMUSG0000027636	ENSG00000101082	41	84	2.1	
0.001	E030003N15Rik	ENSMUSG0000036661	ENSG00000105339	40	68	2.1	
0.001	2310007D09Rik	ENSMUSG0000027654	ENSG00000101447	38	61	2.1	
0.001	Cansl	ENSMUSG0000039676	ENSG00000152611	32	40	2.1	
0.001	Cldn10	ENSMUSG0000022132	ENSG00000134873	20	37	2.1	
0.001	Ebi2	ENSMUSG00000051212	ENSG00000169508	18	31	2.1	
0.001	Flt3	ENSMUSG0000042817	ENSG00000122025	11	122	2.1	Y
0.001	Chc11	ENSMUSG0000022106	ENSG00000136161	10	53	2.1	
0.001	LCD1	ENSMUSG0000021998	ENSG00000136167	10	128	2.1	Y
0.001	4933403F05Rik	ENSMUSG0000038121	ENSG00000177150	10	159	2.1	
0.001	Dtl	ENSMUSG0000037474	ENSG00000143476	8	70	2.1	
0.001	2410129F14Rik	ENSMUSG0000045136	ENSG00000137285	7	18	2.1	
0.001	1110036003Rik	ENSMUSG0000006931	ENSG00000141696	6	43	2.1	
0.001	Fmnl1	ENSMUSG00000055805	ENSG00000184922	6	85	2.1	
0.001	Ksr	ENSMUSG0000018334	ENSG00000141068	5	34	2.1	
0.001	Jundm2	ENSMUSG0000034271	ENSG00000140044	13	42	1.6	
0.001	Tomm20	ENSMUSG0000058779	ENSG00000173726	8	252	1.6	
0.001	Cvb5	ENSMUSG0000024646	ENSG00000166347	6	20	1.6	
0.001	Ldhd	ENSMUSG0000031958	ENSG00000166816	6	74	1.6	
0.001	Cbfa2t3h	ENSMUSG0000006362	ENSG00000129993	5	133	1.6	Y
0.001	Zfp608	ENSMUSG0000052713	ENSG00000168916	3	30	1.6	
0.001	2610307008Rik	ENSMUSG0000024349	ENSG00000184584	3	95	1.6	
0.001	Hhex-rs2	ENSMUSG0000024986	ENSG00000152804	2	40	1.6	
0.05	D930036F22Rik	ENSMUSG0000035181	ENSG00000129493	17	19	5.9+	
0.05	Laptm5	ENSMUSG0000028581	ENSG00000162511	1	11	2.7	
0.05	Emp3	ENSMUSG0000040212	ENSG00000142227	7	33	2.7	
0.05	Rai1	ENSMUSG0000062115	ENSG00000108557	5	72	2.1	

Table 4.4. Genes that are nearest to CISs in mouse lymphomas and are also promising candidates for targets of amplification in human cancer cell lines. "CIS *P*-value" is the minimum threshold for the significance of the CIS nearest to the given gene. "Number of cell lines" is the number of samples in which the gene is amplified to a copy number of greater than or equal to 1.6. "Genes in minimal amplified region" is the number of genes that co-occur with the CIS gene in the smallest region of amplification. "Maximum copy number" is the maximum copy number threshold above which the gene is identified as being amplified. "Known oncogene?" indicates whether the gene is a dominant cancer gene listed in the Cancer Gene Census.

Chapter 4

Figure 4.17. Known human oncogenes *EVI1* (A), *FGFR2* (B) and *KIT* (C) are amplified in human cancer cell lines and are disrupted by retroviral insertional mutagenesis in mouse lymphomas. The copy number of chromosomal regions in the human cell lines is depicted in colour. Names of human cell lines and tissue of origin are provided Only cell lines in which the amplicon containing the oncogene is less than 70 Mb are shown. The lower part of each figure shows insertions within mouse tumours, and was kindly provided by Jaap Kool and Jeroen de Ridder. Blue vertical lines represent insertions in the sense orientation, while red vertical lines represent antisense insertions. Genes are shown in green, with exons marked in black. Positions on the murine and human chromosomes are indicated on the black horizontal bars in kb and Mb, respectively. These figures can also be seen in Uren *et al.* (2008).

study in which *MMP13* was amplified were indeed derived from cervical cancers. *MMP13* has not been shown to be amplified in any other cancer types, but overexpression has been observed, e.g. in squamous cell carcinomas of the head and neck (Johansson *et al.*, 1997) and vulva (Johansson *et al.*, 1999). The results of this analysis suggest that *MMP13* is amplified in, and implicated in, a range of cancer types. The cell lines containing amplicons of less than 70 Mb that encompass *MMP13* are shown in Figure 4.18. Among these types are oesophageal, skin and breast cancers, in which *MMP13* overexpression has been observed (Freije *et al.*, 1994; Hu *et al.*, 2001; Kuivanen *et al.*, 2006). The minimal amplified region on chromosome 11 contains 21 genes, including a cluster of genes encoding matrix metalloproteinases, of which a number have been previously implicated in cancer. However, *MMP13* was the only gene disrupted by insertional mutagenesis.

SMAD7 duplication has been demonstrated in colorectal cancer (Boulay et al., 2001) and the gene is overexpressed in a number of cancer types, including basal cell carcinoma (Gambichler et al., 2007), endometrial cancer (Dowdy et al., 2005) and thyroid follicular carcinoma cell lines (Cerutti et al., 2003). The highest amplification of SMAD7 was in the retinoblastoma cell line Y79. Interestingly, SMAD7 has been shown to suppress TGF-β1-mediated growth inhibition in pancreatic cancer cells through the inactivation of the retinoblastoma protein (Boyer Arnold and Korc, 2005) and it inhibits growth arrest and apoptosis in mouse B cells through the inactivation of retinoblastoma (Ishisaki *et al.*, 1998; Nakahara et al., 2003). In addition, SMAD7 is expressed in the eye, and suppresses TGF-β2-mediated inhibition of corneal endothelial cell proliferation, resulting in accelerated wound healing (Funaki et al., 2003). SMAD7 is therefore a promising target for amplification in the retinoblastoma cell line. Likewise, one of the amplicons encompassing SMAD7 was identified in a Ewing's sarcoma cell line (EW-24) and, in osteogenesis, SMAD7 suppresses osteoblast differentiation and bone formation (Koinuma and Imamura, 2005) and inhibits Saos2 osteosarcoma cell differentiation (Eliseev et al., 2006). SMAD7 was also amplified in 2 haematopoietic and 2 lung cancer cell lines. SMAD7 promotes self-renewal of haematopoietic stem cells (Blank et al., 2006) and is highly expressed in metastatic lung cancer cell lines (Shen et al., 2003).

Other interesting candidates include SLAM family member 6 precursor (*SLAMF6*), serine/threonine-protein kinase TAO3 (*TAOK3*), RAS-responsive element-binding protein 1 (*RREB1*) and leucine-rich repeat-containing protein 8D (*LRRC5*). The minimal

Chapter 4

Figure 4.18. Candidate oncogenes *MMP13* (A), *SLAMF6* (B) and *RREB1* (C) are amplified in human cancer cell lines and are disrupted by retroviral insertional mutagenesis in mouse lymphomas. The copy number of chromosomal regions in the human cell lines is depicted in colour. Names of human cell lines and tissue of origin are provided Only cell lines in which the amplicon containing the oncogene is less than 70 Mb are shown. The lower part of each figure shows insertions within mouse tumours, and was kindly provided by Jaap Kool and Jeroen de Ridder. Blue vertical lines represent insertions in the sense orientation, while red vertical lines represent antisense insertions. Genes are shown in green, with exons marked in black. Positions on the murine and human chromosomes are indicated on the black horizontal bars in kb and Mb, respectively. These figures can also be seen in Uren *et al.* (2008).

amplified region encompassing SLAMF6 comprised 21 genes and was recurrent across 14 cell lines. Cell lines containing an amplicon of less than 70 Mb are shown in Figure 4.18. The highest amplification of SLAMF6 was within the lung cancer cell line NCI-H1694. However, it has been proposed that SLAMF6, also known as Ly108, is only expressed in lymphoid tissues (Peck and Ruley, 2000), where it regulates T cell development (Jordan et al., 2007) and B cell tolerance (Kumar et al., 2006). Polymorphisms within the gene are associated with systemic lupus erythematosus (Wandstrat et al., 2004), which has been widely associated with an increased risk of developing a range of cancers, but most strongly with cancers arising from B lymphocytes (Bernatsky et al., 2007). TAOK3 was only amplified in 3 cell lines, but the minimum region contained just 9 genes. TAOK3 is poorly characterised, but contains a somatic missense mutation in 2 lung cancers (small cell carcinoma cell line NCI-H28 and a primary adenocarcinoma) in the COSMIC database (Forbes et al., 2006). Although a role in tumourigenesis has not been demonstrated for TAOK3, protein kinases are widely implicated in cancer (see Sections 1.2.5.2 and 1.3.1). *RREB1* was amplified in 7 cell lines within a minimal region of 10 genes. Cell lines containing an amplicon of less than 70 Mb are shown in Figure 4.18. Each cell line was derived from a different tissue, but *RREB1* has been shown to be ubiquitously expressed in human tissues apart from the adult brain (Thiagalingam et al., 1997). Rreb1 binds to, and represses expression of, the *p16^{lnk4a}* promoter, and the development of pristine-induced plasma cell tumours in Balb/C mice is attributable to a polymorphism in this Rreb1 binding site (Zhang et al., 2003). In addition, RREB1 is important in reducing cell-cell adhesion and collective migration of epithelial cells (Melani et al., 2008), and it may therefore play a role in metastasis. RREB1 has also been identified as a transcriptional effector of RAL (Oxford et al., 2007), and RALA is itself implicated in cancer cell migration, as well as other cancer-related functions (Oxford et al., 2005). The most amplified occurrence of RREB1 was in the osteosarcoma cell line MG-63, but no role for *RREB1* has previously been elucidated in bone tissue. *LRRC5* was amplified in just 2 cell lines, with a minimal amplified region of 25 genes. Although little is known about this gene, it is thought that it might be implicated in the proliferation and activation of lymphocytes and monocytes, suggesting a possible role in the oncogenesis of B cells which would account for the insertions disrupting Lrrc5 in mouse lymphomas. However, LRRC5 was amplified in human cancer cell lines derived from the ovary and upper aerodigestive tract.

Only 4 additional candidates (D930036F22Rik, LAPTM5, EMP3 and RAI1) were identified using genes nearest to CISs with P < 0.05 (see Table 4.4). D930036F22Rik is also known as HEAT repeat containing 5A (HEATR5A). The minimal amplified region also included Rho-GTPase-activating protein 5 (p190-B), which is known to be overexpressed in breast cancer (Chakravarty et al., 2000), although only 1 breast cancer cell line contained an amplification of this region. Based on the distribution of insertions in the CIS, it is entirely possible that nearby genes Hectd1 and/or EG544864 were in fact the targets of MuLV mutagenesis (Figure 4.19). However, none of these genes have been previously implicated in tumourigenesis. Lysosomal-associated protein transmembrane 5 (LAPTM5) was amplified in a single cell line derived from an endometrial carcinoma (MFE-280). LAPTM5 is inactivated by chromosomal rearrangement and DNA methylation in human multiple myeloma (Hayami et al., 2003) but is overexpressed in malignant B lymphomas (Seimiya et al., 2003) and is a predictor for early intrahepatic recurrence of hepatocellular carcinoma (Somura et al., 2008). However, the amplified region in MFE-280 also contained the syndecan-3 gene, which is expressed in the human endometrium (Germeyer et al., 2007) and is thought to play a role in uterine growth (Russo et al., 2001). Epithelial membrane protein gene EMP3 was proposed as a candidate tumour suppressor in glioma and neuroblastoma (Alaminos et al., 2005), but it has since been shown to be overexpressed in oligodendroglial tumours (Li et al., 2007a) and primary glioblastomas (Kunitz et al., 2007). It is also overexpressed in invasive human mammary carcinoma cell lines (Evtimova et al., 2003) and contains a polymorphism in prostate cancers (Burmester et al., 2004). Retinoic acid induced 1 gene (RAI1) has not been previously implicated in cancer.

4.5.2.1.2 miRNA genes

The list of genes nearest to CISs with P < 0.001 contained 6 miRNA genes, while the list nearest to CISs with P < 0.05 contained 9. As mentioned in Section 3.2.2, deregulated miRNAs are implicated in promoting and suppressing tumourigenesis in a range of tissues. Currently, only protein-coding genes have human orthologues in Ensembl, and miRNA genes were therefore omitted from the global comparison and principal analysis of CIS genes within amplicons. However, it is possible to manually identify the human equivalents based on the miRNA name and the conserved synteny between the mouse and human genomes. Table 4.5 shows the name of the murine miRNA and the corresponding human miRNA for genes nearest to CISs, as well as lists of the miRNA genes within

Chr. 12	52.70 Mb	52.75 Mb 52.80 Mb	52.85 Mb 52.90 Mb
Length	Forward strand	264.77 Kb	
MuLV			
 Ensembl trans. 	Ap4s1 >	EG544864 >	
DNA(contigs)	AC159644.3 >	< AC157213.2	< AC161114.4
 Ensembl trans. 	<pre>H # Hetd1 </pre>	Huit, Militaria Heatr5e	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
MuLV			
Length	<	264.77 Kb	Reverse strand
	52.70 Mb	52.75 Mb 52.80 Mb	52.85 Mb 52.90 Mb

Figure 4.19. Insertions assigned to *Heatr5a* may be associated with *Hectd1* or EG544864. Insertions are shown as black vertical lines. Those above the blue bar labelled DNA(contigs) are in the sense orientation, those below are in the antisense orientation. Ensembl genes are shown in red.

A		
P-value	Mouse miRNA	Human miRNA
0.001	rno-mir-128b	hsa-mir-128b
0.001	hsa-mir-142	hsa-mir-142
0.001	mmu-mir-21	hsa-mir-21
0.001	mmu-mir-23a	hsa-mir-23a
0.001	mmu-mir-17	hsa-mir-17
0.001	hsa-mir-106a	hsa-mir-106a
0.05	mmu-mir-26b	hsa-mir-26b
0.05	mmu-mir-22	hsa-mir-22
0.05	rno-mir-200b	hsa-mir-200b

В

Mouse		Human		Number of	Maximum	Known oncogenes
miRNA gene	Mouse Ensembl ID	miRNA gene	Human Ensembl ID	cell lines	copy number	in minimal region?
mmu-mir-17	ENSMUSG0000065508	hsa-mir-17	ENSG00000198999	23	3.1	
hsa-mir-142	ENSMUSG0000065420	hsa-mir-142	ENSG00000199166	9	2.1	Y
mmu-mir-21	ENSMUSG0000065455	hsa-mir-21	ENSG00000199004	9	2.1	Y
mmu-mir-23a	ENSMUSG0000065611	hsa-mir-23a	ENSG00000199028	8	2.1	Y
rno-mir-128b	ENSMUSG0000065441	hsa-mir-128b	ENSG00000199105	1	2.1	

С

0					
Mouse		Human		Number of	Minimum
miRNA gene	Mouse Ensembl ID	miRNA gene	Human Ensembl ID	cell lines	copy number
rno-mir-128b	ENSMUSG0000065441	hsa-mir-128b	ENSG00000199105	40(2)	0.2
mmu-mir-17	ENSMUSG0000065508	hsa-mir-17	ENSG00000198999	61	0.6
mmu-mir-22	ENSMUSG0000065529	hsa-mir-22	ENSG00000199060	17	0.6
mmu-mir-26b	ENSMUSG0000065468	hsa-mir-26b	ENSG00000199121	8	0.6
mmu-mir-21	ENSMUSG0000065455	hsa-mir-21	ENSG00000199004	6	0.6
hsa-mir-142	ENSMUSG0000065420	hsa-mir-142	ENSG00000199166	5	0.6
mmu-mir-23a	ENSMUSG0000065611	hsa-mir-23a	ENSG00000199028	3	0.6

Table 4.5. miRNA genes that are nearest to CISs in mouse lymphomas and are amplified and/or deleted in human cancer cell lines. (A) Names of the murine miRNAs and their human orthologues. (B) Amplified miRNA genes. (C) Deleted miRNA genes. "P-value" is the minimum threshold for the significance of the CIS nearest to the given gene. "Number of cell lines" is the number of samples in which the gene is amplified to a copy number of greater than or equal to 1.6 (B) or deleted to a copy number of less than or equal to 0.6, with the number for deletions of copy number 0.2 or below shown in brackets (C). "Maximum copy number" is the maximum copy number threshold above which the gene is identified as being amplified. "Minimum copy number" is the minimum copy number.

human amplicons and deletions. Genes encoding 5 of the miRNAs were amplified in human cancer cell lines. The minimal amplified regions for hsa-miR-142 and hsa-miR-23a were very large and encompassed 4 and 3 known oncogenes, respectively, while hsamiR-21 was co-amplified with hsa-miR-23a, and hsa-miR-128b was amplified in just 1 cell line. The minimal amplified region of hsa-miR-17 contained 14 genes, of which none were oncogenes and only 2 had a description in Ensembl. hsa-miR-17 is part of the miR-17-92 cluster of 6 miRNAs. All 3 of the cell lines in which hsa-miR-17 was amplified to copy number 2.5 or above were derived from haematopoietic and lymphoid cancers, which is consistent with a role for miR-17-92 in both B-lymphocyte development and Blymphoproliferative disorders (Garzon and Croce, 2008). The cluster is also overexpressed in other human cancers, including colorectal cancers (Monzo *et al.*, 2008), anaplastic thyroid cancer cells (Takakura et al., 2008), neuroblastomas with MYCN amplification (Schulte et al., 2008), bladder cancers (Gottardo et al., 2007) and lung cancers (Hayashita et al., 2005). Of the 23 cell lines in which hsa-mir-17 was amplified to copy number 1.6 or above, 7 were from colon cancers, 7 were from haematopoietic and lymphoid cancers, 4 were from lung cancers, and 1 each were from cancers of the stomach, soft tissue, central nervous system, breast and eye. miR-17-92 is the likely target for amplification within this region, and demonstrates that the function of miRNAs may be conserved between species.

7 miRNA genes were identified within deletions of copy number 0.6 or below, but only *hsa-miR-17* and *hsa-miR-128b* were deleted in a large number of cell lines, and only *hsa-miR-128b* was within homozygous deletions. *hsa-miR-128b* was shown to be downregulated in classic Hodgkin lymphomas infected with Epstein-Barr virus (Navarro *et al.*, 2008). However, it is also upregulated in acute lymphoblastic leukaemia (Zanette *et al.*, 2007). The two homozygous deletions of *hsa-miR-128b* were within glioma and neuroblastoma cell lines, respectively. Interestingly, *hsa-miR-128* is highly expressed in the adult brain and preferentially in neurons, where it is thought to play a role in neural differentiation (Smirnova *et al.*, 2005). Downregulation of *hsa-miR-128* has been previously demonstrated in glioblastoma (Ciafre *et al.*, 2005), but deletion of the gene has not been previously demonstrated.

4.5.2.2 Candidate cancer genes among genes containing insertions within the coding region

Analyses involving the remaining lists were primarily designed to identify tumour suppressor genes, but as shown in Section 4.5.1.3, it is likely that the lists are contaminated with candidate oncogenes. The list for which the pattern of distribution was most similar to that of oncogenes was the list of genes containing insertions, not including those represented by a single read, within the coding region. The strongest candidates in regions of copy number gain, identified using the same filtering procedure as used for genes nearest to CISs, included 4 oncogenes (Table 4.6). As discussed in Section 3.4.1, insertions within the 3' UTR of *Mycn* and *Pim1* result in the formation of a more stable protein product, rather than gene inactivation. Some of the insertions were within the last exon of these genes, which explains their inclusion within the current list.

Candidate tumour suppressor genes were identified within regions of copy number loss. Among these was the gene encoding transmembrane protease, serine 2 precursor (TMPRSS2), which is a known oncogene that forms fusions with the ETS transcription factor genes ERG and ETV1 in prostate cancer (Tomlins et al., 2005) and is overexpressed in most prostate cancers (Vaarala et al., 2001). A hemizygous microdeletion within the fusion has been observed on chromosome 21 between ERG and TMPRSS2 (Yoshimoto et al., 2006), but this does not explain the deletion of the entire gene, sometimes in both copies. In addition, the homozygous deletions, which were also the most focal deletions, were identified in cancer cell lines derived from the pancreas and upper aerodigestive tract, rather than the prostate. Most of the heterozygous deletions were very large, encompassing many genes, and the minimal deleted region contained 18 genes. Based on the known role of *TMPRSS2*, it seems unlikely that this is the target of deletion within this region. Likewise, although deleted in human cancers, MAP3K8 and IL6RA are also more likely to act as oncogenes. MAP3K8 is overexpressed in, for example, invasive endometrioid cancer (Aparecida Alves et al., 2006), T-cell neoplasias (Christoforidou et al., 2004) and breast cancer (Sourvinos et al., 1999), while expression of the interleukin 6 receptor gene *IL6RA* is promoted by Epstein-Barr virus in immortalised B cells and Burkitt's lymphoma cells (Klein et al., 1995). The minimal amplified region containing the gene encoding MAGUK p55 subfamily member 4 (MMP4) comprised just 4 genes. Interestingly, MMP4 is a homologue of the Drosophila Stardust gene, which is involved in establishing and maintaining epithelial tissue polarity,

			Number of	Genes in	Сору	Singletons	Known
Gene name	Mouse Ensembl ID	Human Ensembl ID	cell lines	minimal region	number	only?	oncogene?
Capsl	ENSMUSG0000039676	ENSG00000152611	32	40	1.6+		
Bcl9	ENSMUSG0000038256	ENSG00000116128	17	62	1.6+		Y
Mycn	ENSMUSG0000037169	ENSG00000134323	14	9	1.6+		Y
Ccnd3	ENSMUSG0000034165	ENSG00000112576	8	37	1.6+		Y
Pim1	ENSMUSG0000024014	ENSG00000137193	7	12	1.6+		Y
NM_009283.2	ENSMUSG0000026104	ENSG00000115415	2	12	1.6+		
Mrps18b	ENSMUSG0000024436	ENSG00000137330	12	19	0.6		
Mpp4	ENSMUSG0000026024	ENSG0000003393	9	4	0.6		
Il6ra	ENSMUSG0000027947	ENSG00000160712	3	23	0.6		
Phgdhl1	ENSMUSG0000041765	ENSG00000134882	63(1)	9(21)	0.2		
Map3k8	ENSMUSG0000024235	ENSG00000107968	35(1)	13(20)	0.2		
Tmprss2	ENSMUSG0000000385	ENSG00000184012	14(2)	18(18)	0.2		Y
Tmem16f	ENSMUSG0000064210	ENSG00000177119	3	1	1.6+	Y	
Nfkb1	ENSMUSG0000028163	ENSG00000109320	1	7	1.6+	Y	
9030611019Rik	ENSMUSG0000036136	ENSG00000184731	3	16	1.6+	Y	
Olfr1509	ENSMUSG0000035626	ENSG00000182735	12	26	1.6+	Y	
	ENSMUSG0000046186	ENSG00000156535	3	35	1.6+	Y	
Rasarp4	ENSMUSG0000030589	ENSG00000171777	12	56	1.6+	Y	
Dsa1b	ENSMUSG0000061928	ENSG00000134760	76	89	0.6	Y	
XP 484397.2	ENSMUSG0000034731	ENSG00000102780	68	8	0.6	Y	
Riok3	ENSMUSG0000024404	ENSG00000101782	68	47	0.6	Y	
6330406I15Rik	ENSMUSG0000029659	ENSG00000102802	64	9	0.6	Ý	
Il17rb	ENSMUSG0000015966	ENSG00000056736	46	14	0.6	Ý	
Zmvnd11	ENSMUSG0000021156	ENSG00000015171	46	32	0.6	Ŷ	
Hmah2	ENSMUSG0000054717	ENSG00000164104	43	13	0.6	Ŷ	
Gtse1	ENSMUSG0000022385	ENSG00000075218	41	90	0.6	Ý	
1700020C11Rik	ENSMUSG00000022505	ENSG00000100010	36	61	0.0	Ý	
Slc37a2	ENSMUSG0000032122	ENSG00000134955	34	70	0.0	Ý	
Man1a	ENSMUSG0000003746	ENSG00000111885	33		0.6	Ŷ	
Ate1	ENSMUSG0000030850	ENSG00000107669	32	6	0.0	Ý	
Nran	ENSMUSG0000049134	ENSG00000197893	32	9	0.0	Ý	
091VN2 MOUSE	ENSMUSG0000042293	ENSG00000180425	32	16	0.6	Ŷ	
Snf1/k2	ENSMUSG0000037112	ENSG00000170145	32	40	0.0	Ý	
Dnaic9	ENSMUSG0000021811	ENSG00000182180	31	26	0.0	Ý	
3110003A17Rik	ENSMUSG0000019855	ENSG00000146386	30	11	0.0	v	
Shh	ENSMUSG00000044813	ENSG00000140300	20	16	0.0	v	
Hn1hn3	ENSMUSG0000028759	ENSG00000127483	20	84	0.0	v	
120000010601	ENSMUSG0000020735	ENSG00000127405	27	94	0.0	v	
8430406107Rik	ENSMUSG0000021200	ENSG00000125871	23	20	0.0	Y	
Wdr5h	ENSMUSG0000034379	ENSG00000125071	17	14	0.0	v	
7dhhc23	ENSMUSG0000036304	ENSG00000190901	17	14	0.0	v	
0030611010Pik	ENSMUSG0000036136	ENSG00000184731	15	22	0.0	v	
Gent?	ENSMUSC0000021360	ENSC00000111846	14	47	0.0	v v	
Ith	ENSMUSG0000021300	ENSG00000113263	13	-1/	0.0	v	
11K	ENSMUSG0000039153	ENSG00000124813	13	97	0.0	v	
Dok?	ENSMUSC0000035711	ENSC00000124013	13	193	0.0	v v	
Hiven?	ENSMUSC0000028634	ENSC00000127124	13	103	0.0	I V	
CSDE1 MOUSE	ENSMUSC0000028034	ENSC000000127124	12	2	0.0	v v	
8430439D04Dik	ENSMUSC00000036010	ENSC00000170104	10	25	0.0	I V	
8cl10	ENSMUSC0000028101	ENSC000001/3104	10	33	0.0	I V	
DCITO Daci	ENSMUSC0000026191	ENSC00000142807	10	16	0.0	I V	
Rysz Imid4	ENSMUSC0000026300	ENSC00000110741	7	10	0.6	I V	
Jiliju4 Teek6		ENSC00000178002	/ 6	93	0.6	I V	
155KU Tdrd5		ENSCOOD01/0093	о г	60	0.0	r V	
Soll		ENSC0000102/02	5	46	0.6	ř	
Jenrol1			4	20/22)	0.6	ř	
Lepreii		ENSGUUUUUU90530	8(1) 10(2)	29(33)	0.2	Ý	
01111509 Dut		ENSGUUUUU182/35	19(3)	19(27)	0.2	ř	
2200002M100#		ENCC0000011020931	11(1)	7(7)	0.2	ř. v	
3200002M19RIK	EN31405G00000030649	EN3G00000110200	11(1)	24(52)	0.2	Ý	

Table 4.6. Mouse genes that contain retroviral insertions within the coding region and are also promising candidates for targets of amplification or deletion in human cancer cell lines. "Number of cell lines" is the number of samples in which the gene is amplified or deleted. "Copy number" is the maximum copy number threshold above which the gene is identified as being amplified, or the minimal threshold below which the gene is deleted. Where the copy number is 0.2, the number of cell lines and number of genes in the minimal deleted region are given for deletions of copy number ≤ 0.6 , with numbers for copy number ≤ 0.2 being shown in brackets. "Genes in minimal region" is the number of genes that co-occur with the CIS gene in the smallest region of amplification/deletion. "Singletons only?" indicates whether the gene contains insertions other than those represented by a single read. "Known oncogene?" indicates whether the gene is a dominant cancer gene listed in the Cancer Gene Census. which is disrupted in epithelial tumours. Although *MMP4* has not been implicated in cancer, expression of another family member, known as *MMP7*, has been demonstrated in tumours of the uterus and bladder, and in lymphomas (Katoh and Katoh, 2004).

Among the genes that contained insertions represented by a single read, 3 genes (*SHB*, *HIVEP3* and *BCL10*) stood out as potential tumour suppressor genes. Overexpression of the gene encoding the SHB adaptor protein causes increased activity of the pro-apoptotic kinase c-ABL, resulting in reduced tumour growth in PC3 prostate cancer cells (Davoodpour *et al.*, 2007). Therefore, it is possible that deletion of the gene may lead to tumour cell growth and proliferation. The human immunodeficiency virus type 1 enhancer binding protein 3 gene (*Hivep3*, also known as *Krc*), positively regulates transcription of the mouse metastasis-associated gene, *S100A4/mts1* (Hjelmsoe *et al.*, 2000). In addition, *KRC* was proposed as a potential tumour suppressor gene following the development of a teratoma from *KRC*-deficient embryonic stem cells introduced into an animal model (Allen *et al.*, 2002). Finally, the B-cell lymphoma/leukaemia 10 gene (*BCL10*) is a "hotspot" within the commonly deleted region 1p22.3 in mantle cell lymphomas. Interestingly, 5 of the 10 cell lines containing a deletion within this region were derived from tumours of the autonomic ganglia, but no role for *BCL10* has previously been demonstrated in these cancers (Balakrishnan *et al.*, 2006).

4.5.2.3 Candidate tumour suppressor genes among genes containing insertions within the translated or transcribed region

Candidates among the lists of genes containing insertions within the translated or transcribed region are combined in Table 4.7. The gene that was most frequently deleted below the copy number thresholds of both 0.6 and 0.2 was the known tumour suppressor gene *CDKN2A* (also known as the *INK4A/ARF* locus, and described in Section 1.2.6). This demonstrates the efficacy of the analysis, since homozygous and heterozygous deletions of *CDKN2A* are commonly observed in a wide range of cancers. The only other known tumour suppressor gene in the list, according to the Cancer Gene Census, was the gene encoding FAS, which is a member of the TNF receptor superfamily. Binding of the FAS ligand to the FAS receptor results in the formation of the death-inducing complex (DISC), which triggers apoptosis (for review, see Wajant, 2002). The implicated tumour suppressor gene *WWOX* was also frequently deleted. *WWOX* resides in a fragile site and therefore while it is frequently deleted in cancers, it is unclear whether it contributes to

Chapter 4

Index 1 House 1 sceney 10 House 1 sceney 11 Hou				Number of	Genes in minimal	Сору	Insertions in translated	Singletons	Known
Calc.20 PERSIL SCHOOL 1989 PECCODE 1989	Gene name	Mouse Ensembl ID	Human Ensembl ID	cell lines	region	number	region?	only?	TSG?
20.2.2.3 Deckar Decka	Cdkn2a	ENSMUSG00000044303	ENSG00000147889	207(145)	1(3)	0.2	Y		Y
Data Desting Desting Desting Desting Desting Desting Desting Marger Desting Desting Desting Desting Desting Desting Angerd Desting Desting Desting Desting Desting Desting Angerd Desting Desting Desting Desting Desting Desting Angerd Desting Desting Desting Desting Desting Desting Desting Angerd Desting Desting <td>Zfp532</td> <td>ENSMUSG00000042439</td> <td>ENSG00000074657</td> <td>100(1)</td> <td>14(14)</td> <td>0.2</td> <td>'</td> <td></td> <td></td>	Zfp532	ENSMUSG00000042439	ENSG00000074657	100(1)	14(14)	0.2	'		
ADMAD Indext Science (1) Indext Science (1) Indext Science (1) Indext Science (1) ADVERT INSERTION (1) INSERTION (1) </td <td>Dock8</td> <td>ENSMUSG0000052085</td> <td>ENSG00000107099</td> <td>88(5)</td> <td>15(15)</td> <td>0.2</td> <td></td> <td></td> <td></td>	Dock8	ENSMUSG0000052085	ENSG00000107099	88(5)	15(15)	0.2			
Ampen DiskleScience DiskleScience V Control DiskleScience DiskleScience V Control DiskleScience DiskleScience V Control DiskleScience DiskleScience V Y Control DiskleScience DiskleScience V Y Mark DiskleScience DiskleScience DiskleScience V Mark DiskleScience DiskleScience DiskleScience V Mark DiskleScience DiskleScience DiskleScience DiskleScience Mark DiskleScience	Rnf125 Sacs	ENSMUSG00000033107 ENSMUSG00000048279	ENSG00000101695 ENSG00000151835	78(1) 64(1)	14(14) 4(5)	0.2	Y		
Abm.2 Exh.NUSC.00000139807 International Add 2 Y Scynt Exh.NUSC.0000023787 Encode0015222 245.0 211 0.2 Y Scynt Exh.NUSC.0000023787 Encode0015222 245.0 116.0 0.2 Y Y Scynt Exh.NUSC.0000023787 Encode0015282 35.01 117.0 0.2 Y Y May.NB Exh.NUSC.0000017483 35.01 117.00 0.2 Y May.NB Exh.NUSC.00000174783 Exc.0000187983 33.01 117.00 0.2 Y Prop Exh.NUSC.0000013740 Exc.000018749 24.01 10.10 0.2 Y Col.10 Exh.NUSC.000003170 Exc.000018749 24.01 10.11 0.2 Y Col.20 Exh.NUSC.0000031714 Exc.000018749 24.01 10.11 0.2 Y Col.20 Exh.NUSC.0000031714 Exc.0000187578 24.01 10.11 0.2 Y Col.20 Exh.NUSC.0000023757 Exc.0000187578 24.01	Arhgef3	ENSMUSG00000021895	ENSG00000163947	47(2)	10(10)	0.2	Ŷ		
Desky EVENDSOUT PERSOUNCE PE	Rbms3	ENSMUSG0000039607	ENSG00000144642	43(4)	1(3)	0.2	Y		
Sovell PSNMUSCO0000200209 PSNMUSCO0000200209 PSNUS Y Y Markay PSNMUSCO0000204235 PSNUSCO0000040255 PSNUSCO0000040255 PSNUSCO0000040255 PSNUSCO0000014025 PSNUSCO0000014025 PSNUSCO0000014025 PSNUSCO0000014025 PSNUSCO000014025 PSNUSCO000014025 PSNUSCO000014025 PSNUSCO000014025 PSNUSCO000014025 PSNUSCO000014025 PSNUSCO000014020 PSNUSCO000014020 PSNUSCO000014	Arpp21 Grm1	ENSMUSG00000032503 ENSMUSG00000019828	ENSG00000172995 ENSG00000152822	40(2) 37(6)	2(2) 2(1)	0.2	Y		
PAL Deskuticationschaft? Personalizationschaft? Personalizationscheteee Personalizationschaft? Per	Scye1	ENSMUSG0000028029	ENSG00000164022	36(1)	12(17)	0.2	Y		
Norka EMANDA EMANDA ENCODENCIPUTOR 1321 1220 0.2 Y br.1 EMANDA ENCODENCIPUTOR ENCODENCIPU	Fas	ENSMUSG00000024778	ENSG0000026103	35(2)	11(13)	0.2	Y		Y
News ENA-WS260000010453 INSEG000018153 IA(3) IA(2) IA(2) V Full ENA-WS26000011944 PNEC0000018147 IA(1)	Map3k8	ENSMUSG00000024235	ENSG00000120234	35(1)	13(20)	0.2	Y		
Ext Ext <td>Wwox</td> <td>ENSMUSG0000004637</td> <td>ENSG00000186153</td> <td>34(3)</td> <td>1(2)</td> <td>0.2</td> <td>Y</td> <td></td> <td></td>	Wwox	ENSMUSG0000004637	ENSG00000186153	34(3)	1(2)	0.2	Y		
Physic Highlesson Highlesson Highlesson Highlesson Highlesson Curl, Br. Highlesson Highlesson Highlesson Highlesson Highlesson Curl, Br. Highlesson Highlesson Highlesson Highlesson Highlesson Ads142 Highlesson Highlesson Highlesson Highlesson Highlesson Ads142 Highlesson Highlesson Highlesson Highlesson Highlesson Ads142 Highlesson Highlesson Highlesson Highlesson Highlesson Ads14 Highlesson Highlesson Highlesson Highlesson Highlesson Ads14 Highlesson Highlesson Highlesson Highlesson Highlesson Highlesson Ads14 Highlesson Highlesson Highlesson Highlesson Highlesson Highlesson Ads25 Highlesson Highlesson Highlesson Highlesson Highlesson Ads26 Highlesson Highlesson Highlesson Highlesson	Esr1	ENSMUSG0000019768	ENSG00000091831	34(1)	5(5)	0.2	Y		
Up/m ENSMUS ENSOLUCION Section Section Section Section Carl at P PASSE271 INSMUSCO000003738 ENSOLUCIONAL PARA Section Y Carl at P INSMUSCO000000000000000000000000000000000000	Prep	ENSMUSG00000019849	ENSG00000085377	33(1)	10(19)	0.2	Y		
Ch.1.B EMBNUE.GOOD003131.2 EMSCOUND.00010313.2 EMSCUE CONTROL 1000000000000000000000000000000000000	Utrn	ENSMUSG0000019820	ENSG00000152818	32(1)	2(1)	0.2	Y		
ml ml <thml< th=""> ml ml ml<!--</td--><td>Cdc14b</td><td>ENSMUSG0000033102</td><td>ENSG00000081377</td><td>31(1)</td><td>19(19)</td><td>0.2</td><td>v</td><td></td><td></td></thml<>	Cdc14b	ENSMUSG0000033102	ENSG00000081377	31(1)	19(19)	0.2	v		
4-831240000K NSMUSCO000054150 PSCS000017548 25(1) 2,7(1) 0.2 Auka NSMUSCO00005744 PSCS00001757275 21(6) 6(7) 0.2 Y Auka NSMUSCO00005774 PSCS00001757275 21(6) 6(7) 0.2 Y Seedin PSCMUSCO00005774 PSCS00001757275 21(6) 6(7) 0.2 Y Seedin PSCMUSCO00005774 PSCS0000127275 21(6) 6(7) 0.2 Y Seedin PSCMUSCO00005777 PSCS0000127318 31(1) 0.1 0.2 Y Magiz PSSMUSCO000059319 PSCS0000127318 18(3) 7(6) 0.2 Y Control PSSMUSCO000059319 PSCS0000117910 12(1) 12(1) 0.2 Y Control PSSMUSCO000070474 PSSC00000179714 11(1) 12(1) 0.2 Y Control PSSMUSCO000070474 PSSC00000179714 11(2) 10(1) 0.2 Y ZipHa PSSMUSCO0000007474 PSSC00000179714	XP 485387.1	ENSMUSG00000038578	ENSG00000106868	25(2)	5(5)	0.2	Y		
A3300000000000 PASMULT PASMULT PASMULT PASMULT Attract PENNISCONOUNDEXAL PENNISCONOUNDEXAL PENNISCONOUNDEXAL PENNISCONOUNDEXAL Respiral PENNISCONOUNDEXAL PENNISCONOUNDEXAL PENNISCONOUNDEXAL PENNISCONOUNDEXAL Markin PENNISCONOUNDEX	4831426I19Rik	ENSMUSG0000054150	ENSG00000176438	25(1)	2(7)	0.2			
Actual PERSUNCE CONCENSION 22:12 22:11 11:14 0.2 Y Seedul PERSUNCECONCENSION 23:23 PERSUNCECONCENSION 23:25 20:11 10:10 0.2 Y Seedul PERSUNCECONCENSION 23:25 PERSUNCECONCENSION 23:25 10:11 10:10 0.2 Y Magiz PERSUNCECONCENSION 23:25 PERSUNCECONCENSION 23:25 10:10 0.2 Y Magiz PERSUNCECONCENSION 24:26 PERSUNCECONCENSION 24:26 Y Y Magiz PERSUNCECONCENSION 23:25 PERSUNCECONCENSION 24:26 Y Y Dumit PERSUNCECONCENSION 24:26 PERSUNCECONCENSION 24:26 Y Y PERSUNCECONCENSION 24:26 PERSUNCECONCENSION 24:26 PERSUNCECONCENSION 24:27 Y PERSUNCECONCENSION 24:27 PERSUNCECONCENSION 24:27 PERSUNCECONCENSION 24:27 Y PERSUNCECONCENSION 24:28 PERSUNCECONCENSION 24:27 Y PERSUNCECONCENSION 24:27 Y PERSUNCECONCENSION 24:27 PERSUNCECONCENSION 24:27 PERSUNCECONCENSION 24:27 Y PERSUNCECONCENSION 24:27 PERSUNCECONCENSION 24:27 <td>A530016006Rik Ches1</td> <td>ENSMUSG00000050103</td> <td>ENSG00000187546</td> <td>24(7)</td> <td>1(1)</td> <td>0.2</td> <td>Y</td> <td></td> <td></td>	A530016006Rik Ches1	ENSMUSG00000050103	ENSG00000187546	24(7)	1(1)	0.2	Y		
Resp Resp Resp C(r) 0.2 Y Sedial FINISAG00000272375 FINISAG000027371 FINISAG000027371 FINISAG000027371 FINISAG000027371 FINISAG000027371 FINISAG000027371 FINISAG000027371 FINISAG000027371 FINISAG000027371 FINISAG00027371 FINISAG00027371 FINISAG0027371 FINI	Auts2	ENSMUSG00000056924	ENSG00000158321	24(1)	1(14)	0.2	Y		
Sedard ExeMusicSou000029710 PMESAD000131858 2011 1(1) 0.2 Y Magi21 PNEMUSC000002000000 PNESO0000121815 110 101 0.2 Y Magi2 PNEMUSC0000024000 PNESO0000121113 17(1) 14(1) 0.2 Y Ag10 PNEMUSC000002440 PNESO000012246 16(4) 5(5) 0.2 Y Ag110 PNEMUSC000002441 PNESO000012246 16(4) 12(1) 0.2 Y Primd PNEMUSC0000024414 PNESO0000127246 11(1) 12(1) 0.2 Y Primd PNEMUSC0000026455 PNESO0000127941 11(2) 16(1) 0.2 Y ZipAsi6 PNEMUSC0000026455 PNESO000002575 11(1) 12(2) 0.2 Y Cinal PNEMUSC0000026440 PNESO000002575 PNES0000002440 13(3) 0.2 Y Cinal PNEMUSC0000026440 PNES000002440 PNES000002440 13(3) 0.2 Y Cinal PNEMUSC0000024440	Rasgrp1	ENSMUSG0000027347	ENSG00000172575	21(6)	6(7)	0.2	Y		
markatur Evelowed concentration 19(1) 19(1) 19(1) 0 2 GyaZ ENESMUSCO000000000 NESCO000017394 ENESMUSCO000000000000000000000000000000000000	Sec8l1	ENSMUSG00000029763	ENSG00000131558	20(1)	1(3)	0.2	Y		
Magi2 ENSMUSCI000004003 ENSCI000011731 11(3) 7(6) 0.2 Y Algin ENSMUSCI000021344 ENSCI0000117313 16(0) 5(1) 0.2 Y Algin ENSMUSCI000021345 ENSCI0000123434 16(0) 5(1) 0.2 Y Printi ENSMUSCI00002472 ENSCI0000122464 11(1) 12(12) 0.2 Y Printi ENSMUSCI00002472 ENSCI0000124744 11(1) 12(12) 0.2 Y Printi ENSMUSCI000002472 ENSCI0000127414 11(2) 3(3) 0.2 Y Printi ENSMUSCI0000024755 ENSCI0000127414 11(2) 3(3) 0.2 Y Cara ENSMUSCI0000024755 ENSCI0000127414 11(2) 3(3) 0.2 Y Cara ENSMUSCI0000024755 ENSCI000012741 11(2) 3(3) 0.2 Y Cara ENSMUSCI000024747 ENSCI0000114243 70 3(3) 0.2 Y Cara ENSMUSCI00002444 ENSCI0000115734<	Rad51/1	ENSMUSG00000059060	ENSG00000123821	19(1)	3(11)	0.2	Y		
Grad EMSMUSSCO00003244 BESCO00011713 17(1) 14(18) 0.2 Y Dard EMSMUSSCO000073416 EMSCO0000173458 12(2) 0.2 Y Dmml EMSMUSSCO00007416 EMSCO0000173458 12(2) 0.2 Y Dmml EMSMUSSCO000077416 EMSCO0000179264 12(2) 0.2 Y DMML EMSMUSSCO00007724 EMSCO000179244 12(2) 0.2 Y DMML EMSMUSSCO00007724 EMSCO000172744 11(2) 12(1) 0.2 Y ALISMIS EMSMUSSCO00007747 EMSCO000172744 11(2) 10(1) 0.2 Y Crimi EMSMUSSCO000077464 EMSCO000172744 11(2) 10(1) 0.2 Y Evid EMSMUSSCO000077446 EMSCO00015370 7(1) 33(3) 0.2 Y Evid EMSMUSSCO000077446 EMSCO00015370 7(1) 33(3) 0.2 Y Evid EMSMUSSCO000077446 EMSCO00015370 7(1) 33(3) 0.6 Y <	Magi2	ENSMUSG0000040003	ENSG00000187391	18(3)	7(6)	0.2	Y		
Construct EMSCORDONO129158 112(2) 22(4) 0.2 Y Drmall EMSUSCORDON21451 EMSCORDON129269 14(1) 12(12) 0.2 Y Primade EMSWUSCORDON2013926 14(1) 12(12) 0.2 Y Primade EMSWUSCORDON20132106 HESCORDON122164 11(1) 12(12) 0.2 Y Primade EMSWUSCORDON2014721 HESCORDON122141 11(1) 0.2 Y Primade EMSWUSCORDON2014721 HESCORDON122141 11(1) 0.2 Y Crimit EMSWUSCORDON2014724 HESCORDON122148 11(1) 0.2 Y Crimit EMSWUSCORDON201474 HESCORDON129168 11(1) 10(2) 2 Y Crimit EMSWUSCORDON201474 HESCORDON129178 11(1) 12(2) 0.2 Y Crimit EMSWUSCORDON201444 15(2) 11(1) 0.2 Y 11(1) 0.2 Y Crimit EMSWUSCORDON201451 HESCORDON129178 11(1) 0.1	Gys2	ENSMUSG0000030244	ENSG00000111713	17(1)	14(18)	0.2	Y		
Dm/DI ENSMUS/SC0000017246 ENSC00000172869 15(1) 22(2) Q. Y IRIOB/OURAR ENSMUS/SC0000013011 ENSMUS/SC0000017224 ENSMUS/SC0000017224 Y IRIOB/OURAR ENSMUS/SC0000017274 ENSS0000017224 11(1) Q.2 Y IRIOB/OURAR ENSMUS/SC000004072 ENSS0000017244 11(2) Q.2 Y IRIOB/OURAR ENSMUS/SC000004075 ENSC000017244 11(2) Q.2 Y Crimit ENSMUS/SC000007756 ENSC0000162638 9(1) 11(1) Q.2 Y Crimit ENSMUS/SC000007756 ENSC0000162678 8(1) 19(26) Q.2 Y Crimit ENSMUS/SC000007756 B(1) 19(26) Q.2 Y Crimit ENSMUS/SC0000077544 ENSC0000113714 TS<0	Gnefr	ENSMUSG00000021819 ENSMUSG00000030839	ENSG00000132348	16(2)	2(4)	0.2	Y		
Frands ENSMISSC000004285 ENSC0000139362 14(1) 12(12) 0.2 Y 2/p496 ENSMISSC000002012316 ENSC0000123164 11(2) 11(2) 0.2 Y 2/p496 ENSMISSC0000020472 ENSC0000123164 11(2) 12(1) 0.2 Y 2/p496 ENSMISSC000002472 ENSC000012741 11(2) 3(3) 0.2 Y Eld1 ENSMISSC000002474 ENSC0000129318 11(1) 0.2 Y Crimal ENSMISSC000002474 ENSC0000129318 11(1) 0.2 Y Crimal ENSMISSC000002474 ENSC0000129318 11(1) 12(2) 0.2 Y Crimal ENSMISSC000002476 ENSC0000129318 11(1) 12(2) 0.2 Y Crimal ENSMISSC000002476 ENSC0000129318 11(1) 12(2) 0.6 Y Crimal ENSMISSC000002202 ENSC000012749 44 5 0.6 Y Digg ENSMISSC000002220 ENSC0000012749 7 0.6	Dmxl1	ENSMUSG0000037416	ENSG00000172869	15(1)	23(23)	0.2	Y		
Light 2000 ENSIGNED00019199 ENSIGNED0001121691 11(1) 17(6) 0.2 Y Ziprofe ENSIGNED000012072 ENSIGNED000152714 11(2) 15(6) 0.2 Y All 54318 ENSIGNED0000120728 ENSIGNED000152781 11(1) 0.2 Y Crim1 ENSIGNED0000124074 ENSIGNED000152983 9(1) 11(1) 0.2 Y Crim1 ENSIGNED000013016 ENSIGNED0000139561 ENSIGNED0000139576 8(1) 17(1) 33(3) 0.2 Y Evil ENSIGNED0000139416 ENSIGNED000013970 ENSIGNED000013970 ENSIGNED000013970 ENSIGNED000013970 ENSIGNED00013971 6.6 Y Diga3 ENSIGNED0000120162 ENSIGNED000120162 ENSIGNED0000120162 ENSIGNED0000120162 ENSIGNED0000120162 ENSIGNED0000120162 ENSIGNED0000120162 ENSIGNED0000120162 ENSIGNED000120162 ENSIGNED000120162 <td< td=""><td>Frmd6</td><td>ENSMUSG0000048285</td><td>ENSG00000139926</td><td>14(1)</td><td>12(12)</td><td>0.2</td><td>Y</td><td></td><td></td></td<>	Frmd6	ENSMUSG0000048285	ENSG00000139926	14(1)	12(12)	0.2	Y		
Zip-Seis ENSUBSCO0000220472 ENSCO000017244 11(2) 3(3) 0.2 Zirl M11 ENSUBSCO000017244 ENSCO000017244 ENSCO000017244 ENSCO000017244 ENSCO000017244 ENSCO000017244 ENSCO000017244 ENSCO000017244 ENSCO000017244 ENSCO000017244 ENSCO0000152058 ENSCO0000152058 ENSCO0000055276 ENSCO0000055276 ENSCO0000055276 ENSCO0000055276 ENSCO00000145012 Y Chrind ENSMUSCO0000025446 ENSCO00000145012 T(1) 3(3) 0.2 Y Clap ENSMUSCO0000025446 ENSCO000013521 105 10 0.6 Y Clap ENSMUSCO000025242 ENSCO000013743 74 5 0.6 Y Clap ENSMUSCO000022121 ENSCO000013643 70 2.6 0.6 Y Clap ENSMUSCO000022121 ENSCO0000136457 70 2.6 0.6 Y Clap ENSMUSCO000002741 ENSCO000013641 70 2.6 0.6 Y Clap ENSMUSCO0000022121 ENSCO0000132163	Sipa1/2	ENSMUSG00000000000000000000000000000000000	ENSG00000123108	14(1) 12(1)	7(9)	0.2	Y		
Al1943B ENKSUBG00000486958 ENKS0000015241 11(2) 3(3) 0.2 Y Cmm1 ENKSUSG0000013107 ENKS0000015247 9(1) 11(1) 0.2 Y Cmm1 ENKSUSG0000013401 ENKS0000013927 9(1) 11(2) 0.2 Y Evit ENKSUSG000013401 ENKS0000013927 8(1) 17(1) 3(3) 0.2 Y Evit ENKSUSG0000133401 ENKS0000013370 7(1) 33(3) 0.2 Y Alges ENKSUSG0000013340 ENKS0000013744 84 1 0.6 Y Alges ENKSUSG0000013224 ENKS0000013744 74 5 0.6 Y Alges ENKSUSG0000120122 ENKS00000120162 ENKS00000120162 66 1 0.6 Y Alges ENKSUSG0000120162 ENKS00000114541 70 2.6 6 Y Lipin ENKSUSG0000120162 ENKS00000114541 43 8 0.6 Y Lipin ENKSUSG0000120162 ENKS00000114541 43 39 0.6 Y Lipin	Zfp496	ENSMUSG0000020472	ENSG00000162714	11(2)	16(16)	0.2			
Ends Ends Ends Initial Initia Initia Initial </td <td>AI194318</td> <td>ENSMUSG0000048058</td> <td>ENSG00000179241</td> <td>11(2)</td> <td>3(3)</td> <td>0.2</td> <td>Y</td> <td></td> <td></td>	AI194318	ENSMUSG0000048058	ENSG00000179241	11(2)	3(3)	0.2	Y		
Car2 ENSMUSC0000002756 ENSMUSC0000002756 B(1) 12(12) 0.2 Evit ENSMUSC00000027640 ENSGUS000019850 B(1) 19(26) 0.2 Evit ENSMUSC0000027640 ENSGUS000013330 C Y Lg ENSMUSC0000023416 ENSGUS00014611 T(1) 33(3) 0.6 Y Lg ENSMUSC0000023415 ENSGUS000014641 T(1) 33(3) 0.6 Y Glis3 ENSMUSC0000022415 ENSGUS000013749 84 2 0.6 Y Glis3 ENSMUSC000003945 ENSGUS0000121016 66 1 0.6 Y Glis3 ENSMUSC0000022110 ENSGUS000114041 70 26 0.6 Y Glis4 ENSMUSC0000022110 ENSGUS00011401 59 9 0.6 Y Lg4 ENSMUSC00000144917 ENSGUS000014401 59 18 0.6 Y Lg4 ENSMUSC000001440 ENSGUS000014401 42 3 0.6 Y Lg4 <td>Crim1</td> <td>ENSMUSG00000039187 ENSMUSG00000024074</td> <td>ENSG00000152018</td> <td>9(1)</td> <td>2(2)</td> <td>0.2</td> <td>Y</td> <td></td> <td></td>	Crim1	ENSMUSG00000039187 ENSMUSG00000024074	ENSG00000152018	9(1)	2(2)	0.2	Y		
Chmod. ENSMUSC00000027446 ENSGU000008551 8(1) 17(17) 0.2 SICL504 ENSMUSC0000027464 ENSGU000013970 7(1) 33(3) 0.2 Y SICL504 ENSMUSC0000023401 ENSGU00013970 7(1) 33(3) 0.2 Y Mbd2 ENSMUSC0000023401 ENSGU00013970 7(1) 33(3) 0.2 Y Mbd2 ENSMUSC0000023401 ENSGU000134046 105 10 0.6 Y Diap3 ENSMUSC0000022421 ENSGU00011210 ENSGU00011121	Car2	ENSMUSG0000027562	ENSG00000104267	8(1)	12(12)	0.2	Ŷ		
End Ends Ends Ends Ends Ends Opp INSMUSCO000023306 ENSSM00001145012 T(1) 33(33) 2.2 Y OBBCS_MOUSE ENSMUSCO000023451 ENSSM0000145012 T(1) 33(33) 2.2 Y OBBCS_MOUSE ENSMUSCO000023451 ENSSM000013406 PSS 1 0.6 Y OBBCS_MOUSE ENSMUSCO000022412 ENSGM000012404 PSS 1 0.6 Y OBBCS_MOUSE ENSMUSCO000022120 ENSGM00011247 PSS 0.6 Y Dap3 ENSMUSCO000022110 ENSGM000114461 PS 9 0.6 Y Elp3 ENSMUSCO000014717 ENSGM000114401 PS 9 0.6 Y Elp3 ENSMUSCO000014717 ENSGM000114401 PS 9 0.6 Y Elp3 ENSMUSCO000014717 ENSGM000014461 43 8 0.6 Y Fm3 ENSMUSCO000001465 ENSGM000014461 42 4 0.6 Y <td>Ctnnd1</td> <td>ENSMUSG0000034101</td> <td>ENSG00000198561</td> <td>8(1)</td> <td>17(17)</td> <td>0.2</td> <td></td> <td></td> <td></td>	Ctnnd1	ENSMUSG0000034101	ENSG00000198561	8(1)	17(17)	0.2			
Lpp ENSMUSCO000023430 ENSGO000128497 ENSGUS 0.6 Y Mbd2 ENSMUSCO000028497 ENSGO00012897 ENSGUS 0.6 Y Mbd2 ENSMUSCO000028497 ENSGUS000012497 PK30000110443 75 0.6 Y Dap3 ENSMUSCO000022401 ENSGUS0000110443 76 0.6 Y Mtm3 ENSMUSCO000022101 ENSGUS0000110474 74 5 0.6 Y PK102068137K ENSMUSCO000021210 ENSGUS0000110577 62 17 0.6 Y PLIp42 ENSMUSCO000021210 ENSGUS000011476 ENSGUS000011476 ENSGUS000011476 ENSGUS000011476 ENSGUS000011476 ENSGUS000011476 ENSGUS000011476 ENSGUS000011481 43 8 0.6 Y Paraf ENSMUSC00000010576 ENSGUS000011481 42 4 0.6 Y Paraf ENSMUSC00000010273 ENSGUS000011484 40 0 6 Y Paraf ENSMUSC00000010273 ENSGUS000011445 41 2	SIc15a4	ENSMUSG00000027884	ENSG00000085276	8(1) 7(1)	3(3)	0.2	Y		
QBBGES_MOUSE ENSMUSG0000024515 ENSG0000134516 MSCG0000012451 Mbd2 ENSMUSG0000024210 ENSG0000117249 B4 2 0.6 Gins3 ENSMUSG0000024210 ENSG0000117449 74 5 0.6 Mmm9 ENSMUSG0000024201 ENSG0000114441 70 26 0.6 SGID20631374 FA 5 0.6 Y SGID20631374 ENSMUSG000001210 ENSG0000114445 70 26 0.6 SGID20631374 ENSMUSG000001210 ENSG0000114445 59 9 0.6 Lpin2 ENSMUSG0000012454 ENSG000011471 ENSG000011471 ENSG000011471 ENSG000011471 SGG00001475 ENSG000011471 ENSG000011471 84 0.6 Y Firmd4b ENSMUSG0000001475 ENSG000011471 43 39 0.6 Y Firmd4b ENSMUSG0000001475 ENSG000011471 43 31 0.6 Y GiBS ENSMUSG0000001475 ENSG000011446 40 20 6	Lpp	ENSMUSG00000033306	ENSG00000145012	7(1)	33(33)	0.2	Ŷ		
PRDZ EVENUSSQUUDU2431 EVESUSUUU14443 93 1 0.6 Y DBa3 EVESUSSQUUDU2431 EVESUSQUUDU2434 K4 2.6 0.6 Y DMm7D EVESUSQUUDU2431 EVESUSQUUDU2434 EVESUSQUUDU2434 K3 0.6 Y 261202681378 EVESUSQUUDU2434 EVESUSQUUDU2444 EVESUSQUUUE44 K3 0.6 Y 261202681378 EVESUSQUUU04434 EVESUSQUUU1444 59 9 0.6 Y 261202681378 EVESUSQUUU04434 EVESUSQUUU14445 59 18 0.6 Y 26124 EVESUSQUUU14451 EVESUSQUUU14451 43 8 0.6 Y Lip4 EVESUSQUUU1355 43 39 0.6 Y Y Frand EVESUSQUUU1355 EVESUSQUUU14451 44 4.0 6 Y Frand EVESUSQUUU1355 EVESUSQUUU14451 44 4.0 6 Y Frand EVESUSQUUU1355 EVESUSQUUU1444 4.4 4.0	Q8BG85_MOUSE	ENSMUSG0000028497	ENSG00000188921	105	10	0.6	Y		
Dipsa ENSMUSCO0000023201 ENSGO000139734 74 5 0.6 MobR2D ENSMUSCO000033708 ENSGO000124164 70 26 0.6 Y MobR2D ENSMUSCO000033708 ENSGO00012102 ENSGO00012102 ENSGO00012102 ENSGO000012102 ENSGO000012102 ENSGO000012102 ENSGO000012102 ENSGO000012401 ENSGO000012401 ENSGO000012401 ENSGO000012401 ENSGO000012401 ENSGO000012401 ENSGO000012401 ENSGO000114014 59 9 0.6 Y Lipid ENSMUSGO000002401 ENSGO000114041 59 9 0.6 Y Armd ENSMUSGO000002404 ENSGO000114541 43 8 0.6 Y Foxp1 ENSMUSGO000003708 ENSGO000114661 42 4 0.6 Y Cd38 ENSMUSGO000003708 ENSGO000011464 41 2 0.6 Y Cd38 ENSMUSGO000002429 ENSGO000014246 ENSGO000014264 ENSGO000014264 ENSGO000014264 ENSGO000014264 ENSGO000014264 ENSGO000014264 <t< td=""><td>MDa2 Glis3</td><td>ENSMUSG00000024513 ENSMUSG00000052942</td><td>ENSG00000134046 ENSG00000107249</td><td>95 84</td><td>2</td><td>0.6</td><td>Y Y</td><td></td><td></td></t<>	MDa2 Glis3	ENSMUSG00000024513 ENSMUSG00000052942	ENSG00000134046 ENSG00000107249	95 84	2	0.6	Y Y		
Mtm-9 ENSUBSCO000032978 ENSCO00001014643 70 26 0.6 2610206B13Rk ENSUBSCO00002105 ENSUSCO00002105 ENSUSCO00002105 ENSUSCO00002105 Lipin2 ENSUBSCO00002105 ENSUSCO00002101 ENSUSCO00001201 ENSUSCO00001201 Lipin2 ENSUSCO00002201 ENSCO0000121444 ENSCO0000121445 59 0.6 Y Lipin4 ENSUSCO000012017 ENSCO0000114461 51 48 0.6 Y Armiddb ENSUSCO000013066 ENSUSCO000013066 SCO0000114651 51 48 0.6 Y Armiddb ENSUSCO000013066 ENSCO0000114651 53 48 0.6 Y CgBKCG ENSUSCO000012036 ENSCO0000114651 42 3 0.6 Y CgBKCG ENSUSCO000012036 ENSCO0000113702 40 8 0.6 Y CgBKCG ENSUSCO000012036 ENSCO0000170252 39 10 0.6 Y CgBKCG ENSUSCO000022036 ENSCO0000170253 36 6	Diap3	ENSMUSG00000022021	ENSG00000139734	74	5	0.6			
MODR.CD ENS.NUG.0000032312 ENS.NUG.000002312 ENS.NUG.000002312 ENS.NUG.000002312 Lpn2 ENS.NUG.0000023031 ENS.0000011375 66 1 0.6 Lpn3 ENS.NUG.0000023031 ENS.0000012303 ENS.0000012303 ENS.0000012304 59 0.6 Y Elp3 ENS.NUG.00000032031 ENS.0000011376 59 14 0.6 Y Elp3 ENS.NUG.0000010376 ENS.00000013526 ENS.0000001356 F 7 Fmd4 ENS.NUG.0000003528 ENS.0000001356 ENS.0000001364 F 7 Frad ENS.NUG.00000010076 ENS.000000114661 42 4 0.6 Y Cd38 ENS.NUG.0000010607 ENS.000000113772 40 8 0.6 Y Cd38 ENS.NUG.0000010248 ENS.00000011376 15 0.6 Y Cd38 ENS.NUG.0000012323 ENS.00000012323 10 0.6 Y Cd38 ENS.NUG.000000248 ENS.00000012354 37 1 0.6 Y	Mtmr9	ENSMUSG0000035078	ENSG00000104643	70	26	0.6	Y		
Liph2 ENS.WLGS000002452 ENS.C000001011577 62 17 0.6 D1BErtd53 ENSWLGS0000024544 KNSO000013401 59 9 0.6 Y Lig4 ENSWLGS0000012576 ENSO000013776 ENSO000013776 ENSO000013776 ENSO000013776 ENSO0000115726 51 44 0.6 Y Arsil ENSWLGS000003006 ENSO0000115725 51 44 0.6 Y Fmd4b ENSWLGS000003006 ENSO0000114551 43 39 0.6 Y QBKC9_MUCSE ENSO0000114661 42 3 0.6 Y CdBKC9_MUCSE ENSO0000114661 42 0.6 Y CdBKC9_MUCSE ENSO0000115172 40 8 0.6 Y CdBKC9_MUCSE ENSO0000115172 ENSO0000115172 8 9 11 6 Y CdBKC9_MUCSE ENSO0000115172 ENSO0000115172 9 9 11 6 Y FIL ENSWUSC0000002435 ENSO0000011514 37 <td>MODKIZD 2610206B13Rik</td> <td>ENSMUSG00000039945 ENSMUSG00000022120</td> <td>ENSG00000120162 ENSG00000152193</td> <td>66</td> <td>4</td> <td>0.6</td> <td></td> <td></td> <td></td>	MODKIZD 2610206B13Rik	ENSMUSG00000039945 ENSMUSG00000022120	ENSG00000120162 ENSG00000152193	66	4	0.6			
D18Ertd632e ENSMUSC0000002231 ENSG0000134451 SPS 0000134405 SP 9 0.6 Y Lig4 ENSMUSC0000001270 ENSG0000013470 ENSG0000013726 S1 44 0.6 Y Finad ENSMUSC0000003828 ENSG00000134541 43 8 0.6 Y Finad ENSMUSC0000003828 ENSG00000134541 43 8 0.6 Y Faxp1 ENSMUSC0000000376 ENSG0000014466 42 4 0.6 Y Cd38 ENSMUSC00000010000 ENSG0000014466 40 20 0.6 Y Cd38 ENSMUSC00000012382 ENSG000001729 39 31 0.6 Y Pdm1D ENSMUSC000002382 ENSG000017199 38 44 0.6 Y Pdm1D ENSMUSC000002382 ENSG0000110719 38 31 0.6 Y Pdm1D ENSMUSC000002343 ENSG0000013753 37 15 0.6 Y Pdm2B ENSMUSC000002343 ENSG0000013763	Lpin2	ENSMUSG0000024052	ENSG00000101577	62	17	0.6			
EIp3 ENSURISCIOU00047371 FINSCIOU0014414 39 9 0.0.5 T Acs1 ENSURISCIOU00049775 ENSG0000114405 51 44 0.6 Y Acs1 ENSURISCIOU0003064 ENSG0000145172 51 44 0.6 Y Pim3 ENSURISCIOU0003066 ENSG000014516 42 3 0.6 Y Paraf ENSURISCIOU00030708 ENSG000014466 42 4 0.6 Y Pin1 ENSURISCIOU00020708 ENSG0000014954 41 2 0.6 Y Pin1 ENSURISCIOU00020708 ENSG000001702 40 8 0.6 Y Pin10 ENSURISCIOU00020708 ENSG0000017325 39 10 0.6 Y Pin11 ENSURISCIOU0002238 ENSG0000017325 39 10 0.6 Y Pin12 ENSURISCIOU0002388 ENSG000011724 38 54 0.6 Y Pin13 ENSURISCIOU00033908 ENSG0000014617 56 8 <t< td=""><td>D18Ertd653e</td><td>ENSMUSG0000024544</td><td>ENSG00000168675</td><td>62</td><td>63</td><td>0.6</td><td>Y</td><td></td><td></td></t<>	D18Ertd653e	ENSMUSG0000024544	ENSG00000168675	62	63	0.6	Y		
Asti ENSUG2000013796 ENSG00001151726 51 44 0.6 Y Frind B ENSMUSC0000035026 ENSG00000114541 43 39 0.6 Y Pin3 ENSMUSC0000035026 ENSG00000114661 42 3 0.6 Y Pcaf ENSMUSC000000300 ENSG0000014861 42 4 0.6 Y Fili ENSMUSC0000002000 ENSG00000134954 41 2 0.6 Y Fili ENSMUSC00000024296 ENSG0000017325 39 10 0.6 Y Dimt2 ENSMUSC00000024296 ENSG00000170325 39 10 0.6 Y IGHA_MOUSE ENSMUSC0000022443 ENSG00000112541 37 15 0.6 Y IGHA ENSMUSC00000022443 ENSG00000112541 37 21 0.6 Y Icfa1 ENSMUSC00000023904 ENSG0000013755 36 6 0.6 Y Icfa1 ENSMUSC00000029391 ENSG0000014333 31 0.6	EIP3 Lia4	ENSMUSG00000022031 ENSMUSG00000049717	ENSG00000134014 ENSG00000174405	59	18	0.6	Ŷ		
Frmd#b ENSMUSG0000003582 ENSG0000014551 43 8 0.6 Y Foxp1 ENSMUSG0000003562 ENSG0000014861 42 3 0.6 Y Pcaf ENSMUSG00000007052 ENSG00000114861 42 3 0.6 Y QBEKG2_MOUSE ENSMUSG0000001607 ENSG00000114861 40 2.0 Y Cd38 ENSMUSG00000020348 ENSG0000015702 40 8 0.6 Y Cd38 ENSMUSG0000024248 ENSG0000017325 39 1.0 6 Y Dmm12 ENSMUSG0000024248 ENSG0000017325 37 1.5 0.6 Y Pde10a ENSMUSG000002436 ENSG000001735 37 2.1 0.6 Y Lef1 ENSMUSG00000013931 ENSG000001375 35 4 0.6 Y Tube1 ENSMUSG0000013931 ENSG0000013233 35 5 0.6 Y Catad ENSMUSG00000013935 ENSG0000013753 32 9 0.6	Acs/1	ENSMUSG00000018796	ENSG00000151726	51	44	0.6	Y		
Ph/h3 Ensub/sci0000033020 Ensub/sci0000033020 Ensub/sci0000033020 Ensub/sci0000033020 Paraf Ensub/sci0000003000 ENsG00000114661 42 3 0.6 Y Paraf Ensub/sci0000003000 ENsG00000134954 41 2 0.6 Y Fil1 ENSMUSG0000002496 ENSG0000013953 39 10 0.6 Y Fil1 ENSMUSG0000002496 ENSG0000017325 39 10 0.6 Y Dmmt2 ENSMUSG00000024328 ENSG0000017325 39 10 0.6 Y IGHA_MOUSE ENSMUSG0000022443 ENSG0000017541 37 15 0.6 Y My19 ENSMUSG0000002443 ENSG0000013875 36 6 0.6 Y Arbga18 ENSMUSG00000013945 ENSG00000148375 34 6 0.6 Y Tube1 ENSMUSG00000029391 ENSG00000148378 32 0.6 Y Cantd1 ENSMUSG00000029391 ENSG00000198478 33 1 0.6	Frmd4b	ENSMUSG0000030064	ENSG00000114541	43	8	0.6	Y		
Perif ENSMUSC000000708 ENSC00000134954 41 2 4 0.6 Y GBB/G9_MOUSE ENSMUSC00000015087 ENSC00000134954 40 8 0.6 Y CH3 ENSMUSC00000016087 ENSC00000170325 39 10 0.6 Y Prim10 ENSMUSC0000002738 ENSC00000177199 38 94 0.6 Y IGHA_MOUSE ENSMUSC0000002738 ENSC00000177199 38 94 0.6 Y Pde10a ENSMUSC00000027385 ENSC0000112541 37 12 0.6 Y Pde17a ENSMUSC0000002785 ENSC0000112675 37 12 0.6 Y Prime ENSMUSC0000003931 ENSC0000112345 37 15 0.6 Y Tubel ENSMUSC0000003931 ENSC000012335 35 8 0.6 Y Tubel ENSMUSC000000041365 BISC0000017355 34 6 0.6 Y Tubel ENSMUSC000000041365 BISC00000017355 35 </td <td>PIM3 Foxn1</td> <td>ENSMUSG00000035828 ENSMUSG00000030067</td> <td>ENSG00000198355 ENSG00000114861</td> <td>43</td> <td>39</td> <td>0.6</td> <td>Y</td> <td></td> <td></td>	PIM3 Foxn1	ENSMUSG00000035828 ENSMUSG00000030067	ENSG00000198355 ENSG00000114861	43	39	0.6	Y		
Observation Construction Construction Construction Cd38 ENSNUSC00000123255 ENSC00000151702 40 8 0.6 Y Cd38 ENSNUSC0000002473 ENSC00000177325 39 10 0.6 Y Dmmt2 ENSNUSC00000024733 ENSC00000177325 39 31 0.6 Y IGHA_MOUSE ENSNUSC00000023486 ENSC00000177199 38 94 0.6 Y IGHA_MOUSE ENSNUSC00000023485 ENSC0000011034437 37 15 0.6 Y Idef1 ENSNUSC00000023485 ENSC00000110074 36 8 0.6 Y Idef1 ENSNUSC00000039031 ENSC0000014375 35 8 0.6 Y Ptpre ENSNUSC00000003999 ENSC0000014375 34 6 0.6 Y Cantd1 ENSNUSC00000029991 ENSC00000143735 31 0.6 Y Cantd1 ENSNUSC00000029913 ENSC00000198143 33 1 0.6 Y	Pcaf	ENSMUSG0000000708	ENSG00000114166	42	4	0.6	Ŷ		
Init EnsinusSubconoutable EnsinusSubconoutable EnsinusSubconoutable EnsinusSubconoutable EnsinusSubconoutable Cd38 ENSMUSSG00000024296 ENSSG0000017325 39 10 0.6 Prdm10 ENSMUSSG0000002428 ENSSG0000177199 38 94 0.6 IGHA_MOUSE ENSMUSSG0000022443 ENSSG0000112541 37 15 0.6 Mynb ENSMUSSG0000022443 ENSSG0000112543 37 21 0.6 EAR ENSMUSSG0000022443 ENSSG000011845 37 21 0.6 BC024806 ENSMUSG0000023948 ENSSG000014374 36 8 0.6 Centd1 ENSMUSG0000003948 ENSSG0000143735 34 6 0.6 Centd1 ENSMUSG0000002799 ENSG0000014478 33 1 0.6 Y Centd1 ENSMUSG0000002799 ENSG0000156056 32 1 0.6 Y CA_MADE ENSMUSG0000002793 ENSG0000137878 32 9 0.6 Y CA_MADE	Q8BKG9_MOUSE	ENSMUSG0000032035	ENSG00000134954	41	2	0.6	Y		
Primitol ENSMUSEG0000024296 ENSG0000170325 39 10 0.6 Drmt2 ENSMUSEG000002492 ENSG0000175199 38 94 0.6 Pde1Da ENSMUSEG000002366 ENSG0000112541 37 15 0.6 Pde1Da ENSMUSEG000002346 ENSG0000110244 Stog0000112541 37 15 0.6 Lef1 ENSMUSEG0000027485 ENSG0000110074 36 8 0.6 Arhgap18 ENSMUSEG0000029031 ENSG0000112334 35 5 0.6 Y Ptpre ENSMUSEG00000039031 ENSG0000138735 35 8 0.6 Y Centd1 ENSMUSEG0000002999 ENSG00000132334 35 5 0.6 Y Centd1 ENSMUSEG0000002799 ENSG0000012335 33 1 0.6 Y Trube1 ENSMUSEG0000002793 ENSG000014785 33 32 0.6 Y Trube1 ENSMUSEG000002793 ENSG000016656 32 1 0.6 Y	Cd38	ENSMUSG0000018087	ENSG00000151702	40	20	0.6	Y		
Dnmt2 ENSMUSG0000026723 ENSG0000017714 39 31 0.6 Y IGHA_MOUSE ENSG0000012382 ENSG000017719 38 94 0.6 Pde10a ENSMUSG000002386 ENSG000010345 37 21 0.6 Lef1 ENSMUSG000002795 ENSG0000100343 57 21 0.6 Arhgap18 ENSMUSG0000003908 ENSG0000146376 35 4 0.6 Arhgap18 ENSMUSG00000039031 ENSG0000014375 35 8 0.6 Ptpre ENSMUSG0000003999 ENSG00000074335 34 6 0.6 Centd1 ENSMUSG0000002931 ENSG0000018478 33 11 0.6 Candd1 ENSMUSG0000002939 ENSG000019656 32 1 0.6 Y Trim2 ENSMUSG0000004933 ENSG00000197893 32 9 0.6 Y Sept11 ENSMUSG0000004933 ENSG000012596 29 17 0.6 Y PipSk1a ENSMUSG0000004573 ENSG0000012596	Prdm10	ENSMUSG0000042496	ENSG00000170325	39	10	0.6			
John Amulos Ensknusscoulous4422 Ensknusscoulous4424 Ensknusscoulous444 Myh9 ENSNUSScoulous2448 ENSS00000112541 37 15 0.6 Myh9 ENSNUSScoulous2448 ENSS0000013455 37 21 0.6 BC024806 ENSNUSScoulous2448 ENSS00000112541 37 15 0.6 Phore ENSNUSScoulous2448 ENSS00000146376 35 4 0.6 Phore ENSNUSScoulous2448 ENSS00000143234 35 5 0.6 Y Centd1 ENSNUSScoulous2449 BNSUSCoulous2443 31 1 0.6 Y Centd1 ENSNUSScoulous2431 ENSCoulous2443 31 1 0.6 Y Trube1 ENSNUSScoulous2431 ENSCoulous244 33 11 0.6 Y TCA_MOUSE ENSNUSCoulous24931 ENSCoulous244 33 11 0.6 Y Sept11 ENSNUSCoulous2497 ENSCoulous2458 32 9 0.6 Y Sept11 ENSNUSCoul	Dnmt2	ENSMUSG0000026723	ENSG00000107614	39	31	0.6	Y		
Myh9 ENSMUSG0000022243 ENSG0000100345 37 21 0.6 Lef1 ENSMUSG0000022785 ENSG0000110074 36 8 0.6 Arhgap18 ENSMUSG0000039048 ENSG0000110074 36 8 0.6 Ptpre ENSMUSG0000013136 ENSG0000113234 35 5 0.6 Y Tube1 ENSMUSG0000001435 ENSG0000014335 35 8 0.6 Y Centd1 ENSMUSG0000002799 ENSG0000014735 34 6 0.6 Scfd2 ENSMUSG0000002799 ENSG0000014785 33 32 0.6 Y Trim2 ENSMUSG0000002799 ENSG000019654 33 32 9 0.6 Y Kranb2 ENSMUSG00000047314 ENSG000012765 32 9 0.6 Y Sept11 ENSMUSG0000004793 ENSG0000012785 32 9 0.6 Y Sept11 ENSMUSG0000004767 ENSG000012712 29 16 0.6 Y Sept1	Pde10a	ENSMUSG00000034328	ENSG00000177199	30	94	0.6	Y		
Lef1 ENSMUSG0000029985 ENSG00001138795 36 6 0.6 BC0224806 ENSMUSG0000039031 ENSG0000112334 35 4 0.6 Y Ptpre ENSMUSG0000004836 ENSG0000112334 35 5 0.6 Y Centd1 ENSMUSG0000003999 ENSG0000012334 35 8 0.6 Y Centd1 ENSMUSG0000003999 ENSG00000147365 34 6 0.6 Y Scdd2 ENSMUSG00000028931 ENSG00000169424 33 1 0.6 Y Knab2 ENSMUSG00000028931 ENSG00000197893 32 9 0.6 Y Nrap ENSMUSG0000004118 ENSG0000012696 29 16 0.6 Y Mrat1 ENSMUSG0000004973 ENSG0000012696 29 16 0.6 Y 6pr56 ENSMUSG0000002487 ENSG0000012752 29 16 0.6 Y 4930402H24Rik ENSMUSG0000002451 ENSG0000012752 23 16 0.6	Myh9	ENSMUSG00000022443	ENSG00000100345	37	21	0.6			
BL02480b ENSMUSC0000039048 ENSG00001100/4 36 8 0.6 Arrigap18 ENSMUSC00000041836 ENSG00000132334 35 5 0.6 Y Tube1 ENSMUSC0000003799 ENSG00000132334 35 8 0.6 Y Centd1 ENSMUSC0000003799 ENSG0000047355 34 6 0.6 Y Scrd2 ENSMUSC0000002793 ENSG00000184178 33 1 0.6 Y Kcnab2 ENSMUSC00000027933 ENSG0000019654 33 32 0.6 Y Mrap ENSMUSG0000002793 ENSG00000138758 32 29 0.6 Y Sept11 ENSMUSG00000024867 ENSG00000127269 29 16 0.6 Y Pj5k1a ENSMUSG00000027393 ENSG0000012722 29 17 0.6 Y 4330402H24Rik ENSMUSG0000002739 ENSG0000012752 24 17 0.6 Y 4330432M24Rik ENSMUSG0000002758 ENSG00000152670 20 15	Lef1	ENSMUSG0000027985	ENSG00000138795	36	6	0.6			
Ptpre ENSMUSG00000141836 ENSG0000132334 35 5 0.6 Y Tube1 ENSMUSG0000019845 ENSG0000074935 35 8 0.6 Y Centd1 ENSMUSG0000027999 ENSG0000074935 34 6 0.6 Scfd2 ENSMUSG00000028110 ENSG00000184178 33 1 0.6 Y Kcnab2 ENSMUSG0000002793 ENSG0000166056 32 1 0.6 Y Mrap ENSMUSG000000248013 ENSG00000138758 32 9 0.6 Y Sept11 ENSMUSG00000024867 ENSG0000122696 29 16 0.6 PipSk1a ENSMUSG00000024867 ENSG0000012742 29 17 0.6 Gpr56 ENSMUSG0000002739 ENSG0000012758 ENSG0000012758 23 40 0.6 5430432M24Rik ENSMUSG0000002758 ENSG00000125670 20 15 0.6 Y 6430601A21Rik ENSMUSG0000002215 ENSG000001252670 20 15 0.6 Y	Arhgap18	ENSMUSG00000039048	ENSG00000110074 ENSG00000146376	35	o 4	0.6	Y		
Tube1 ENSMUSG0000019845 ENSG0000074935 35 8 0.6 Y Centd1 ENSMUSG0000062110 ENSG0000047365 34 6 0.6 Y Kcnab2 ENSMUSG00000028931 ENSG0000069424 33 11 0.6 Y Trim2 ENSMUSG0000029793 ENSG000019654 33 32 0.6 Y TCA_MOUSE ENSMUSG000000491134 ENSG0000197893 32 9 0.6 Y Sept11 ENSMUSG00000049134 ENSG000013758 32 29 0.6 Y Gpr56 ENSMUSG000000495973 ENSG000013758 ENSG000017242 29 17 0.6 Gpr56 ENSMUSG00000027399 ENSG0000159618 27 58 0.6 Y 4330402H244rik ENSMUSG00000027399 ENSG0000012588 23 40 0.6 Y 64306014214rik ENSMUSG00000027459 ENSG00000152670 20 15 0.6 Y 7rim30 ENSMUSG000000212158 ENSG00000152670 <t< td=""><td>Ptpre</td><td>ENSMUSG0000041836</td><td>ENSG00000132334</td><td>35</td><td>5</td><td>0.6</td><td>Y</td><td></td><td></td></t<>	Ptpre	ENSMUSG0000041836	ENSG00000132334	35	5	0.6	Y		
LeftId1 ENSINUSCOUDOUG/37939 ENSGOUDOUG/43053 34 6 0.6 Scrd2 ENSMUSCOUDOUG/2110 ENSGOUDO14178 33 1 0.6 Y Kcnab2 ENSMUSCOUDOUG/2993 ENSGOUDO166056 32 1 0.6 Y Trim2 ENSMUSGOUDO0041018 ENSGOUDO166056 32 1 0.6 Y Mrap ENSMUSGOUDO0049134 ENSGOUDO17893 32 9 0.6 Y Sept11 ENSMUSGOUDO004973 ENSGOUDO17269 29 16 0.6 Mcart1 ENSMUSGOUDO0024867 ENSGOUDO17242 29 17 0.6 Gpr56 ENSMUSGOUDO0024759 ENSGOUDO17242 29 17 0.6 Gpr56 ENSMUSGOUDO0024759 ENSGOUDO17252 24 17 0.6 Y 4930402H24Rik ENSMUSGOUDO0027459 ENSGOUDO12588 23 40 0.6 Y 6430601A21Rik ENSMUSGOUDO0027459 ENSGOUDO125670 20 15 0.6 Y <t< td=""><td>Tube1</td><td>ENSMUSG0000019845</td><td>ENSG00000074935</td><td>35</td><td>8</td><td>0.6</td><td>Y</td><td></td><td></td></t<>	Tube1	ENSMUSG0000019845	ENSG00000074935	35	8	0.6	Y		
Kcnab2 ENSMUSG0000028931 ENSG0000069424 33 11 0.6 Trim2 ENSMUSG0000027993 ENSG000016954 33 32 0.6 Y TCA_MOUSE ENSMUSG0000041108 ENSG0000160565 32 1 0.6 Y Mrap ENSMUSG00000491134 ENSG000017858 32 9 0.6 Y Sept11 ENSMUSG000004973 ENSG0000122696 29 16 0.6 Gpr56 ENSMUSG00000048251 ENSG000012742 29 17 0.6 Gpr56 ENSMUSG0000001785 ENSG0000127152 24 17 0.6 Y 4930402H24Rik ENSMUSG0000027459 ENSG0000127152 24 17 0.6 Y 4930402H24Rik ENSMUSG0000027459 ENSG0000012858 23 40 0.6 Y 5430432M24Rik ENSMUSG00000021758 ENSG0000132256 19 20 0.6 Y 6430601A21Rik ENSMUSG0000003921 ENSG00000132256 19 0.6 Y <tr< td=""><td>Scfd2</td><td>ENSMUSG00000037999 ENSMUSG00000062110</td><td>ENSG00000047365</td><td>33</td><td>1</td><td>0.6</td><td>Y</td><td></td><td></td></tr<>	Scfd2	ENSMUSG00000037999 ENSMUSG00000062110	ENSG00000047365	33	1	0.6	Y		
Trim2 ENSMUSG0000027993 ENSG000019654 33 32 0.6 Y TCA_MOUSE ENSMUSG0000041018 ENSG00001606056 32 1 0.6 Y Sept11 ENSMUSG0000049134 ENSG000013758 32 29 0.6 Y Mcart1 ENSMUSG0000048973 ENSG0000122696 29 16 0.6 Y Gpr56 ENSMUSG00000048973 ENSG00000122696 29 17 0.6 Y 4930402H24Rik ENSMUSG00000048251 ENSG0000127152 24 17 0.6 Y 4330432M24Rik ENSMUSG00000027399 ENSG0000127152 24 17 0.6 Y 4330432M24Rik ENSMUSG00000027459 ENSG0000125670 20 15 0.6 Y 5430432M24Rik ENSMUSG0000003921 ENSG000013255 19 20 0.6 Y 6430601A21Rik ENSMUSG00000052013 ENSG0000013255 19 0.6 Y 6330442E10Rik ENSMUSG00000052121 ENSG0000013253 17 <td>Kcnab2</td> <td>ENSMUSG0000028931</td> <td>ENSG0000069424</td> <td>33</td> <td>11</td> <td>0.6</td> <td></td> <td></td> <td></td>	Kcnab2	ENSMUSG0000028931	ENSG0000069424	33	11	0.6			
I/CA_PROUSE ENSMUSCO00000410114 ENSCO0000178933 32 1 0.6 Y Sept11 ENSMUSCO0000049134 ENSCO0000178933 32 2 9 0.6 Y Sept11 ENSMUSCO0000049134 ENSCO0000178933 32 29 0.6 Y Mcart1 ENSMUSCO0000024867 ENSCO0000122696 29 16 0.6 Y Gpr56 ENSMUSCO0000024867 ENSCO000017242 29 17 0.6 Y 4930402H24Rik ENSMUSCO0000024851 ENSCO000017152 24 17 0.6 Y 4430432M24Rik ENSMUSCO0000027399 ENSCO000012588 23 40 0.6 Y 5430432M24Rik ENSMUSCO0000021758 ENSCO0000125670 20 15 0.6 Y Btla ENSMUSCO0000021758 ENSCO0000132256 19 20 0.6 6330442E10Rik ENSMUSCO000002481 ENSCO0000132256 19 0.6 6330442E10Rik ENSMUSCO000002481 ENSCO000013231 17 14 0.6 48105 17 32 0.6 17 14 0.6 17 <td>Trim2</td> <td>ENSMUSG00000027993</td> <td>ENSG00000109654</td> <td>33</td> <td>32</td> <td>0.6</td> <td>Y</td> <td></td> <td></td>	Trim2	ENSMUSG00000027993	ENSG00000109654	33	32	0.6	Y		
Sep111 ENSMUSG0000058013 ENSG0000138758 32 29 0.6 Mcart1 ENSMUSG0000045973 ENSG0000122696 29 16 0.6 Pip5k1a ENSMUSG0000024867 ENSG000017242 29 17 0.6 Gpr56 ENSMUSG00000024867 ENSG000017242 29 17 0.6 Bc11b ENSMUSG00000027309 ENSG00000127152 24 17 0.6 Y 4930402H24Rik ENSMUSG0000027399 ENSG00000125898 23 40 0.6 Y 5430432M24Rik ENSMUSG00000027459 ENSG00000152670 20 15 0.6 Y Btla ENSMUSG00000030921 ENSG00000132256 19 20 0.6 Y 6430601A21Rik ENSMUSG00000040321 ENSG00000132356 19 20 0.6 Y 6430601A21Rik ENSMUSG00000024085 ENSG0000012893 17 9 0.6 Y 6430601A21Rik ENSMUSG00000021366 ENSG0000018880 17 32 0.6 Y	Nrap	ENSMUSG00000049134	ENSG00000197893	32	9	0.6	Y		
Mcart1 ENSMUSG0000024597 ENSG0000122696 29 16 0.6 Pip5k1a ENSMUSG0000024867 ENSG000017242 29 17 0.6 Gpr56 ENSMUSG00000031785 ENSG000017242 29 17 0.6 Bcl11b ENSMUSG00000027305 ENSG00000172152 24 17 0.6 Y 4930402H24Rik ENSMUSG0000027305 ENSG0000018854 23 16 0.6 Y 5430432M24Rik ENSMUSG0000027359 ENSG000018270 20 15 0.6 Y Btla ENSMUSG0000002012158 ENSG0000182256 19 20 0.6 Y Ama2a1 ENSMUSG00000030921 ENSG00000182256 19 20 0.6 Y Ama2a1 ENSMUSG00000024085 ENSG0000018235 17 9 0.6 Y 6430601A21Rik ENSMUSG00000026764 ENSG0000018830 17 14 0.6 Kif5c ENSMUSG00000021366 ENSG0000015270 16 10 0.6 Y <	Sept11	ENSMUSG0000058013	ENSG00000138758	32	29	0.6			
PripSr1a ENSINUSG0000024867 ENSG000017242 29 17 0.6 Gpr56 ENSMUSG0000001785 ENSG00000159618 27 58 0.6 Bcl11b ENSMUSG00000017375 ENSG00000127152 24 17 0.6 Y 4930402H24Rik ENSMUSG00000027399 ENSG0000012888 23 40 0.6 Ddx4 ENSMUSG00000027459 ENSG000012888 23 40 0.6 Ddx4 ENSMUSG00000021758 ENSG00000128670 20 15 0.6 Y Btla ENSMUSG00000030921 ENSG00000182567 20 15 0.6 Y Man2a1 ENSMUSG00000030921 ENSG00000132256 19 20 0.6 6430601A21Rik ENSMUSG00000030921 ENSG00000182356 17 9 0.6 6330442E10Rik ENSMUSG0000002674 ENSG0000018833 17 14 0.6 Kif5c ENSMUSG0000002136 ENSG00000137513 16 8 0.6 Y Slc30a5 ENSMUSG00000021	Mcart1	ENSMUSG00000045973	ENSG00000122696	29	16	0.6			
Bcl11b ENSMUSG0000048251 ENSG0000127152 24 17 0.6 Y 4930402H24Rik ENSMUSG0000027399 ENSG0000027359 ENSG0000027459 ENSG0000027459 ENSG00000125898 23 40 0.6 Y 5430432M24Rik ENSMUSG00000027459 ENSG00000152670 20 15 0.6 Y Btia ENSMUSG00000030921 ENSG0000132256 19 6 0.6 Y 6430601A21Rik ENSMUSG00000030921 ENSG00000132256 19 20 0.6 6430601A21Rik ENSMUSG00000030921 ENSG00000132256 19 20 0.6 6430601A21Rik ENSMUSG00000024085 ENSG00000132256 19 0.6 6 6430442E10Rik ENSMUSG00000026129 ENSG00000188133 17 14 0.6 Kif5c ENSMUSG00000021366 ENSG00000137513 16 8 0.6 Y Al875199 ENSMUSG00000021365 ENSG00000137513 16 10 0.6 Y Prin ENSMUSG00000021629	Gpr56	ENSMUSG00000031785	ENSG00000159618	29 27	1/	0.6			
4930402H24Rik ENSMUSG0000027399 ENSG0000028854 23 16 0.6 Y 5430432M24Rik ENSMUSG0000027459 ENSG0000152670 20 15 0.6 Y bdx4 ENSMUSG00000021758 ENSG0000152670 20 15 0.6 Y Btla ENSMUSG00000021738 ENSG0000182655 19 6 0.6 Y 6430601A21Rik ENSMUSG00000040321 ENSG0000132556 19 20 0.6 6430601A21Rik ENSMUSG00000040321 ENSG0000132556 19 0.6 6430642E10Rik ENSMUSG00000056219 ENSG0000112893 17 9 0.6 6330442E10Rik ENSMUSG00000021656 ENSG00000189313 17 14 0.6 Kif5c ENSMUSG00000021646 ENSG00000189551 16 6 0.6 Y Al875199 ENSMUSG00000013657 ENSG00000137513 16 8 0.6 Y Pinn ENSMUSG00000020167 ENSG0000015270 16 11 0.6 Y Pinn ENSMUSG0000002094 ENSG000001029411 16 12 <td< td=""><td>Bcl11b</td><td>ENSMUSG0000048251</td><td>ENSG00000127152</td><td>24</td><td>17</td><td>0.6</td><td>Y</td><td></td><td></td></td<>	Bcl11b	ENSMUSG0000048251	ENSG00000127152	24	17	0.6	Y		
Datx4 ENSINUS3000002/135 ENSINUS3000002/135 ENSINUS3000002/135 ENSINUS3000002/135 Datx4 ENSMUSG00000021758 ENSG0000132670 20 15 0.6 Y Btla ENSMUSG00000030911 ENSG0000132256 19 20 0.6 6430601A21Rik ENSMUSG00000030921 ENSG0000132256 19 20 0.6 6430601A21Rik ENSMUSG0000004321 ENSG000013283 17 9 0.6 63306442E10Rik ENSMUSG0000026764 ENSG000013833 17 14 0.6 Kif5c ENSMUSG0000026764 ENSG00000188280 17 32 0.6 Hivep1 ENSMUSG0000021366 ENSG00000137513 16 8 0.6 Y Sic30a5 ENSMUSG00000021629 ENSG00000137513 16 8 0.6 Y Pde3b ENSMUSG00000030671 ENSG00000152270 16 11 0.6 Y Phnn ENSMUSG00000020949 ENSG00000129271 16 26 0.6 Y Ripd3	4930402H24Rik	ENSMUSG0000027309	ENSG00000125808	23	16	0.6	Y		
Btla ENSMUSG0000052013 ENSG0000186265 19 6 0.6 Y Trim30 ENSMUSG00000030921 ENSG0000132256 19 20 0.6 6430601A21Rik ENSMUSG0000004321 ENSG000018256 19 20 0.6 Man2a1 ENSMUSG0000004321 ENSG0000188146 18 17 0.6 63306442E10Rik ENSMUSG0000026764 ENSG0000018833 17 14 0.6 Kif5c ENSMUSG00000021366 ENSG00000188280 17 32 0.6 Hivep1 ENSMUSG00000021366 ENSG00000137513 16 8 0.6 Y Sk30a5 ENSMUSG00000021629 ENSG0000015270 16 11 0.6 Y Pde3b ENSMUSG00000020694 ENSG00000152270 16 11 0.6 Y Pnn ENSMUSG00000020694 ENSG0000012871 16 26 0.6 Rift ENSMUSG00000020694 ENSG00000129871 16 26 0.6 Y Ripk3 ENSMUSG000	S430432M24KIK Ddx4	ENSMUSG0000021758	ENSG00000152670	23 20	40	0.6	Y		
Trim 30 ENSMUSG0000030921 ENSG0000132256 19 20 0.6 6430601A21kk ENSMUSG0000004321 ENSG0000198146 18 17 0.6 Man2a1 ENSMUSG00000024085 ENSG0000112893 17 9 0.6 633064142E108/k ENSMUSG00000026621 ENSG0000012893 17 14 0.6 Kif5c ENSMUSG00000021366 ENSG0000018808 17 32 0.6 Hivep1 ENSMUSG00000021366 ENSG0000015751 16 6 0.6 Y Sk30a5 ENSMUSG00000021269 ENSG00000157513 16 8 0.6 Y Sk30a5 ENSMUSG00000030671 ENSG00000152270 16 11 0.6 Y Pnn ENSMUSG00000020949 ENSG0000012871 16 26 0.6 Y Riff ENSMUSG00000020949 ENSG00000129871 16 26 0.6 Y Riff ENSMUSG00000021711 ENSG0000017868 16 33 0.6 Y Ripk3	Btla	ENSMUSG0000052013	ENSG00000186265	19	6	0.6	Ŷ		
Instruction Instruction Instruction Instruction ManZa1 ENSMUSG00000000000000000000000000000000000	Trim30 64306014210	ENSMUSG00000030921	ENSG00000132256	19	20	0.6			
6330442E10Rik ENSMUSG0000056219 ENSG0000198133 17 14 0.6 Kif5c ENSMUSG0000026764 ENSG00000168280 17 32 0.6 Hivep1 ENSMUSG0000021366 ENSG00000137513 16 6 0.6 Y AI875199 ENSMUSG000000139595 ENSG00000137513 16 8 0.6 Y Slc30a5 ENSMUSG00000021629 ENSG00000152270 16 11 0.6 Y Prin ENSMUSG00000020994 ENSG00000152270 16 11 0.6 Y Rffl ENSMUSG00000020994 ENSG00000152270 16 11 0.6 Y Rffl ENSMUSG00000020696 ENSG0000012871 16 26 0.6 Y Ripk3 ENSMUSG00000021171 ENSG0000017868 16 33 0.6 Y Ripk3 ENSMUSG00000022221 ENSG00000129565 16 35 0.6 Tep1 ENSMUSG00000022221 ENSG00000129565 16 100 0.6	Man2a1	ENSMUSG0000024085	ENSG00000112893	10	1/	0.6			
KifSc ENSMUSG0000026764 ENSG00000168280 17 32 0.6 Hivep1 ENSMUSG0000021366 ENSG00000039551 16 6 0.6 Y AI875199 ENSMUSG0000001366 ENSG00000137513 16 8 0.6 Y Sic30a5 ENSMUSG00000021629 ENSG00000145740 16 10 0.6 Y Pde3b ENSMUSG0000002094 ENSG0000015270 16 11 0.6 Y Pnn ENSMUSG00000020994 ENSG0000012871 16 12 0.6 Y Rffl ENSMUSG00000021071 ENSG0000017868 16 33 0.6 Y Ripk3 ENSMUSG00000021221 ENSG00000129565 16 35 0.6 Tep1 ENSMUSG000000021221 ENSG00000129565 16 100 0.6	6330442E10Rik	ENSMUSG0000056219	ENSG00000198133	17	14	0.6			
Interpret Inter Inter Inter<	Kif5c Hiven1	ENSMUSG0000026764	ENSG00000168280	17	32	0.6	v		
Slc30a5 ENSMUSG0000021629 ENSG0000145740 16 10 0.6 Y Pde3b ENSMUSG0000030671 ENSG0000152270 16 11 0.6 Y Pnn ENSMUSG000002094 ENSG0000109211 16 12 0.6 Y Rtfl ENSMUSG0000021676 ENSG0000012871 16 26 0.6 Rtpk3 ENSMUSG00000021171 ENSG0000012868 16 33 0.6 Y Rtpk3 ENSMUSG0000002621 ENSG0000012956 16 35 0.6 Tep1	AI875199	ENSMUSG0000018995	ENSG00000137513	16	8	0.6	ř Y		
Pde3b ENSMUSG0000030671 ENSG00000152270 16 11 0.6 Y Pnn ENSMUSG0000002094 ENSG00000152270 16 12 0.6 Y Rff ENSMUSG0000002094 ENSG0000010941 16 22 0.6 Y ENSMUSG00000021171 ENSG0000017868 16 33 0.6 Y Ripk3 ENSMUSG00000022221 ENSG0000012965 16 35 0.6 Tep1 ENSMUSG000000281 ENSG0000012956 16 100 0.6	Slc30a5	ENSMUSG0000021629	ENSG00000145740	16	10	0.6	Y		
Rff ENS0000002096 ENS0000100941 10 12 0.0 T Rff ENS00000020696 ENS0000002871 16 26 0.6 ENSMUSG00000021171 ENSG00000117868 16 33 0.6 Y Ripk3 ENSMUSG00000022221 ENSG00000129465 16 35 0.6 Tep1 ENSMUSG00000022156 16 100 0.6 5	Pde3b Pnn	ENSMUSG00000030671	ENSG00000152270	16	11	0.6	Y		
ENSMUSG0000021171 ENSG0000117868 16 33 0.6 Y Ripk3 ENSMUSG0000022221 ENSG0000129465 16 35 0.6 Tep1 ENSMUSG000006281 ENSG00000129566 16 100 0.6	Rffl	ENSMUSG0000020696	ENSG00000092871	16	26	0.6	T		
кіркз ENSMUSG00000022221 ENSG00000129465 16 35 0.6 Tep1 ENSMUSG0000006281 ENSG00000129566 16 100 0.6	21.1.2	ENSMUSG0000021171	ENSG00000117868	16	33	0.6	Y		
	кірк3 Тер1	ENSMUSG00000022221 ENSMUSG0000006281	ENSG00000129465 ENSG00000129566	16 16	35 100	0.6 0.6			

continued on next page

continued from previous page

Chapter 4

			N	Genes in	6	Insertions in	C 1	M
Gene name	Mouse Ensembl ID	Human Ensembl ID	cell lines	region	Copy	translated	Singletons	Known TSG2
Slco3a1	ENSMUSG0000025790	ENSG00000176463	15	1	0.6	Y	omy.	1501
NP 001019895.1	1 ENSMUSG0000033147	ENSG00000163393	15	4	0.6	Ý		
St3gal6	ENSMUSG0000022747	ENSG0000064225	15	7	0.6	Y		
Slc36a3	ENSMUSG0000049491	ENSG00000186334	15	8	0.6	Y		
Itpr5	ENSMUSG0000030287	ENSG00000123104	15	10	0.6	Y		
	ENSMUSG00000042590	ENSG00000086200	15	36	0.6			
NP 079558 1	ENSMUSG0000002232	ENSG00000197733	13	40	0.0	v		
Phf14	ENSMUSG00000029629	ENSG00000106443	14	9	0.6	Ý		
2810013C04Rik	ENSMUSG0000066411	ENSG00000173575	14	18	0.6			
Lyn	ENSMUSG0000042228	ENSG00000147507	14	20	0.6			
Cd53	ENSMUSG0000040747	ENSG00000143119	13	2	0.6			
St6galnac3	ENSMUSG0000052544	ENSG00000184005	13	2	0.6	Y		
Griki	ENSMUSG00000022935	ENSG000001/1189	13	6	0.6	ř		
RdD27d Zfhy1h	ENSMUSG00000032202	ENSG00000069974	13	10	0.6	T		
A130038I 21Rik	ENSMUSG0000021703	ENSG00000164300	13	13	0.6	Y		
Dscr2	ENSMUSG0000022913	ENSG00000183527	13	14	0.6	Y		
1700001D09Rik	ENSMUSG0000010135	ENSG00000121933	13	26	0.6			
Sh3gl3	ENSMUSG0000030638	ENSG00000140600	13	27	0.6	Y		
Sdk1	ENSMUSG0000039683	ENSG00000146555	12	1	0.6	Y		
Hivep3	ENSMUSG00000028634	ENSG00000127124	12	2	0.6	Y		
Maat5	ENSMUSG0000021070	ENSG00000145703	12	17	0.6			
Cdc42se2	ENSMUSG0000052298	ENSG00000152127	12	54	0.0			
Wdfy1	ENSMUSG0000004377	ENSG00000085449	11	1	0.6	Y		
Bard1	ENSMUSG0000026196	ENSG00000138376	11	3	0.6			
D12Ertd553e	ENSMUSG0000020589	ENSG00000197872	10	1	0.6			
Nfia	ENSMUSG0000028565	ENSG00000162599	10	1	0.6	Y		
8430438D04Rik	ENSMUSG0000036019	ENSG00000179104	10	4	0.6	Y		
ACVF1 Mpp4	ENSMUSG00000026836	ENSG00000115170	10	4	0.6	v		
Slc39a11	ENSMUSG0000020024	ENSG00000133195	9	12	0.0	Y		
0.000011	ENSMUSG00000053396	ENSG00000185676	8	32	0.6			
Dnmt3a	ENSMUSG0000020661	ENSG00000119772	7	22	0.6	Y		
1110014D18Rik	ENSMUSG0000059586	ENSG00000156831	7	29	0.6	Y		
Ccnl1	ENSMUSG0000027829	ENSG00000163660	7	29	0.6	Y		
Myc	ENSMUSG00000022346	ENSG00000136997	6	3	0.6			
1600014C10RIK	ENSMUSG0000054676	ENSG00000131943	6	12	0.6	ř		
FIIIZIA	ENSMUSG00000058518	ENSG00000135303	0	19	0.0	Y		
NM 011210.1	ENSMUSG00000026395	ENSG00000081237	5	3	0.6	Ý		
Lrp12	ENSMUSG0000022305	ENSG00000147650	5	6	0.6	Y		
Stxbp4	ENSMUSG0000020546	ENSG00000166263	5	8	0.6	Y		
Galnt14	ENSMUSG0000024064	ENSG00000158089	5	16	0.6	Y		
Meis1	ENSMUSG0000020160	ENSG00000143995	4	3	0.6	Y		
Ucaci9 Wdr7	ENSMUSG0000026546	ENSG00000118710	4	2(2)	0.6	ř V	v	
Rfx3	ENSMUSG0000040300	ENSG00000091137	90(2) 85(3)	2(3)	0.2	1	Y	
Nfib	ENSMUSG0000008575	ENSG00000147862	84(4)	2(2)	0.2	Y	Ŷ	
	ENSMUSG0000064286	ENSG00000189076	75(3)	354(6)	0.2	Y	Y	
Htr2a	ENSMUSG0000034997	ENSG00000102468	72(1)	5(5)	0.2	Y	Y	
6430573F11Rik	ENSMUSG0000039620	ENSG00000170941	67(1)	3(11)	0.2		Y	
Gpc5	ENSMUSG00000022112	ENSG00000179399	65(2)	4(2)	0.2	Y	Y	
FILI Gas7	ENSMUSG00000029648	ENSG00000102733	57(2)	0(0)	0.2	T	r V	
Rac1	ENSMUSG00000001847	ENSG000000136238	45(1)	126(22)	0.2	Y	Y	
Park2	ENSMUSG0000023826	ENSG00000185345	42(5)	2(1)	0.2	Ý	Ý	
Robo1	ENSMUSG0000022883	ENSG00000169855	42(1)	4(6)	0.2	Y	Y	
Htr1f	ENSMUSG0000050783	ENSG00000179097	37(2)	9(9)	0.2		Y	
1/15	ENSMUSG0000031712	ENSG00000164136	34(1)	4(4)	0.2		Y	
Pank1 Slc44a1	ENSMUSG00000033610	ENSG00000152782	33(2)	1(1)	0.2	Ŷ	Y	
D16Frtd472e	ENSMUSG0000028412	ENSG00000154642	23(1)	13(13)	0.2	Y	Y	
Ubxd3	ENSMUSG0000043621	ENSG00000162543	24(1)	5(5)	0.2		Ý	
Arfrp2	ENSMUSG0000042348	ENSG00000185305	20(2)	1(7)	0.2		Y	
Col19a1	ENSMUSG0000026141	ENSG0000082293	20(1)	2(15)	0.2	Y	Y	
Accn1	ENSMUSG0000020704	ENSG00000108684	18(1)	1(1)	0.2	Y	Y	
Rhoj	ENSMUSG0000046768	ENSG00000126785	17(1)	14(14)	0.2	Y	Y	
USp4/	ENSMUSG0000059263	ENSG000001/0242	16(2)	4(4)	0.2	V	Y	
Dut	ENSMUSG00000036152	ENSG00000198108	10(1)	3(Z) 7(7)	0.2	ř V	ř V	
KIF7	ENSMUSG0000025959	ENSG00000118263	13(1)	1(1)	0.2	Y	Y	
Ifngr2	ENSMUSG0000022965	ENSG00000159128	12(1)	12(12)	0.2	Ŷ	Y	
Tmem16f	ENSMUSG0000064210	ENSG00000177119	10(1)	21(21)	0.2	Ý	Ý	
Lrrk2	ENSMUSG0000036273	ENSG00000188906	10(1)	22(22)	0.2	Y	Y	
The state	ENSMUSG00000014781	ENSG00000164256	7(2)	2(7)	0.2	Y	Y	
inada	ENSMUSG0000024251	ENSG00000115970	/(1)	5(5)	0.2	Y	Y	

Table 4.7. Mouse genes that contain retroviral insertions within the transcribed or translated region and are also promising candidates for targets of deletion in human cancer cell lines. "Number of cell lines" is the number of samples in which the gene is deleted. "Genes in minimal region" is the number of genes that co-occur with the CIS gene in the smallest region of deletion. "Copy number" is the minimal threshold below which the gene is deleted. Where the copy number is 0.2, the number of cell lines and number of genes in the minimal deleted region are given for deletions of copy number <= 0.6, with numbers for copy number <= 0.2 being shown in brackets. "Insertions in translated region?" indicates whether any of the insertions are within the translated region of the gene. "Singletons only?" indicates whether the gene contains insertions other than those represented by a single read. "Known TSG?" indicates whether the gene is a recessive cancer gene listed in the Cancer Gene Census.

tumourigenesis (see Section 1.3.3.3). The identification of insertions within the gene provides strong evidence that it does contribute to cancer (see also Section 3.4.3). Deletions of less than 70 Mb encompassing *WWOX* and insertions in *Wwox* are shown in Figure 4.20. In Section 3.4.3, *Foxp1* was proposed as a putative tumour suppressor gene. Deletion of *FOXP1* was observed in 42 cell lines, with a minimal amplified region of 3 genes, therefore providing additional evidence that this gene contributes to cancer and that it does so in both species. *Mobkl2a* was also presented as a putative tumour suppressor gene in Section 3.4.3, and while the human orthologue of this gene was not deleted in cancer, the human orthologue of paralogue *Mobkl2b* was deleted. Another implicated tumour suppressor gene identified in this analysis was *DOCK8*, which is deleted and under-expressed in human lung cancers (Takahashi *et al.*, 2006).

Known oncogenes EVII, MYC and FLII were also identified in the analysis, demonstrating that the results must be viewed with caution and that functional validation, as well as analysis of the distribution of insertions within the mouse candidate, is required to determine whether deletion of the identified genes is likely to contribute to tumourigenesis. Other candidates that have been implicated as oncogenes include *GRM1*, which plays an important role in the transformation of melanocytes in melanoma (Shin et al., 2008), RASGPR1, which contributes to tumour progression in murine skin cancer (Luke et al., 2007; Oki-Idouchi and Lorenzo, 2007) and, as mentioned in the previous sections, MAP3K8, MPP4 and MEIS1. Likewise, amplification and overexpression of genes encoding cyclin L1 (CCNL1), low-density lipoprotein receptor-related protein 12 precursor (LRP12) and glypican-5 (GPC5) have been demonstrated in human head and neck squamous cell carcinomas (Muller et al., 2006; Redon et al., 2002), oral squamous cell carcinomas (Garnis et al., 2004) and rhabdomyosarcomas (Williamson et al., 2007), respectively. It is therefore likely that other genes are the targets of deletion in the regions containing these known and implicated oncogenes. *GRM1* was the only gene for which the minimal deleted region did not contain additional genes. However, this does not prove that GRM1 must be the critical gene, since deletions affecting upstream and downstream genes may simply overlap at GRM1.

The list contains many genes for which there is limited evidence in the literature to suggest that they may act as tumour suppressor genes. The results of this analysis therefore lend further support to these findings. Some of these candidates (*RBMS3*, *PCAF*, *UTRN*, *ANK3*, *ACCN1*, *CDC14B*, *CHES1* and *PARK2*) are briefly discussed

Figure 4.20. Candidate tumour suppressor genes *WWOX* (A) and *ARFRP2* (B) are deleted in human cancer cell lines and are disrupted by retroviral insertional mutagenesis in mouse lymphomas. The copy number of chromosomal regions in the human cell lines is depicted in colour. Names of human cell lines and tissue of origin are provided Only cell lines in which the deletion containing the gene is less than 70 Mb are shown. The lower part of each figure shows insertions within mouse tumours, and was kindly provided by Jaap Kool and Jeroen de Ridder. Blue vertical lines represent insertions. Genes are shown in green, with exons marked in black. Positions on the murine and human chromosomes are indicated on the black horizontal bars in kb and Mb, respectively. These figures can also be seen in Uren *et al.* (2008).

below. *RBMS3* and *PCAF* reside in commonly deleted regions, and are down-regulated, in oesophageal squamous cell carcinomas (Qin et al., 2008). One of the homozygous deletions that contained *RBMS3* was from an oesophageal cancer cell line (COLO-608N), but the remaining three were from the large intestine (NCI-H747), ovary (TYK-nu) and cervix (SKG-IIIa). The single homozygous deletion of PCAF was in a biliary tract cell line (EGI-1), and neither gene was deleted below copy number 0.6 in any additional oesophageal cancer cell lines. This suggests that the genes may also contribute to other cancers. The utrophin gene (UTRN) resides within a deletion of the long arm of chromosome 6 that is frequently observed in a range of tumours, and UTRN has been recently proposed as a putative tumour suppressor gene within this region (Li et al., 2007b). Ankyrin-3 (ANK3) is a target of the transcription factor hepatocyte nuclear factor 4 alpha that down-regulates cell proliferation in kidney cells (Grigo *et al.*, 2008). None of the 29 deletions containing ANK3 were within cell lines derived from kidney cancer, but the fact that this was the only gene in the minimal deleted region provides support for a role in tumour suppression. ACCN1 was proposed as a putative glioma tumour suppressor gene following the observation that surface expression of one of the two isoforms reduces cell growth and migration (Vila-Carriles et al., 2006), while the gene was also shown to be disrupted by a translocation within a neuroblastoma (Vandepoele et al., 2008). Notably, the single homozygous deletion containing this gene was within a glioma cell line (8-MG-BA), while 3 of the remaining 17 deletions of copy number less than or equal to 0.6 were within neuroblastomas. The rest of the deletions were in a range of tumours, including 3 breast, 2 bone, 2 lung and 2 ovarian. CDC14B and CHES1 are both involved in regulating cell cycle checkpoints related to DNA damage response (Bassermann et al., 2008; Busygina et al., 2006), and the deletion of these genes could therefore contribute to tumourigenesis by allowing damaged cells to enter mitosis. Like WWOX, the Parkin gene (PARK2) resides within a common fragile site (FRA6E) and, therefore, while the gene is frequently deleted in cancer, it is unclear whether it contributes to cancer development. However, deletions involving PARK2 are associated with ovarian cancer (Denison et al., 2003) and glioblastoma multiforme (Mulholland et al., 2006), and promoter hypermethylation of *PARK2*, resulting in down-regulation of gene expression, has been observed in leukaemias (Agirre et al., 2006). PARK2 is a long gene, measuring 994.53 kb, and contains just 2 insertions that could have occurred by Therefore, the presence of insertions within the gene does not provide chance. convincing support for a role in tumourigenesis. Interestingly, a break in FRA6E was associated with poor outcome in breast carcinomas, but expression of PARK2 was not

associated, while the loss of *AF-6* gene, which is telomeric of *PARK2*, was associated, suggesting that this may be a tumour suppressor gene affected by the break (Letessier *et al.*, 2007). Other candidates for which there is evidence in the literature of a tumour suppressive role in cancer include *BARD1*, *DMXL1*, *GPR56*, *HIVEP1*, *KCNAB2*, *LEF1*, *LIG4*, *PHF14*, *RAD51L1* and *RIPK3*. Further candidates *SDK1*, *BCL11B* and *MBD2* are discussed in Section 5.3.2.2.

ARFRP2 is a novel candidate tumour suppressor gene for which there is currently no evidence in the literature for a role in cancer. ARFRP2, also known as ARL15, is a member of the ADP-ribosylation factor-like family. Another member of this family, *ARL11*, is a tumour suppressor gene for which truncating germline mutations and promoter methylation contribute to leukaemia, breast cancer, ovarian cancer and melanoma (Frank *et al.*, 2005; Petrocca *et al.*, 2006). Deletions of less than 70 Mb that encompass *ARFRP2* are shown in Figure 4.20. There is also no evidence in the literature to suggest that the sec1 family domain containing gene *SCFD2* is a tumour suppressor gene. However, *SCFD2* is a transcriptional target of p53 (Krieg *et al.*, 2006), and it is the only gene within the minimal deleted region of 33 cancer cell lines.

4.6 Comparison of methods for calling gains and losses

As discussed in Section 4.3, DNAcopy and MergeLevels were the algorithms chosen for detecting regions of copy number change because they had been shown to perform better than other methods, and were freely available. However, it is not known whether DNAcopy and MergeLevels out-perform other methods in processing copy number data generated on the 10K SNP array CGH platform, and a variety of methods were therefore compared. The methods tested were DNAcopy alone (Olshen *et al.*, 2004), DNAcopy and MergeLevels (Olshen *et al.*, 2004; Willenbrock and Fridlyand, 2005), FASeg (Yu *et al.*, 2007), BioHMM (Marioni *et al.*, 2006) and a selection of the methods included within ADaCGH (Diaz-Uriarte and Rueda, 2007), i.e. CGHseg (Picard *et al.*, 2005), HMM (Fridlyand *et al.*, 2004), Wavelets (Hsu *et al.*, 2005) and GLAD (Hupe *et al.*, 2004).

27 different runs of DNAcopy version 1.4.0 were performed, each time varying the parameters. Alpha values of 0.1, 0.05, 0.01, 0.005 and 0.001 were tested, change-points that differed by less than 1, 2, 3 or 4 standard deviations were removed or all change-points were retained, and the smoothing step was either performed or was omitted from

the process (see Section 4.3 for details of these parameters). A further 17 runs of DNAcopy plus MergeLevels were performed, with various combinations of values for the DNAcopy parameters and the Wilcoxon and Ansari-Bradley thresholds within MergeLevels. The Wilcoxon rank sum test is used to determine whether there is a significant difference (according to the Wilcoxon threshold) between the observed values for two copy number levels, or whether they should be merged. The Ansari-Bradley 2-sample test determines whether there is any significant difference between the distribution of merged values minus observed log₂-ratios (i.e. the original ratios at individual SNPs) compared with the distribution of original segmented values minus observed log₂-ratios. The optimal Ansari-Bradley threshold is the largest threshold where the distributions do not differ significantly (Willenbrock and Fridlyand, 2005).

BioHMM is available as part of the BioConductor/R package, snapCGH. It is the only method that takes into account the distance between clones (or in this case SNPs), rather than simply ordering the clones or SNPs along the chromosome. BioHMM uses a Hidden Markov Model to segment data into a finite number of hidden states, where all of the data-points within a state have an equivalent copy number (Marioni *et al.*, 2006). A single run of BioHMM version 1.2.0 was performed using default parameters.

ADaCGH (analysis of data from aCGH) is a web-based tool that provides a selection of the best-performing methods via a simple user interface. DNAcopy and MergeLevels are available within this tool, but it is only possible to use default parameters and the MergeLevels output has been post-processed into three states: -1 (loss), 0 (no change) and 1 (gain). Methods within ADaCGH were chosen because they have been shown to perform well in the comparisons by Lai et al. (2005) and Willenbrock and Fridlyand (2005) and/or because they help to present a cross-section of the types of algorithm available for detecting copy number changes. CGHseg models the CGH data as a random Gaussian process and segments the data at points where the mean log₂-ratio changes abruptly. A threshold must be set for the adaptive penalisation, which is a threshold used to estimate the number of segments in the data. Picard et al. (2005) proposed a threshold of -0.05 as the default value, but Diaz-Uriarte and Rueda (2007) found that values around -0.005 were more appropriate but recommended experimenting with different values, which must be less than 0. For this analysis, 5 runs of CGHseg were performed, using thresholds of -0.005, -0.01, -0.05, -0.1 and -0.2. The smoothing approach of Hsu et al. (2005) uses wavelets to "denoise" the DNA copy number data and so to capture copy

number changes while smoothing out the noise. HMM is another method in which Hidden Markov Models are fitted to the data to identify different states, or copy number levels (Fridlyand *et al.*, 2004). However, unlike BioHMM, it does not take account of distances between data-points. Finally, the detection of breakpoints in GLAD is based on the Adaptive Weights Smoothing (AWS) procedure. This method finds the maximal neighbourhood around each data-point in which the local constant assumption holds true. In other words, it finds regions within which the copy number does not differ significantly and the boundaries of these regions represent breakpoints where the copy number changes. Default parameters were used for GLAD, HMM and the wavelets approach. All runs were performed in December 2007 on the website http://adacgh.bioinfo.cnio.es/.

FASeg, or Forward-Backward Fragment-Annealing Segmentation, is available as an R package from http://www.sph.emory.edu/bios/FASeg/. It is proposed to be especially suitable for SNP array CGH, which has a higher probe density but lower signal-to-noise ratio than traditional array CGH. According to the developers, the performance of FASeg was superior to 6 R packages, including DNAcopy, GLAD, BioHMM and CGHseg, in the detection of small segments with a low signal-to-noise ratio, although GLAD and BioHMM also performed well when the signal-to-noise ratio was low and the segments flanking copy number changes were long. When the signal-to-noise ratio was high, most methods performed well, although the HMM-based methods were less effective when there were multiple copy number levels within a single chromosome. This is a significant drawback, since multiple states are common in unstable cancer genomes. FASeg breaks each chromosome into small segments in an over-sensitive edge (or breakpoint) detection step that involves LOESS smoothing. It then iteratively merges consecutive segments until all remaining edges pass a significance threshold, based on testing for equal means between the groups of copy number values for SNPs before and after the edge using the unpaired Student's t-test. 15 different runs of FASeg version 1.2 were performed, in which parameters were altered for the smoothing span, which is the number of SNPs used to calculate the weights around each probe in the LOESS smoother, and the P-value cutoff for defining the significance of each edge. (See Yu et al., 2007)

In total, 69 different method and/or parameter combinations were compared. Each method was performed on the same 50 randomly selected cancer cell lines. The results were compared using Matthew's Correlation Coefficient (MCC), which is described in

Section 2.10.2. 280 Ensembl genes corresponding to known oncogenes involved in translocations or amplifications were extracted from the Cancer Gene Census. The number of known oncogenes and the number of other Ensembl genes within, and outside of, amplicons of copy number greater than or equal to 2.7 were counted. Oncogenes and other genes within amplicons were defined as true positives and false positives, respectively. Oncogenes and other genes that were not within amplicons were defined as false negatives and true negatives, respectively. The numbers of true and false positives and negatives in each cell line were then added together to give the number across all cell lines, and the MCC score was calculated. This analysis was performed individually on each method. It is possible that some of the known oncogenes that are involved in translocations are not amplified in human cancer, and of course there will be a proportion of non-oncogenes that are amplified in, and contribute to the development of, cancer. However, this analysis gives an indication of the performance of the method in comparison to other methods. The coverage was defined as the proportion of known oncogenes that were represented in amplicons, and the accuracy was defined as the proportion of genes in amplicons that were known oncogenes. The coverage, accuracy and MCC score for each method are shown in Table 4.8.

The wavelet, HMM and BioHMM algorithms all performed poorly. In the case of HMM and BioHMM, this may reflect the fact that there are often multiple copy number levels within a chromosome (see above). The low signal-to-noise ratio may account for the poor performance of the wavelet approach, since this method involves "denoising" the data but was developed for conventional array CGH data, which has a higher signal-tonoise ratio. Denoising the SNP CGH data may result in the removal of biologically relevant copy number changes. In addition, only the default parameters were used for this method. Changing the penalty constant in CGHseg made a considerable difference to the number of amplicons that were detected. This demonstrates the importance of choosing suitable parameter values. The closer the value was to 0, the greater the number of amplicons and the higher the coverage. However, the accuracy fell considerably. The default parameter value of -0.05 gave the best overall results, but this was lower than many of the results obtained using FASeg or DNAcopy. The value suggested in ADaCGH, i.e. -0.005, produced the highest coverage of all methods, but at the expense of a low accuracy. Although only the default parameters were used, GLAD performed reasonably well, obtaining similar results to the best-performing DNAcopy runs.

Method	Parameters	TP	FP	TN	FN	Coverage	Accuracy	мсс
FASeg	p=0.01, smooth=7	31	1027	883573	13969	0.00221	0.02930	0.00380
FASeg	p=0.001, smooth=7	25	830	883770	13975	0.00179	0.02924	0.00340
FASeg	p=0.001, smooth=5	22	757	883843	13978	0.00157	0.02824	0.00301
DNAcopy & MergeLevels	alpha=0.05, smooth, SD=1	25	907	883693	13975	0.00179	0.02682	0.00293
DNAcopy & MergeLevels	alpha=0.1, smooth, w=0.00001	28	1055	883545	13972	0.00200	0.02585	0.00288
DNAcopy	alpha=0.05, smooth, SD=3	17	560	884040	13983	0.00121	0.02946	0.00284
FASeg	p=0.0001, smooth=10	18	608	883992	13982	0.00129	0.02875	0.00281
GLAD	alaba-0.01 smeeth CD-2	25	931	883669	139/5	0.00179	0.02615	0.00279
DNAcopy	alpha=0.01, $sinooth$, $SD=2$	10	620	004029	12002	0.00121	0.02691	0.00273
DNAcopy & Mergel evels	$a_{1}a_{2}a_{3}a_{4}a_{5}a_{5}a_{5}a_{5}a_{5}a_{5}a_{5}a_{5$	28	1087	883513	13902	0.00129	0.02521	0.00272
DNAcopy & Mergel evels	alpha=0.1, smooth SD=1 w=0.00001 ans=0.01	20	1087	883513	13972	0.00200	0.02511	0.00271
DNAcopy & MergeLevels	alpha=0.1, smooth, SD=1 w=0.00001, ans=0.1	28	1087	883513	13972	0.00200	0.02511	0.00271
DNAcopy	alpha=0.05, smooth, SD=1	23	854	883746	13977	0.00164	0.02623	0.00269
DNAcopy	alpha=0.1, smooth, SD=2	23	855	883745	13977	0.00164	0.02620	0.00268
DNAcopy & MergeLevels	alpha=0.1, smooth, SD=1	28	1103	883497	13972	0.00200	0.02476	0.00263
DNAcopy & MergeLevels	alpha=0.1, smooth, SD=1, ans=0.01	28	1103	883497	13972	0.00200	0.02476	0.00263
DNAcopy & MergeLevels	alpha=0.1, smooth, SD=1, ans=0.1	28	1103	883497	13972	0.00200	0.02476	0.00263
FASeg	p=0.01, smooth=10	24	911	883689	13976	0.00171	0.02567	0.00263
DNAcopy	alpha=0.1, smooth, SD=1	26	1007	883593	13974	0.00186	0.02517	0.00263
DNAcopy	alpha=0.05, smooth	23	865	883735	13977	0.00164	0.02590	0.00262
DNAcopy	alpha=0.05, smooth, SD=4	13	415	884185	13987	0.00093	0.03037	0.00261
DNAcopy	alpha=0.01, smooth	18	636	883964	13982	0.00129	0.02752	0.00260
DNAcopy & MergeLevels	alpha=0.1, smooth	27	1061	883539	13973	0.00193	0.02482	0.00260
DNAcopy	alpha=0.005, smooth, SD=2	16	1020	884042	13984	0.00114	0.02/8/	0.00251
DNAcopy	alpha=0.1, smooth	20	1029	8835/1	13974	0.00186	0.02464	0.00251
DNAcopy	alpha=0.01, smooth, SD=4	20	383	884217	12090	0.00086	0.03038	0.00251
DNAcopy	alpha=0.03, $sinooth$, $SD=2$	20	/44	003030	12006	0.00143	0.02018	0.00230
CGHsea	penalty=-0.05	16	561	884039	13984	0.00100	0.02007	0.00249
DNAcopy	alpha=0.001, smooth, SD=2	15	526	884074	13985	0.00107	0.02773	0.00241
FASeq	p=0.001, smooth=10	20	758	883842	13980	0.00143	0.02571	0.00241
DNAcopy	alpha=0.001, smooth	16	575	884025	13984	0.00114	0.02707	0.00238
DNAcopy	alpha=0.001, smooth, SD=4	12	396	884204	13988	0.00086	0.02941	0.00238
DNAcopy	alpha=0.005, smooth, SD=4	12	396	884204	13988	0.00086	0.02941	0.00238
DNAcopy & MergeLevels	alpha=0.01, smooth, w=0.00001	19	717	883883	13981	0.00136	0.02582	0.00237
DNAcopy & MergeLevels	alpha=0.1, smooth, SD=1 w=0.001	26	1059	883541	13974	0.00186	0.02396	0.00235
DNAcopy & MergeLevels	alpha=0.1, smooth, SD=1 w=0.001, ans=0.01	26	1059	883541	13974	0.00186	0.02396	0.00235
DNAcopy & MergeLevels	alpha=0.1, smooth, SD=1 w=0.001, ans=0.1	26	1059	883541	13974	0.00186	0.02396	0.00235
DNAcopy & MergeLevels	alpha=0.1, smooth, SD=2	21	816	883784	13979	0.00150	0.02509	0.00234
DNAcopy	alpha=0.001, smooth, SD=1	16	582	884018	13984	0.00114	0.02676	0.00233
DNAcopy	alpha=0.005, smooth, SD=1	10	587	884013	13984	0.00114	0.02653	0.00229
DNAcopy	alpha=0.001, smooth, $SD=3$	15	454	884140	1200/	0.00093	0.02/84	0.00226
DNAcopy	alpha=0.01, $shouth$, $SD=1$	13	458	88/1/2	13087	0.00114	0.02027	0.00223
FASea	n=0.0001 smooth=7	18	694	883906	13982	0.000000	0.02700	0.00222
DNAcopy	alpha=0.005 smooth	16	603	883997	13984	0.00114	0.02585	0.00218
DNAcopy & MergeLevels	alpha=0.005, smooth, w=0.00001	15	568	884032	13985	0.00107	0.02573	0.00209
FASeq	p=0.1, smooth=10	28	1261	883339	13972	0.00200	0.02172	0.00188
CGHseg	penalty=-0.01	37	1751	882849	13963	0.00264	0.02069	0.00184
DNAcopy & MergeLevels	alpha=0.05, smooth, w=0.00001	24	1119	883481	13976	0.00171	0.02100	0.00156
DNAcopy	alpha=0.01	21	961	883639	13979	0.00150	0.02138	0.00155
DNAcopy	alpha=0.001	16	703	883897	13984	0.00114	0.02225	0.00152
DNAcopy	alpha=0.005	19	891	883709	13981	0.00136	0.02088	0.00136
DNAcopy	alpha=0.05	24	1169	883431	13976	0.00171	0.02012	0.00134
CGHseg	penalty=-0.01	5	187	884413	13995	0.00036	0.02604	0.00123
FASeg	p=0.1, smooth=5	33	1/10	882890	13967	0.00236	0.01893	0.00119
CGHseg	penalty=-0.2	2	/2	884528	13998	0.00014	0.02/03	0.00084
DINACOPY	aipna=0.1	23	1302	883298	13977	0.00164	0.01736	0.00055
	popalty0.005	15	249	000100	12050	0.00107	0.01/30	0.00045
EASog	p=0.01 smooth=5	42	1292	002100	12002	0.00300	0.01007	0.00043
FASea	p=0.01	o ⊿	430	884336	13006	0.00037	0.01/94	-0.00042
FASea	n=0.0001	4	264	884336	13996	0.00029	0.01493	-0 00009
FASeq	p=0.000001	4	264	884336	13996	0.00029	0.01493	-0.00009
FASeq	p=0.0001, smooth=50	5	370	884230	13995	0.00036	0.01333	-0.00037
Wavelets		25	1769	882831	13975	0.00179	0.01394	-0.00059
НММ		9	717	883883	13991	0.00064	0.01240	-0.00073
FASeg	p=0.01	5	467	884133	13995	0.00036	0.01059	-0.00092

Table 4.8. Comparison of methods for detecting regions of copy number gain in 50 randomly selected cancer cell lines. Abbreviations for describing parameters are as follows: FASeg: p=significance threshold, smooth=smoothing range; DNAcopy: alpha=parameter alpha, smooth=outliers smoothed, SD=change-points differing by less than X standard deviations removed; MergeLevels: w=Wilcoxon threshold, ans=Ansari-Bradley threshold; CGHseg: penalty=penalty constant. Undefined parameters are default. TP=number of true positives (amplified oncogenes), FP=number of false positives (amplified non-oncogenes), TN=number of true negatives (non-amplified nononcogenes), FN=number of false negatives (non-amplified oncogenes). Numbers are calculated across all cell lines. Coverage=TP/(TP+FN), Accuracy=TP/(TP+FP). MCC = Matthew's Correlation Coefficient. Of the runs involving DNAcopy alone, those in which the data were not smoothed before segmentation performed worst. Higher values for the parameter alpha, which result in increased sensitivity, generally performed better due mainly to a higher coverage. For the purposes of the cross-species comparison, higher coverage, even at the expense of lower accuracy, is preferable since the mouse candidate cancer genes help to identify the targets of amplification in the human amplicons, and false positives are therefore likely to be ignored. Reducing the number of standard deviations below which change-points were removed resulted in a higher coverage of oncogenes. This may be because the highest peak of amplification, which often contains the critical cancer gene(s), is more likely to remain distinct from lower level copy number gains and the segment will have a higher mean copy number and will contain fewer amplified passengers. For higher values of alpha, merging the segments using default parameters also resulted in higher coverage. However, upon inspection of the results, it appeared that some oncogenes were lost upon merging, while some were gained. All of the oncogenes that were unique to the run without merging were still amplified in the run with merging, and vice versa, but they did not reach the copy number threshold of greater than or equal to 2.7. This is because merging increases the mean copy number of some segments and decreases the mean copy number of others, in line with the copy numbers of other segments in the genome. This demonstrates why it is useful to use a range of copy number thresholds in the comparative analysis. Changing the Ansari-Bradley threshold from 0.1 to 0.01 made no difference to the results, but lowering the value for the Wilcoxon threshold increased the MCC score. Using a lower value for the Wilcoxon threshold means that a higher proportion of segments will not be considered significantly different from one another and will therefore be merged. However, more detailed analysis suggests that lowering the value may not produce sensible results. For example, using a value of 1.0×10^{-5} rather than 1.0×10^{-4} , the segment of copy number 3.00 that contains *CCND1* in the neck squamous cell carcinoma cell line SCC-15 is merged with a segment of copy number 1.78 to give an overall copy number of 1.85. While the oncogene is still amplified, merging of this kind removes the peaks in amplification, which are most likely to harbour the critical targets of amplification. Similarly, a segment of copy number 0.12 on chromosome 4 of the bone cancer cell line CAL-72 is merged with other segments to give a copy number of 0.47. This segment is likely to be a homozygous deletion but is merged with segments that are more likely to represent heterozygous deletions.

Comparison of the FASeg runs showed that using the default smoothing span of 25 rather than a lower value resulted in lower accuracy and coverage and, therefore, a lower MCC score. When a significance threshold of P=0.0001 was used, a smoothing span of 10 rather than 50 not only identified more oncogenes (18 rather than 4) but also had tighter amplicon boundaries that still retained the oncogene. For example, lung cancer cell line LC-2-ad and pancreatic cancer cell line HuP-T4 contained amplicons that encompassed the oncogenes MYC and POU5F1, respectively. Using smoothing spans of 50 and 10, the number of SNPs within the amplicon containing MYC was calculated as 17 and 15, respectively, while the number within the amplicon containing *POU5F1* was 102 and 94, respectively. Increasing the significance threshold generally decreased the MCC score. Using a smoothing span of 7, a significance threshold of *P*=0.001 yielded 64 amplicons, while a significance threshold of P=0.0001 yielded 43 amplicons. 35 amplicons were identical, while the rest were either missing from the latter run or were shared but spanned a larger region when the threshold was higher. For example, an amplicon in the lung cancer cell line ChaGo-K-1 spanned 1.39 Mb and had a mean copy number ratio of 3.97 using a threshold of P=0.0001, and 919.42 kb with a mean copy number ratio of 4.16 using a threshold of P=0.001. Likewise, the amplicon encompassing MYC in lung cancer cell line LC-2-ad was also larger (6.74 Mb rather than 4.77 Mb) using a threshold of P=0.0001 rather than P=0.001 and had a lower mean copy number (5.06 rather than 5.49). The amplicons that were missing from the run with a higher significance threshold may still be present, but the mean copy number may not reach the copy number threshold of 2.7 because a larger region, including less amplified or non-amplified SNPs, is defined as the region of copy number change and this dilutes the mean copy number ratio for the entire segment. Overall, using a significance threshold of P=0.01 and a smoothing span of 7 appeared to give the best results, with the highest MCC score and highest accuracy and coverage. It is worth noting, however, that the parameter value for the smoothing span is well below that recommended in Yu et al. (2007). The results obtained using the top scoring runs from FASeg and DNAcopy plus MergeLevels were compared. 20 cancer genes were identified by both algorithms. 11 were unique to the FASeg output, and 5 were unique to the DNAcopy and MergeLevels output. In most cases, the missing genes were still amplified, but were below the copy number threshold of 2.7. This analysis indicates that the choice of method and parameters can make a considerable difference to the output and involves finding a suitable balance between accuracy and coverage.

4.7 Global comparison of mouse candidate cancer genes and human CNVs

The global comparison method of Section 4.5.1.1 was applied to human CNVs (see Section 4.2.3) and the gene lists from Section 4.2.1. Rather than using copy number thresholds, CNVs were separated into deletions and duplications, which were specified in the original downloaded file. As with previous analyses, the number of deletions/duplications within which each gene resided was counted. For each number of deletions/duplications, the number of mouse candidates was compared to the distribution of randomised genes using the Z-test. The results are depicted in Figure 4.21. None of the gene lists showed over-representation within deletions or duplications. The only positive association was observed for 7 known oncogenes (namely DDIT3, NSD1, IRF4, 2 genes encoding Histone H4, NUT and PDE4DIP) that were within 32 or more duplications. The association increased as the number of duplications increased, to a maximum of $P=2.07 \times 10^{-4}$ for 5 known oncogenes in 93 or more duplications. This suggests that some oncogenes are amplified in the normal population, and these individuals may have a predisposition to cancer. However, in general, genes involved in cancer were not found within CNVs. In fact, genes nearest to CISs (P<0.001 and P<0.05) and genes with insertions in coding regions were slightly under-represented in deletions, and genes within translated and transcribed regions were highly under-represented in both duplications and deletions. Many of the genes that are involved in oncogenesis are also involved in other important cellular functions, and this may explain why candidate oncogenes are rarely deleted in healthy individuals. Duplication of tumour suppressor genes could also lead to oncogene repression, producing a similar outcome, while deletion of tumour suppressor genes could lead to tumourigenesis. The results show that cells do not tolerate changes in copy number in genes that are important in tumourigenesis.

For each gene list, the number of genes residing within CNV deletions and within regions of copy number loss (less than or equal to a ratio of 0.6) in human cancer cell lines was counted. A 2-tailed Fisher Exact Test was performed to determine whether there was any association between genes found in deletions in normal individuals and deletions in cancer cell lines. The same analysis was performed using CNV duplications and regions of copy number gain (greater than or equal to 2.7). The *P*-values are provided in Table 4.9. In accordance with the results obtained in the global analysis, there was an under-

Figure 4.21. Under- and over-representation of human orthologues of candidate cancer genes in regions of copy number variation (CNV). (A) Genes nearest to CISs with P<0.001. (B) Genes nearest to CISs with P<0.05. (C) Genes with insertions within the coding region. (D) Genes with insertions but no singletons in the coding region. (E) Genes with insertions within the translated region. (F) Genes with insertions but no singletons in the translated region. (G) Genes with insertions in the transcribed region. (I) Genes with insertions but no singletons in the translated region. (I) Known oncogenes. (J) Known tumour suppressor genes. For each gene list, the left-hand column represents the significance of the association between the genes and CNV duplications, with rows representing the number of duplications, increasing in increments of 1 to a maximum of 100. Each box in the right-hand column represents the significance of the association between the genes and CNV deletions. P<0.01, dark blue for under-representation and dark red for over-representation; P<0.05, light blue for under-representation and pink for over-representation.

Gene list	Deletions	Amplicons
ORF only	3.76E-04	0.442
ORF only (no singletons)	6.12E-02	0.290
Translated region only	2.70E-10	0.780
Translated region only (no singletons)	7.02E-06	0.747
Transcribed region only	2.77E-14	0.082
Transcribed region only (no singletons)	6.68E-09	0.178
CIS nearest P<0.05	2.07E-04	5.12E-03
CIS nearest P<0001	2.09E-04	0.229

Table 4.9. *P*-values for the co-occurrence between genes from each gene list within CNVs and regions of copy number change in human cancer cell lines. "Deletions" gives the *P*-values for the co-occurrence of genes in CNV deletions and deletions of copy number less than or equal to 0.6 in human cancers, while "Amplicons" gives the *P*-values for the co-occurrence of genes in CNV duplications and amplicons of copy number greater than or equal to 2.7 in human cancers. *P*-values were calculated using a 2-tailed Fisher Exact Test. All significant *P*-values in "Deletions" represent an underrepresentation of genes in both CNVs and cancer deletions, while the significant *P*-value in "Amplicons" represents an over-representation of genes in CNVs and cancer amplicons.

representation in all lists of genes that co-occurred in both CNV deletions and deletions in human cancers. There was no association between genes in CNV duplications and copy number gains in human cancers, except for genes nearest to CISs with P<0.05, for which more genes than expected co-occurred in CNVs and amplicons. Again, this suggests that amplification of these genes in the general population may confer a predisposition to the development of cancer.

4.8 Discussion

The most significant finding from this chapter is that retroviral insertional mutagenesis is relevant to the discovery of cancer genes in regions of copy number change in human cancers. As anticipated, the overlap is stronger between candidate oncogenes and regions of copy number gain than between candidate tumour suppressor genes and regions of copy number loss. This partly reflects the fact that retroviral insertional mutagenesis predominantly identifies oncogenes due to the major mechanisms by which the retrovirus mutates genes and the requirement for both copies of a tumour suppressor gene to be It may, however, facilitate the identification of mutated (see Section 3.4). haploinsufficient tumour suppressor genes, for which the deletion of one gene copy can contribute to cancer. The other reason for the weaker association between tumour suppressor genes and deletions is that all genes that contained at least one insertion within the transcribed, translated or coding region were included in the analysis. Firstly, this can result in the inclusion of oncogenes that are activated by intragenic truncating mutations (see Section 3.4) and, secondly, many of the insertions may have occurred randomly and may not contribute to oncogenesis. However, the kernel convolution-based method for identifying CISs (de Ridder et al., 2006, see Section 2.10.2) is biased towards oncogenes because insertions within many parts of a tumour suppressor gene may cause its inactivation and therefore insertions may not cluster into tight CISs. For this reason, including all genes provides a more comprehensive list of candidates for a role in tumour suppression.

Significantly, CIS genes were over-represented in amplicons from both haematopoietic and lymphoid cell lines and lines derived from solid tumours. This demonstrates that retroviral insertional mutagenesis is relevant to the discovery of cancer genes in cancers other than lymphomas. This is also proven in the identification of individual candidates, since many were amplified or deleted in a range of cancer types, and some, including *MEIS1, MMP13* and *ACCN1*, were amplified or deleted in cancer types in which they had previously been implicated. While this study does not include any functional validation, the candidates include a considerable number of known and implicated cancer genes, demonstrating that the method is effective. In general, the discussion of individual genes has focussed on those for which there is some evidence, albeit sometimes limited, that gives cause for presenting the genes as potential oncogenes or tumour suppressor genes. However, the genes listed in Tables 4.4, 4.6 and 4.7 provide a large number of novel candidates that may be of interest to the cancer community. Interestingly, candidate cancer genes were under-represented in CNVs in apparently healthy individuals, further suggesting that amplification and/or deletion of these genes can have a detrimental effect on the cell and, in turn, on the individual.

Despite the promising results, there are a number of potential limitations associated with the analysis. Firstly, all of the human cancers were cell lines, rather than primary tumours. Cancer cells cultured in vitro lack the microenvironment of the tumour from which they are derived. While this means that they may not be fully representative of the original tumour, the homogeneity of cell lines can be an advantage since it prevents contamination by stromal cells and potential dilution of the copy number changes identified by CGH. It is, however, possible that the phenotype and genotype of cancer cell lines may differ from those of the original tumour due to genomic instability. Gene expression profiling of lung tumours and cell lines has demonstrated that, in culture, adenocarcinomas progress towards poorly differentiated phenotypes with expression profiles similar to those for squamous cell and small cell lung carcinomas (Virtanen et al., 2002). However, comparisons of human breast and lung cancer cell lines and their corresponding tumours demonstrated an extremely high correlation for both genotype and phenotype, concluding that cell lines from both cancer types are suitable model systems for the original tumours (Wistuba et al., 1998; Wistuba et al., 1999). In addition, gene expression profiles for the NCI60 cell lines, which are the most commonly used cancer cell lines in cancer research and constitute a proportion of the cell lines used in this chapter, also showed that most were representative of their corresponding tumour types (Wang *et al.*, 2006b). Therefore, the use of cancer cell lines is warranted in this analysis, especially as the study is generally concerned with the number of copy number changes affecting a gene, rather than the tissue specificity.

A second potential drawback is that the ploidy of the cancer cell lines is not known. None of the methods used for detecting copy number changes within CGH data can determine the ploidy, and yet an uploidy is a common characteristic of cancers. Attempts were made to determine the ploidy of cell lines based on the copy numbers of merged segments since, for example, a triploid cell line should only have copy number gains of 1.33, 1.67, 2.00, 2.33, 2.67, and so on, while a tetraploid should have copy number gains of 1.25, 1.5, 1.75, 2, 2.25, and so on. However, the mean copy number ratios for segments are not accurate enough to reliably assign cancers to a particular state. Irrespective of the ploidy, a copy number ratio of 3 indicates that there is a 3-fold increase in the number of copies. In this study, it is assumed that the balance of genes is more important than the actual number, i.e. a 3-fold increase in the number of copies of an oncogene is expected to have the same effect whether the baseline copy number is 2 or 4 genes. In addition, this study is concerned less with the exact copy number of genes, and more with whether genes are amplified or deleted, and the use of a set of copy number thresholds, rather than just one for amplification and one for deletion, ensures that as many candidates as possible are identified.

The analysis does not determine whether an amplified or deleted gene is significantly recurrent. However, genes that are only amplified or deleted in a single cell line may be biologically relevant, as demonstrated for MEIS1, and as many different cancer types were used in the analysis, tissue-specific amplicons and deletions may not be significantly recurrent across all cell lines. A gene for which there is no evidence of a role in cancer may not be a convincing candidate if it is amplified or deleted in a single cell line, but the presence of retroviral insertions within the mouse orthologue provides further support. For all candidates, the number of amplicons or deletions containing the gene and the number of additional genes in the minimal amplified or deleted region are provided to help in assessing the contribution of a gene to tumourigenesis. In Chapter 5, efforts are made to make it easier to identify the most promising candidates by ranking genes and assigning a P-value based on the number of samples in which they are amplified or deleted. In an attempt to filter out less promising candidates, any genes that were coamplified with oncogenes or other mouse candidates were removed from the analysis, and yet co-amplified genes may co-operate in tumourigenesis (see Section 1.3.3.3). Nevertheless, given the number of candidates identified, it was considered more important to remove false positives, even at the expense of some "real" cancer genes.

As demonstrated in Section 4.5.1.4, some mouse candidates do not have human orthologues and are therefore excluded from the analysis. In some cases, the human orthologue may not have been identified, while in others, there may not be an orthologue in the human genome. However, the results of the analysis in Section 4.5.1.4 suggest that the proportion of human orthologues may be higher for "real" mouse candidates than for incorrectly assigned candidates. Any discrepancy in the number of mouse genes and the number of human orthologues does not affect the global comparison of Section 4.5.1, since the randomisation takes only mouse genes with human orthologues. This also prevents any introduction of bias resulting from the fact that only protein-coding genes have human orthologues, and that cancer genes are likely to be predominantly proteincoding. Another possible method for comparing the human and mouse data would be to map the insertion sites across to the human genome and then to assign the insertions to human genes. This could be achieved using the Ensembl Compara API, which enables the retrieval of genomic alignments between mouse and human. This would avoid the problem of lack of orthologues but there are many gaps in the alignment, which would prevent the precise mapping of a considerable proportion of insertions. To demonstrate, prior to mapping the retroviral insertions of Chapter 2 and 3 to the NCBI m36 mouse assembly, insertions were mapped to NCBI m34. Only 64.3% of insertions were successfully mapped across to the human genome (NCBI 35) using the Ensembl Compara API. A further drawback of mapping insertions could be that if there really is no human orthologue for a given mouse candidate gene, or there is a break in synteny between mouse and human, the insertions mapped to the human genome will be assigned to an incorrect gene.

The analysis is also limited by the resolution of the data. Efforts have been made to choose suitable boundaries for the ends of amplicons and deletions, but without increasing the density of the SNPs it is impossible to determine whether genes beyond the first or last amplified or deleted SNP are indeed amplified or deleted. It is also possible that small amplicons and deletions may be missed, while the high levels of noise in the data may also lead to regions of copy number change being missed or falsely identified. Encouragingly, the most successful methods for detecting changes produced similar outputs, and the fact that known and implicated oncogenes and tumour suppressor genes were identified, often in cancer types in which they have previously been shown to be disrupted, was also reassuring. However, in Chapter 5, a higher density SNP array is

used, and is compared to the 10K array to determine whether it represents a significant improvement.