
Chapter 1 

Introduction 

1.1 Mot kat  ion 

All the inherited information that determines the physiology of an organism is encoded in a 

genome which is present in each cell of the organism. The genome of an organism typically 

consists of one or more molecules, each consisting of a linear succession of four DNA (de- 

oxyribonucleic acid) bases symbolised by the four letters A, C, G and T. The complexity of an 

entire organism is thus encoded in a few long molecules of apparently striking simplicity. 

Recent systematic genome sequencing efforts have determined the complete sequence of A, 

C, G and T letters for a number of organisms. Knowledge of the complete DNA sequence 

gives us the opportunity to study the genetics of organisms both at a fundamental molecular 

level and on a global scale. Since the first genome of a multi-cellular organism, the nematode 

Caenorhabditis elegans, was sequenced in 1998 [eSC98] comprising about 100 Mb (million 

bases), the genome sequence of the fruit fly Drosophila melanogaster (120 Mb) [ea001 and of 

the plant Arabidopsis thaliana (125 Mb) [IniOO] have been determined. We have good quality 

draft sequences of the human Homo sapiens [ConOl] and the mouse Mus musculus genomes 

[Con021 (both around 3000 Mb) which will be completed in the near future. We are thus for 

the first time in the possession of the blueprints of several organisms, but without knowing 

how to understand the DNA text’s contents. 

The life of an organism depends on a variety of molecules that carry out specific tasks, one 

of the major groups being proteins. Each protein consists of a linear sequence of amineacids 

which is encoded in a subsequence of the genome, called a gene. One of the most important 

challenges is to find the sections of the DNA which encode proteins, i.e. to find protein coding 

1 



1.1. MOTIVATION 2 

genes, and to determine the amino-acid sequence of the encoded protein. 

With the sequencing of the mouse genome soon to be finished, we can compare the human 

DNA sequence to that of the evolutionarily related mouse genome. By comparing the DNA 

sequences of two related organisms, we can not only study the large scale organisation of 

their genomes, but can also try to use pairs of related subsequences to predict genes. This is 

a promising approach because related organisms have similar proteins which are encoded by 

conserved genes in the DNA of the genomes. By finding and comparing subsequences which 

are conserved between two genomes we can try to predict protein coding genes. 

The main goal of my work presented here is to develop a method for the comparative prediction 

of protein coding genes in pairs of related genomes. This task can be compared to the invention 

of a method for the automatic deciphering of the Rosetta stone. This stone contains one text 

in three different languages (Egyptian hieroglyphics, Demotic and Greek), see Figure 1.1, and 

was carved in 196 BC in Egypt. When it was found in 1799, only one of the three languages 

(Greek) was known. Manual comparative analysis of the three texts was completed in 1822 

and led to the first understanding of both Egyptian hieroglyphics and Demotic. The task 

of comparatively deciphering the DNA texts of several related organisms is similar to the 

Rosetta stone deciphering in that we know that subsections of the texts are in close relation 

to each other, but it is complicated by the following: 

0 We do not have a DNA text which we completely understand, i.e. a text corresponding 

to the Greek text of the Rosetta stone does not exist in the DNA deciphering problem. 

0 The different sections of related DNA texts are not necessarily collinear or have a one- 

to-one correspondence. Figure 1.2 shows an example. There are 22 chromosomes plus 

the X and Y chromosomes in the human genome and 19 chromosomes plus the X and 

Y chromosomes in the mouse genome and the current estimate is that about 99 % 

of the mouse genes have a corresponding human gene. We thus have to deal with 

rearrangements within the related DNA texts and cannot expect the contents of the 

texts (e.g. genes) to have a one-to-one correspondence. 

0 The DNA texts can be very long (around 3000 million A, C, G, T letters each for both 

the mouse and the human genome) and cannot be manually compared on a global scale 

and in a reproducible and efficient way. 

We do not know all the functional entities within DNA texts (like chapters, paragraphs, 
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... ctcagccttgtgtgagttgaggggaggtgtcacatccagctggagtcctttctaagcagc 
cacagcctgatcctcccacttcctcccccaagaaaacattgt~tgatggccataccc 
tgaggttctggtccaaatcggactttctatgaccttctgggtctctagtgaaaactaaag 
actcctctccagaaaaaaacatttggtttctaatgaggcctggaatcttattcttgacct 
ggggagcggaatccctttttgcagtactcccgggccctctgttggggcctccccttcctc 
tccagggtggagtcgaggaggcggggctgcgggcctccttatctctagagccggccctgg 
ctctctggcgcggggccccttagtccgggctttttgccATGGGGTCTCTGTTCCCTCTGT 
CGCTGCTG'ITRTMTGGCGGCCGCCTACCCGGGAGTTGGGAGCGCGCTGGGACGCCGGA 
CTAAGCGGGCGCAAAGCCCCAAGGGTAGCCCTCTCGCGCCCTCCGGGACCTCAGTGCCCT 
TCTGGGTGCGCATGAGCCCGGAGTTCGTGGCTGTGCAGCCGGGGAAGTCAGTGCAGCTCA 
ATTGCAGCAACAGCTGTCCCCAGCCGCAGAATTCCAGCCTCCGCACCCCGCTGCGGCAAG 
GCAAGACGCTCAGAGGGCCGGGTTGGGTGTCTTACCAGCTGCTCGACGTGAGGGCCTGGA 
GCTCCCTCGCGCACTGCCTCGTGACCTGCGCA~AAAACACGCTGGGCCAC~CCAGGA 
TCACCGCCTACAgtgagggacaggggctcggtcccggctggggtgaggggagggggctgg 
aagaggtgggggaagggt agt t gacagt cgct ct at agggagcgcc cgcggac c t cac t c 
agaggctcccccttgccttagAACCGCCCCACAGCGTGA~GGAGCCTCCGGTCTTAA 
AGGGCAGGAAATACACTTTGCGCTGCCACGTGACGCAGGTGTTCCCGGTGGGCTACTTGG 
TGGTGACCCTGAGGCATGGAGCCGGGTCATCTATTCCGAAAGCCT~AGCGCTTCACCG 
GCCTGGATCTGGCCAACGTGACCTTGACCTACGAG~G~~TGGACCCCGCGACTTCT 
GGCAGCCCGTGATCTGCCACGCGCGCCTCAATCTCGACGGC~GGTGGTCCGCAACAGCT 
CGGCACCCATTACACTGATGCTCGgtgaggcacccctgtaaccctggggactaggaggaa 
gggggcagagagagttatgaccccgagagggcgcacagaccaagcgtgagctccacgcgg 
gtcgacagacctccctgtgt tccgt tcctaat tc tcgcct tc tgctccc~GGAGCC 
CCGCGCCCACAGCTTTGGCCTCCGGTTCCATCGCTGCCCTTGTAGGGATCCTCCTCACTG 
TGGGCGCTGCGTACCTATGCAAGTGCCTAGCTATGAAGTCCCAGGCGtaaagggggatgt 
t ct atgccggctgagcgagaaaaagaggaat atgaaacaat ctggggaaatggccat aca 
tggtggctgacgcctgtaatcccagcactttgggaggccgaggcaggagaatcgcttgag 
cccaggagttcgagaccagcctggacaacaacatagtgagaccccgtctatgcaaaaaataca 
caaattagcctggtgtggtggcccgcacctgtggtcccagctacccgggaggctgagttg 
ggaggatcctttgagccctgaaagtcgaggttgcagtgagccttgatcgtgccactgcac 
tccagcctgggggacagagcacgaccctgtctccaaaaataaaataaaaataaaaataaa 
tattggcgggggaaccctctggaatcaataaaggcttccttaaccagcctctgtcctgtg 
acctaagggtccgcattactgcccttcttcggaggaactggtttgtttttgttgttgttg 
ttgtttttgcgatcactttctccaagttccttgtctccctgagggcacctg~ttcct 
cactcagggcccacctggggtcccgaagccccagactctgtgtatccccagcgggtgtca 
cagaaacctctccttctgctggccttatcgagtgggatcagcgcgggccggggagagcca 
cgggcaggggcggggtggggttcatggtatggctttcctgattggcgccgccgccaccac 
gcggcagctctgattggatgttaagtttcctatcccagccccaccttc~accctgtgct 
t t c c t g g a g g c c a a a c a a c t g t g g a g c g a g a a c t c a t c t c c a c g c t g  
gagtgagac cacgaatggtggggaggggagggt c ccacggacat at tgagggacgtggat 
acgcagaagaggtatccatgtggtggcagccgggaaggggtgatcagatggtccacaggg 
aatatcacaaactcgaattctgacgatgttctggtagtcacccagccagatgagcgcatg 
gagttgggggtggggggtgtcaaagcttggggcccggaagcggagtcaaaagcatcaccc 
tcggtcccttgttctcgcgtggatgtcagggcccccacccaccgagcagaaggcggactc 
aggggcgctccagggtggctcgagctcacacacgctgagtagacacgtgcccgctgcacc 
ctgggtaaatacagacccggagccgagcggattctaatttagacgcccgcgaacgctgcg 
cgcacgcacacgtgtcctcggctcgctggcactttcgtcccgccccctccgtcgcgtgcg 
ggagctgacccggaggggtgcttagaggtatggctccgcggggtcaaaaggagaaggatc 
agtgagagaggcatccccacaccctccc ... 

Figure 1.3: A short subsequence of DNA from the human Homo sapiens genome comprising 
one protein coding gene which is evolutionarily related to the gene contained in the mouse Mus 
musculus sequence shown in Figure 1.4. The protein coding parts of the gene are highlighted 
by capitalisation. They correspond to the protein coding exons which are shown as hashed 
boxed in Figure 1.5. The DNA sequence of the whole Homo sapiens genome would correspond 
to about one million pages. 
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...g agtgtcttgtgagtttgtgtacagtcatcacatcagttaggcaaagccctaaggactgc 
cgactcccataatgcctcatgtctggtaacctaacctaaccctaactctgagtctgtggat 
caggttggtccccacccccaccccctttcttttttgagaca~tctctttgtggccatg 
gatgtcctgaaatctgctatgtggaatgggctggccttgacttcacaaagat~ccaac 
ctgtctcctgaatgctaggactaaatgacaaagccactgccatgtct~aaaatctacg 
ttagatagacagggtttcccagtgtagatcaggatggccttgaacttacagagatctgcc 
t ccctgggagtgct gggat caaaggcatgtgccat caccaagcgtt at t t t at t t t tt aa 
t tt t t aaagact t ct tggggc t t acgt aaaaact aaagagcaggt ccagaact gtgcaat 
ggcttttggttgattgtagggtctgatgggaggggaggcaggtatcttcatcagggccgg 
ccgaggcccattctggggcgggccagggtgccttcttatctcctgcggccagcctaaac 
tccctggcgttccgcccgcacttcagcgcgggctttgtgccATGGAGTCTGCCCTTCTGC 
TCCCGTCGCTTTTGCTGGTGGCTGCCTATCCGAGGGGTGGGAGCCCCCAGCAAGAGTGGA 
TGCAAAGTCCTCCCGCGCCTTCCGTGACCTCAGCACCI'TTCTGGGTGCGTCTTAATCCAG 
AGCTAGAGGCCGTGCCTCCCGGG~TCAGCGTG~AACTGCAGCCACAACTGCCCCC 
TGCCGGTGCATTCCAGCCTCGCACCCAACTGCGGCAGGGAAAGATAG~AATGGATCCG 
GCTGGGTATCTTACCAGCTACTGGATGTGAGGGCCTGGAATTCCAAGGTGCGCTGCGTCG 
TCACTTGCGCAGGAGAAACCCGAGAGGCCACCGCCAGGATCACTGCTTACAgtgagggag 
accggggctcaggccgggctggggtgaggggagaggggtggaggaagcggatagatggta 
attgctttaaggggtgcctgtgggccttatctctcttgccttagAAC~CCAGAAGCGT 
GATCTTGGAGCCTCCGGTCCAGTGGGCCACAAGTACACTCTGCGAT~ATGTGACACA 
CGTGTTCCCAGTGGGATGTGGTGAGCCTGAGAAGAGGT~CGAGTGATTTATCA 
TGAAAGCCTGGAGCGCTTCACCGGTTCAGATTTGGCTAATGTCACI'TTGACCTACGTGAT 
GCGGGCCGGACTCAACGACC~~AGCCACTCACCTGCCATGCGCGCCTCAATCTCGA 
CGGGCTAGTGGTGCGCAGCAGCTCGGCACCTG'lTATGTTGACAGTCCTCGgtgaggcatc 
ctgtaatcccagggaatgggtgcgggagaggggatgttgccactccaagggggcctgcag 
aacaggcgtgggctccacgcttggcggtaacctcctcagacctcctagttcctgattttcactcc 
tgcccacagCTTTAAGCCCAGCCTCTATAGCCTTGGCCTCTACCTCCATCGCAACCCTGG 
TGGGGATCCTCCTGGCTGTGGGGGCTGTCTACGTGCGCAAGTACCTGGCTGTGCAGACTt 
agttatagatctgttttcgatgcctgacaagaggg~gaaaagaacttcag~aatt 
aattcagagactcttattgaaacaataaagtcttcctcctc~ctctgccttac~tc 
ttggagaaagtggtttcttttttaaggtaccttaccttactttttccaaattccttacgtagggg 
ctgaagat t agt agatt agaggt agt act ggaggaaacaacacct t gaaat t t ct cct t c 
aagg c c ag c at ggggt c c t agaac c cgagt t c c t c t g cgt agagt t t t gt t ag c t t t at t 
tgtgcggggcagaaagactaaactgacctcccctccagggctgactcttggtatggcttt 
ttctgattggctccgctgatacaggcc~agctctgattgg~ctaagtttcccttctc 
ctccctccttttccactacggagcctgtgcgttactagagaaggccagcgggtggagcta 
gacct gat t ccccaaggtt at cat t aattggggggggggggggaggtagaaacact cgag 
t aggcggggcctt ctt caagt agtagaggaagcggct aact agataggaaat ct agcata 
gcaacaagttaagagatgattgttcaggccacgtgagctgtcacagacttgcttcctggc 
gttgtgcttgttgtctccgagtctggtatgtatgtagagagggatgtcaaagctggggtc 
aaagtgtccccagttgatcttttggtccagcgtgaattgcagaatctcgcactagttacc 
cagtagaggcggccacactcctggcgaggagggcgcagaagctctgctgagagactagac 
a c a c a a c a g c g t t g t a g a c a c a t t c c c g c t g c a c t c t g g g g c c g  
gagtcgactctaatttagaagcctgcgaacgctgcgcacacgcacacgtgtccgagtctt 
gctggcact t gat ccccct ct t c ct t cgccgcgt gcgcggag . . . 

Figure 1.4: A short subsequence of DNA from the mouse Mus musculus genome comprising 
one protein coding gene. The protein coding parts of the gene are highlighted by capitali- 
sation. They correspond to the protein coding exons which are shown as hashed boxed in 
Figure 1.5. The DNA sequence of the whole Mus musculus genome would correspond to 
about one million pages. 
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sentences and words) and how they structure the text hierarchically. We know for 

example of protein coding genes and promoters and other small entities, but do not 

know very much about how they are grouped into larger functional entities. 

As is apparent from viewing only small pieces of DNA data such as those shown in Figure 1.3 

and Figure 1.4, computational methods which can be applied to large amounts of data in a 

reproducible way have much potential for helping to unravel the text of genomes by proposing 

answers to biologically interesting questions which can be experimentally verified. 

This introductory chapter provides the biological background, an overview of already existing 

methods for gene prediction and the theoretical background on which my work is built. Chap 

ter 2 presents the pair HMM underlying DOUBLESCAN and PROJECTOR, two new methods 

which can be used for the comparative prediction of genes, as well as a new algorithm, called 

the Stepping Stone algorithm, by which genes can be predicted with essentially linear time 

and memory requirements, thus enabling large scale analyses. Chapter 3 demonstrates that 

DOUBLESCAN can be used to predict genes in mouse and human DNA. Chapter 4 presents 

a variant of DOUBLESCAN, called PROJECTOR, by which genes which are known in one or- 

ganism can be used to find related genes in another related organism as exemplified on a 

set of mouse and human DNA sequences. Chapter 5 demonstrates that DOUBLESCAN and 

PROJECTOR can be easily adapted to analyse other pairs of related genomes by showing their 

performance for predicting genes in C. elegans and C. briggsae DNA sequences. Chapter 6 

introduces a library of C++ classes by which large and complex projects such as DOUBLESCAN 

and PROJECTOR can be implemented in a short time. 

1.2 Biological background 

In eukaryotes, a subsequence of the genomic DNA is linked to its functional expression as a 

protein by a series of steps which can be roughly grouped into [HRS+87]: 

0 transcription of a DNA subsequence into an RNA (ribonucleic acid) sequence 

0 modification of the RNA sequence to produce a mature messenger RNA 

0 translation of the messenger RNA sequence into a protein sequence 

0 modification of the protein sequence 
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Figure 1.5: Schematic view of the steps by which a subsequence of the genomic DNA is linked 
to the amino-acid sequence of the protein it encodes. Each box (see boxes at RNA level) 
represents an exon and each kinked line an intron. The protein coding parts of each exon are 
hashed. See the text for a description of the processes. 
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See Figure 1.5 for a schematic view of the events in which the sequences involved are sim- 

plistically represented as linear molecules. A subsequence of the genomic DNA is transcribed 

into an RNA molecule by RNA polymerase after the genomic DNA has been prepared for 

transcription. The RNA molecule then undergoes a variety of modifications such as the mod- 

ifications of its ends (as shown in Figure 1.5 for the 3’ end) and splicing. During splicing 

small nuclear ribonucleoproteins (snRNPs) excise intronic sequences and join the exons into 

a shorter messenger RNA molecule (mRNA). This mRNA molecule is then transported from 

the nucleus to the cytoplasm where the continuous segment of exons is translated into the 

corresponding sequence of amino-acids by the ribosome and a variety of tRNA molecules. 

Depending on the final location of the protein, the amino-acid sequence may undergo modi- 

fications such as the cleavage of signal sequences. The protein coding part of a gene starts at 

the 5’ end with a start codon and finishes on the 3’ end before a stop codon. Splice sites are 

the 5’ and 3’ ends of introns. 

The aim in ab initio gene prediction is to find genes and to infer their gene structures from a 

given DNA sequence of A, C, G and T letters only. The assignment of functional information to 

the DNA sequence is called annotation. By knowing the annotation of the DNA sequence i.e. 

the exon-intron structure of its genes as shown in Figure 1.5, we can directly infer the amino- 

acid sequence of the corresponding protein. In principle, it suflices to known the protein 

coding parts of the exons of a gene to derive the amino-acid sequence of the encoded protein. 

For the rest of this dissertation, the term gene refers to protein coding genes and the term 

exon to the protein coding part of an exon unless stated otherwise. 

Traditionally, ab initio gene prediction methods for eukaryotes deal with one DNA sequence 

at a time. Methods for comparative gene ab initio gene prediction exploit the fact that related 

proteins have similar amino-acid sequences which are encoded in genes of similar exon-intron 

structure and that the exons of related genes are typically much more conserved than the 

introns which do not encode protein information. 

As the method presented in this dissertation annotates two DNA sequences simultaneously, 

gene prediction methods which deal with only one sequence are only briefly reviewed and only 

those that are of relevance to this work are presented. 
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1.3 Existing non-comparative methods for ab initio gene pre- 

diction 

There have been numerous studies with the aim to predict the intron and exon structure 

of eukaryotic genes given the DNA sequence as the only input information. Each of them 

typically consists of one or more programs which employ one or more methods to finally 

arrive at a prediction. The discussion is grouped by the methods employed rather than by 

the different ways in which they are combined into one program to emphasise the different 

underlying concepts. 

1.3.1 Types of evidence 

When trying to annotate a sequence of DNA we can make use of a variety of sequence signals 

which indicate the presence of functional elements or which mark a boundary between them. 

The principal measures used are: 

Coding measures Exons and introns exhibit a different usage of nucleotide patterns. One 

statistically significant measure of difference found [CB86, JMCBSO, FLS92, FT92] was that 

of relative frequencies of six nucleotide words, so-called hexamers. 

Sequence signals Besides a compositional bias between exons and introns, their boundaries 

can be detected by certain sequence signals, as for example the acceptor and donor splice sites 

at the 5’ and 3’ sides of introns. Other signals include the translation initiation signal around 

the start codon (Kozak consensus [ K o z ~ ~ ] ) ,  the translation terminal signal around the stop 

codon, the poly-adenylation signal and promoter sequences. 

The individual statistical significance of any of these measures is not sufficient to reliably 

predict the exon and intron structure of a given DNA sequence [BEKSl, CA961. Only by 

combining several signals into a valid gene structure can we attempt to successfully predict 

genes. 

1.3.2 Methods 

This section concentrates on the description of those methods for integrating sequence signals 

which have turned out to be the most successful in ab initio gene prediction, namely neural 

networks, discriminants and hidden Markov models. 
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Besides these methods, other methods, such as rule-based methods (as used in the program 

GENEID [GKDS92]), linguistic methods (see for example the program GENLANG [DS94]) and 

decision trees (employed by the program MORGAN [SDFH97]) have been proposed to predict 

exons or genes. 

Neural networks 

Neural networks in gene prediction are typically used for combining signals from numerous 

sources, as for example from sequence motifs and nucleotide frequencies, into one score. 

A neural network consists of an input layer of so-called neurons which accept the input values, 

i.e. the scores. The input signals propagate from the neurons of the input layer to the neurons 

of one or more layers of hidden neurons until the propagated signal finally reaches the output 

neuron. The final result depends on the architecture of the neural network as well as on 

the function with which each neuron merges several incoming scores into one outgoing score. 

These functions typically depend on multiple parameters which are given some initial values 

without knowing their optimal values. These parameters and even the architecture of the 

neural network can be adjusted by training it with a representative data set for which the 

correct outcome is known. The trained neural network can then be used on unknown data 

sets. Signal propagation in the neural network is unidirectional though the training of the 

parameters need not be. A general overview on neural networks can be found in [Bis95]. 

Neural networks are used in the GRAIL program [UM91] to identify exons which are later 

assembled into genes. The program GENEPARSER [SS93] exemplifies how neural networks 

can be used in conjunction with other methods to predict the intron and exon structure 

of a DNA sequence. The neural network is used to combine the scores of different sources 

of information such as codon usage, compositional complexity, length distributions, k-tuple 

frequencies and splice site signals into one score under the hypothesis that an exon or intron 

is found at a certain position in the DNA sequence. Dynamic programming is then used to 

assemble these potential exons and introns at different positions along the DNA sequence into 

a gene structure with a valid splicing pattern which maximises the overall score. 

Discriminant met hods 

Linear discriminants are another approach to the classification of signal sequences that was 

used in the programs HEXON and FEX [SSL96]. Here an optimal separating plane is obtained 
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between the true and false examples viewed as points in a multi-dimensional space, under the 

assumption that the true and false distributions are both gaussian with the same covariance 

matrix, but different means. The program MZEF [Zha97] employs quadratic discriminants 

[McL92] to predict independent internal coding exons in genomic DNA sequences. The char- 

acteristic features (e.g. splice site scores) of true and false internal exons are assumed to 

be described by two multinomial distributions in a multi-dimensional space which may have 

different means and different covariances. Quadratic discriminants can model the boundary 

between these two distributions and thus distinguish between true and false exons more ef- 

fectively than linear discriminants as they are not limited to separating the two distributions 

by hyper-planes. 

Hidden Markov models 

Hidden Markov models (HMMs) are a mathematical method to linearly label a sequence 

with labels from a finite set of states. The states of the finite set can be defined to reflect 

our knowledge of the biological problem and classify the letters of the input sequence into 

mutually exclusive classes, as for example ‘intron’ and ‘exon’ and other labels used for an 

annot at ion. 

A hidden Markov model can be imagined as a finite set of states which are connected by 

directional transitions. Each transition connects two states and has a transition probability 

associated with it. Each state has a predefined action, for example it reads one letter from 

the input sequence and thereby assigns the state’s label to it. From that state one can pass to 

one of the states to which it is connected. By thus walking along a state path in the Markov 

model, the letters of the input sequence are successively labelled with state labels. 

The following paragraphs give some definitions and explain Markov models by giving a simple 

example. 

Definitions A Markov model or Markov chain associates every random variable of a discrete 

time stochastic process x1,x2,. . . with a state from a finite set of states. A Markov chain is 

said to be of order n if the probability of a transition from state si at time i to state $i+l at 

time i + 1 depends only on the n previous states (si-n, . . . s i ) .  If the transition probabilities 

are independent of time, the Markov chain is said to be homogeneous, and inhomogeneous 

otherwise. 
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The notion of Markov chains can be extended by associating a probability distribution r, 

with every state s in order to model the time the Markov chain spends in this state. This 

type of Markov chain is called a semi Markov model  HOW^^]. 
Another way to extend the notion of Markov chains is to define a so-called hidden Markov 

model (HMM) for which every step xi of the Markov process consists itself of a stochastic 

process that generates the observed values yi. Also this inner stochastic process can take 

values from another finite state space [BP66, Rab891. If the underlying Markov process is 

a semi Markov Model, the model is called an explicit state duration hidden Markov model, 

generalised hidden Markov model or hidden semi Markov model (HSMM) [Rab89, KHRE961. 

A text book on the application of Markov models in the context of biology is [DEKM98]. 

Example of a simple Markov model The above definitions can be illustrated by the 

example of a very simple Markov model which is entirely trivial, but which helps to make the 

distinction between a Markov model and a hidden Markov model clear. 

As already mentioned, a Markov model can be imagined as a finite set of states which are 

connected by transitions. Each state corresponds to one of the four observable bases of 

the DNA alphabet (Le. A, C, G and T). The states are connected by directional transitions 

which each have a transition probability associated with them. t,(y) denotes the transition 

probability for going from state x to state y. By reading the letters of an input DNA sequence 

X = ( q , x 2 , .  . . ,xz) of length 2, xj E {A, C,G,T}, the Markov model assigns the following 

probability to the sequence: 

2-1 

P ( X )  = n t,i h + l )  
i=l 

As each state of this Markov model corresponds to one of the four possible observables A, C, 

G and T, the state path in this Markov model simply corresponds to the sequence of letters 

in the input DNA sequence. 

Turning the  Markov model into a hidden Markov model The above Markov model 

can be turned into a hidden Markov model by separating the states from the observables and 

by introducing emission probabilities e, for each state s. The emission probability of state s 

for reading letter "cj at position j in the sequence is denoted e,(zj). 

For a hidden Markov model, the above formula for the probability which the hidden Markov 
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within 

Figure 1.6: Example of a simple HMM which classifies the letters of an input DNA sequence 
into those within and those outside CpG islands. 

model assigns to an input DNA sequence X = (21 ,  2 2 , .  . . , 22) and a chosen state path 

S = (SI,  s2,. . . , SZ) of length 2 then reads: 

2 - 1  

P ( X ,  S) = e,, ( 2 1 )  * rI t s i  (Si+l)  e%+, h + l )  
i=l 

The use of emission probabilities in hidden Markov models facilitates the definition of states 

which closely represent biologically motivated classes. To give an example, see Figure 1.6: 

when searching a DNA sequence for CpG islands [Bir87], we can encounter situations where 

a C in the DNA sequence can either be a frequently occurring C within a CpG island (read 

by the state within CpG island and thereby labelled C within CpG island) or a C outside a 

CpG island (read by the state outside CpG island and labelled C outside CpG island) which 

we would expect to encounter only rarely. The emission probabilities of these two states can 

be defined to distinguish between these two classes, e.g. the state within CpG island might 

have a high emission probability for reading a C and the state outside CpG island have a 

lower emission probability for reading a C. CpG islands are typically several thousand bases 

long and are better modelled using first order emission probabilities estate(xiIzi-l) so that the 

probability of reading letter xi at position i in the sequence depends on the letter zi -1  at the 

previous position i - 1. 

The action of states in HMMs can be extended to read zero, one or more letters from the 

input sequence. 

Using an HMM to predict an annotation Once the states and transitions of a hidden 

Markov model have been defined to capture the features of the biological system which one 

wishes to describe and its emission and transition probabilities have been set, it can be used 

to assign a probability to a given input sequence and a chosen state path. In general, there 

exist a multitude of possible state paths and it is not clear a priori which state path to choose. 
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As the state path can be translated into an annotation of the input sequence, the aim is to 

select the state path that corresponds to the correct annotation of the sequence. The task is 

therefore to find a method which retrieves the desired state path for a given input sequence 

and a given HMM. 

The above formula for P ( X ,  S) expresses the probability which the hidden Markov model 

assigns to a given input sequence X and a chosen state path S as function of the transition 

and emission probabilities encountered on the state path. If the emission and transition 

probabilities of the HMM have been chosen appropriately, we assume that the state path 

with the highest probability P ( X ,  S), denoted SWt, corresponds to the correct annotation. 

The task is then to find this optimal state path, Sopt, which maximises P ( X ,  S). This optimal 

state path can be retrieved using the Viterbi algorithm [Vit67] and is therefore also called the 

Viterbi path. Once the optimal state path has been determined, its sequence of states can be 

translated into an annotation of the input sequence. 

HMM based gene prediction programs The program GENSCAN [BK97] employs an 

explicit state duration HMM which models the length distribution of exons. It is capable 

of predicting complete, partial and multiple genes and simultaneously predicts genes on the 

forward and the reverse complemented strand of the input DNA sequence. GENSCAN’S HMM 

has separate states for the exon of single exon genes and for initial, intermediate and terminal 

exons, as well as for a promoter, the 5’ untranslated region, the 3’ untranslated region and the 

poly-A signal. The HMM integrates information about several sequence signals such as splice 

sites, promoters, poly-A signals and start codons. GENSCAN’S parameters are chosen according 

to one of four GC contents intervals [DMG95, ConOl] in which the GC contents of the input 

sequence falls. Initially, GENSCAN was trained to predict human genes, but its performance at 

nucleotide or exon level on genes of rodent (mostly mouse and rat DNA sequences) and non- 

mammalian vertebrates (fish, amphibian, reptilian and avian DNA sequences) is not much 

lower than that for primate genes, see [Bur97, pp. 106-1071. GENSCAN is one of the reference 

programs for the ab initio prediction of human genes. 

A program which combines an HMM with neural networks is GENIE [KHRE96]. The program 

HMMGENE [Kro97] is also based on an HMM, but uses series of identical states to model 

length distributions for exons whereas DOUBLESCAN employs an explicit state duration HMM. 

For a given input sequence, HMMGENE reports the best labeled state path using a heuristic 
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method (N-best method) rather than the most likely state path using the exact Viterbi 

algorithm as is done by GENSCAN. 

1.3.3 Summary 

The methods presented above can be grouped in two main groups: methods which can have 

a probabilistic interpretation and those which cannot. Those based on Markov models are 

the most amenable to a probabilistic interpretation. With some effort, rule-based methods, 

linguistic methods, decision trees and discriminants can also be provided with a probabilistic 

framework, see [SH94]. Neural networks lack this feature as probability tags attached to 

the input cannot be propagated to the output. This lack of statistical accessibility does not 

mean that they have an inferior performance with respect to other methods, but it limits the 

amount we can learn about how they produce results, how they can be trained and why they 

may fail to perform well. 

Some features of the above methods, for example rule-based methods or decision trees, can 

be captured by hidden Markov models. The advantage of the latter method is that it can 

simultaneously work on splice sites in a way a decision tree method might do, and at the same 

time keep track of more global features such as the exon phase. If a hidden Markov model 

is set up correctly, it will by definition retrieve a valid state path. There is, for example, no 

need to go through a set of single exons and to decide how to combine them into one gene, a 

partial gene, several genes or maybe even no gene at all. 

These are the main reasons why we chose to work with Markov models. Comparisons of the 

performance of different gene predicion program on a variety of data sets can be found in 

[BG96, Cla97, RHH+OO]. 

1.4 Existing comparative met hods 

Research in the area of ab initio prediction of genes has so far focused on methods that 

take one DNA sequence and predict its gene structure, e.g. [BK97], and comparative gene 

prediction methods have only recently started to emerge. They use the same types of evidence 

as non-comparative methods, see Section 1.3.1, together with similarity information from 

evolutionarily conserved subsequences and gene structures. The following paragraphs present 

the different methods which are used to combine these types of evidence into a prediction. 
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1.4.1 Conservation detect ion met hods 

Many of the earlier comparative methods do not aim to identify functional elements such as 

exons or entire gene structures, but only report subsequences which are conserved between 

two input DNA sequences without explicitly assigning a functional annotation to them. 

Dot plots This method is based on the simple idea that two sequences can be compared 

by drawing one sequence along one axis and the other sequence along the other axis of a 

two-dimensional matrix and by assigning a 1 to a matrix element if the two corresponding 

letters of the sequences match, and a 0 where they do not match. This gives rise to a two 

dimensional matrix with 1s and Os. Two identical subsequences give rise to a diagonal of Is, 

whereas nonmatching subsequences correspond to areas with randomly distributed 1s. This 

is the basic principle upon which dot-plots are based. These plots can be refined by averaging 

over a selected diagonal and by applying some threshold value as done in the DOTTER program 

[SD96]. 

Dot plots do not predict a functional annotation as the underlying method does not know 

about exons, introns and valid gene structures. 

Percent identity plots In this method, a gapped alignment is made between two se- 

quences, say A and B. The percent identity plot is made by showing one of the two sequences, 

say sequence A, along the horizontal axis with the vertical axis showing how similar this part 

of sequence A is to the section of B which this is aligned to. Conserved regions show a high 

value of percent identity, non-conserved regions a low value. 

A program called PIP was used in [OMM+97] to gain a first overview of the level of similarity 

between two DNA sequences. The authors refined their analysis by searching for gapped 

alignments using the SIM program [HHMSO] in which the user can specify the penalty for 

a non-match and the two parameters for affine gap-penalties. These alignments were then 

transformed into precent identity plots relative to the positions in one of the two sequences. 

Similarly to dot plots, also percent identity plots do not give a functional annotation and do 

not predict genes. 

Block aligner A pair hidden Markov model called DBA (‘DNA block aligner’) was intro- 

duced in [JBD99] to divide DNA subsequences into segments of different levels of percent 
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identity. However, its states do not capture the different types of conservation between pro- 

tein coding and non coding subsequences. DBA thus does not try to identify exons, introns 

or gene structures and was used in [JBD99] to study non protein coding DNA sequences in 

orthologous mouse and human gene pairs. 

1.4.2 Met hods for cornparat ive functional predict ion 

The following methods have all emerged in the last few years and aim to make use of com- 

parative information in two DNA sequences to predict functional elements such as exons or 

entire gene structures (refer to Figure 1.7 for an overview). 

Prediction of protein coding subsequences The first attempt towards a comparative 

prediction of pairs of exons in two evolutionarily related DNA sequences was made in [KZOO] 

by introducing the program WABA (‘wobble aware bulk aligner’). The underlying pair hidden 

Markov model (pair HMM, see Section 1.5.1 for an introduction) can distinguish between 

the different types of conservation between conserved protein coding and non coding DNA 

subsequences. It identifies and aligns subsequences which may be protein coding. However, 

as the pair HMM neither includes special states for splice sites nor uses scores from a splice 

site prediction program, the identification of the exact exon boundaries is not attempted. 

Incorporating similarity information into non-comparative hidden Markov mod- 

els Cross species similary can be incorporated into non-comparative methods such as hidden 

Markov models which operate on one DNA sequence only. [KFDBOl] proposed an extension 

of the GENSCAN program [BK97], called TWINSCAN, which integrates cross-species similarity 

at DNA level into the probabilities of a non-comparative model. In the first step, a local align- 

ment is generated between the target sequence (which is the DNA sequence to be annotated) 

and the informant sequence (which is a DNA sequence which is similar to the target sequence). 

This local alignment is then converted into a conservation sequence which indicates for every 

nucleotide in the target sequence one of three possible levels of conservation. Using the target 

sequence of DNA letters and the conservation sequence, the state path which maximises the 

joint probability of observing both the nucleotide and the conservation sequence is derived 

using the same optimisation algorithm as in GENSCAN. This joint probability is the product 

of the DNA sequence’s probability and the conservation sequence’s probability. The latter is 

calculated according to a conservation model which is defined for every state in the HMM of 



1.4. EXISTING COMPARATIVE METHODS 18 

/ 
/ 

b 

(1) input rn 

output e 

/ 
/ 

(4) input 1 i output 

input 

/ 

/ 

/ 
/ 

Figure 1.7: Overview over different types of ab  initio gene prediction methods: (1) non- 
comparative gene prediction (e.g. GENSCAN), (2) non-comparative gene prediction which 
integrates homology information from a local alignment (e.g. TWINSCAN), (3) comparative 
gene prediction which is based on a global alignment (eg. GLASS and ROSETTA), (4) com- 
parative gene prediction which is based on a local alignment (e.g. CEM and SGP-1) and 
(5) comparative gene prediction where both alignment and genes are simultaneously pre- 
dicted (DOUBLESCAN used with the Hirschberg algorithm). Refer to the text for a detailed 
description of the methods. 
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GENSCAN and which is based on fifth order Markov chains. TWINSCAN is not symmetric in 

the two input sequences and typically uses repeat-masked input sequences. 

Comparative gene prediction in both sequences using a multi-step approach Any 

method for comparative ab initio gene prediction has to solve two problems: that of aligning 

the two input sequences and that of predicting gene structures for each of the two input 

sequences. One can try to solve these two problemes simultaneously (as is attempted in this 

dissertation, see Chapter 2, Chapter 3 and Chapter 5 ) ,  but one can also try to solve them 

with some level of independence. 

The latter approach was taken in the following studies: 

[BPM+OO] predicts gene structures in a two step approach by first globally aligning the two 

input DNA sequences using the program GLASS and by then identifying coding exons in both 

sequences and by merging them into identical gene structures using the program ROSETTA. 

The gene structures in the two sequences are assumed to have the same number of exons. The 

program does not deal with the two strands of each sequence simultaneously, but generates 

two independent gene predictions, one for each strand. The program works throughout with 

repeat-masked sequences which are used both for generating the global alignment and also 

the final gene structures. 

Another multi-step program, called CEM (‘conserved exon method’), is presented in [BHOO]. 

In the first step, a local alignment of the two repeat-masked input sequences is generated 

using one of the existing programs. The next steps are executed for every match of the 

local alignment separately: a set of putative conserved exons is identified for every sequence 

separately. Next, only those pairs of putative conserved exons are retained that contain the 

match. The optimal alignment between the start point of each exon pair and the midpoint 

of the match, as well as that between the midpoint of the match and the end point of each 

exon pair is calculated using full dynamic programming. These alignments are converted 

into a set of alignments between every start and every end point which each have the score 

associated to it that was calculated in the dynamic programming. For every match of the 

initially generated local alignment, we then have a set of n-tuples each consisting of a start 

and end point, an alignment between them and a score. Complete gene structures are then 

built from this set of all n-tuples using dynamic programming with the assumption that the 

correct orthologous gene structures have the highest overall alignment score. CEM is capable 
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of predicting partial, complete and multiple genes. It predicts genes on both strands by 

running once on the forward and once on the reverse complemented strand and then merging 

the results into one set of genes which can lie on both strands. The prediction steps in CEM 

rely very much on the matches returned by the local alignment. If an exon pair is not hit by 

a match in the local alignment, it will be missing in the predicted genes. Similar genes are 

assumed to have the same number of exons. 

Another example for the multi-step approach to comparative gene prediction is introduced in 

a program called SGP-1 (‘syntenic gene prediction’) [WGJMOGOl]. In the first step, a local 

pairwise alignment is computed with one of the available programs. The matches of the local 

alignment may then be post-processed to reduce noice, if desired. In the second step (which 

is completely independent of the first step), a list of potential exons is generated for each of 

the two sequences separately. In the third step, the results of the first two steps are merged 

by retaining only those exons that are compatible with the alignment. This generates pairs 

of potential exons. In the fourth step, each exon pair is a assigned a score which is the sum of 

a similarity score and a sequence signal score. Finally, the list of exons is assembled into gene 

structures for each sequence independently. SGP-1 can deal with genes on both strands as 

well as with the partial and multiple genes. Further, as it is based on a local alignment of the 

two sequences, the genes do not have to appear collinearly within the two sequences. As the 

gene structures within each sequence are assembled independently of the other sequence, a 

one-to-one relationship between the genes in the two sequences or a one-to-one correspondence 

between the exons of two related gene structures are not automatically guaranteed. SGP-1 

relies on the initial local alignments only for the definition of potential exons, but does not use 

similarity information to predict similar gene structures in the two sequences simultaneously 

(though this is what is likely to happen effectively if the sequences are well conserved and the 

local alignments coincide with the global alignment). There are thus very few steps involved 

in SGP-1 which depend quadratically on the length of the input sequence and which axe thus 

time and memory consuming (a problem which GLASS and ROSETTA face to some extent and 

which limits the use of the fully pair HMM based programs DBA and WABA to rather short 

sequences). On the other hand, the similarity information is there and it should be possible 

to make good use of it in the simultaneous prediction of gene structures in the two sequences. 
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Ab initio comparative gene prediction using pair HMMs Pair hidden Markov mod- 

els (pair HMMs) are the natural generalisation of hidden Markov models (see Section 1.3.2) 

to two input sequences. They provide a fully probabilistic framework and the pair HMM’s 

states, transitions and parameters have an intuitive interpretation. Pair HMMs are intro- 

duced in Section 1.5.1. As the mathematical concept of Markov models was very successfully 

applied to non-comparative ab  initio gene prediction as shown by the program GENSCAN, see 

Section 1.3.2, it is tempting to try to use pair HMMs for the comparative ab initio prediction 

of genes. 

[NGMOl] present a method called PRO-GEN which they evaluate on a set of human-mouse, 

human-Xenopus and human-Drosophila rnelanogaster gene pairs. The underlying pair HMM 

can deal also with pairs of genes that are related by events of exon-fusion or exon-splitting, 

but it assumes each of the two input DNA sequences to contain exactly one complete gene. 

It predicts genes only in the input sequences, but not simultaneously in their corresponding 

reverse complemented strands. In a first step, potential splice sites and translation start and 

end sites are predicted for each of the two input DNA sequences separately. The Viterbi 

matrix is then calculated taking into into account the constraints imposed by the potential 

splice sites and translation start and end sites. The Viterbi algorithm is then used to derive 

the optimally scoring state path through the pair HMM with memory and time requirements 

which depend quadratically on the length of the input sequence. Pairs of codons within 

exons are scored using scores from the PAM120 matrix, whereas introns are not scored on 

a nucleotide by nucleotide basis, but rather by a fixed constant which is independent of the 

intron’s length. A prediction generated by PRO-GEN consists of a complete gene in each DNA 

sequence as well as an alignment between corresponding exons. Note that the program does 

not predict conserved subsequences within introns or intergenic regions. 

The pair HMM presented in this dissertation has been accepted for publication [MD02]. 

Recently, similar strategies were proposed by other authors [PACOl], but no implementation 

and evaluation has yet been published. 

1.4.3 Summary 

The comparative methods above can be subdivided into those that try to predict functional 

elements and those that do not. The latter provide some sort of alignment between two 

input DNA sequences which subdivides every sequence into subsequences of different levels of 
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conservation without explicitly giving them a functional prediction. The findings in [JBD99] 

suggest that the length and percent identity of these conserved subsequences are generally 

not sufficient to allow their reliable functional annotation. 

In order to attempt the comparative prediction of genes, sequence signals such as splice sites 

and start codons have to be integrated into the prediction process and single functional ele- 

ments such as potential exons have to be grouped into valid gene structures. As mentioned 

earlier, any method for comparative ab initio gene prediction has to solve both an align- 

ment and a gene prediction problem. These two problems can be solved simultaneously or 

sequentially, with some independence (see Figure 1.7). 

Except for the method presented in [NGMOl] (which assumes the presence of one complete 

gene in each input DNA sequence), the method proposed in [PAC011 and the method pre- 

sented in this dissertation, the methods developed so far align and predict gene structures 

sequentially. This approach has the advantage that the time and memory requirements of 

most steps in the prediction process scale linearly with the length of the input DNA sequence 

as they are applied to each sequence independently. The multi-step methods for compar- 

ative ab initio gene prediction are therefore naturally well suited for applications on large 

DNA sequences. However, as the final gene prediction steps rely on the initial local or global 

alignment between the two input sequences, errors in the initial alignment may propagate to 

the gene prediction step which then has difficulties correcting for them. These methods thus 

assume that a fairly accurate local or global alignment can be made between the two input 

sequences. Furthermore, the prediction of the final gene structures in the two sequences is 

either done independently and thus does not make maximal use of the similarity information 

(as e.g. in the program SGP-1) or is done in very close dependence (as e.g. in the program 

CEM) which is probably best suited for pairs of closely related genes. 

As opposed to the multi-step methods which try to solve the alignment and gene prediction 

sequentially, pair HMM based methods are suited to solve both in one step. As is shown 

in this work (see Chapter 2), the states and transitions of a pair HMM can be set up to 

simultaneously align the two input DNA sequences and to predict gene structures in both 

of the two sequences. The aim is to thereby obtain both, improved gene predictions and an 

improved global alignment which should also highlight conserved subsequences of yet unknown 

function, see (5) in Figure 1.7. The mathematical concept of pair HMMs can be used in a 

fully probabilistic way and sequence signals such as splice site scores and start codon scores 
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can be fully integrated. 

Depending on the definition of states, the pair HMM can also be set up to be able to align 

more diverged pairs of genes which are related by events of exon-fusion or exon-splitting. 

The main advantage of pair HMM based methods is that the gene prediction process is not 

separated from the alignment process and the similarity information between the sequences 

is fully used to aid the gene prediction process and vice versa. The heuristical ideas and 

assumptions used in the multi-step methods which may impose unjustified prejudices and 

restrictions on the gene finding procedure, are essentially not needed within pair HMMs and 

the prediction process relies only on a few very basic assumptions. However, the integrated 

alignment and gene prediction approach has the disadvantage that the time and memory re- 

quirements of the prediction process scale quadratically with the length of the input sequence 

which limits the applicability to rather short DNA sequences or makes the implementation 

technically challenging. We solve this problem by introducing the Stepping Stone algorithm 

whose memory and time requirements scale linearly with the length of the input sequence, 

see Chapter 2. 

It remains to be seen how well multi-step methods perform in comparison to each other and 

to pair HMM based methods, how each method performs on more diverged pairs of genes and 

how readily it can be adapted to successfully analyse other pairs of genomes. It will be crucial 

to see how the performance of each method scales when going from nucleotide level to gene 

level as this should be a good indicator of how well and in which way similarity information is 

utilised within each method (except for TWINSCAN and PRO-GEN, the gene level performance 

of the above mentioned comparative methods is not reported). 

1.5 Theoretical background 

Traditionally, ab initio gene prediction deals with one DNA sequence at a time. Among the 

most successful methods are hidden Markov models as exemplified by GENSCAN [BK97] and 

HMMGENE [Kro97]. In order to extend gene prediction to work on two DNA sequences 

simultaneously, we employ an extension of hidden Markov models, called pair hidden Markov 

models (pair HMMs) [DEKM98, KZOO]. 
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1.5.1 Pair hidden Markov models 

In analogy to the previously introduced Markov models, see Section 1.3.2, the definition of a 

state can be extended to deal with two sequences instead of only one sequence. All previously 

given definitions and remarks which were made for variants of Markov models in Section 1.3.2 

also apply to pair hidden Markov models. 

The difference between a pair HMM and an HMM is that a pair HMM deals with two input 

sequences instead of only one. The states of a pair HMM read letters from only one of the 

two input sequences or from both of them. As for HMMs, a state of a pair HMM assigns 

an emission probability to the letters it reads. The pair HMM then passes to one of the 

states to which the current state is connected by directed transitions and assigns a transition 

probability to this action. This procedure is repeated until all letters of both sequences have 

been read. The sequence of states passed through is called the state path. 

Each state assigns labels to the letters it reads, as for example ‘intron’ or ‘exon’. A state path 

can therefore be translated into annotations for both DNA sequences. 

1.5.2 Alignment algorithms 

Once the transition and emission probabilities of the pair HMM have been specified, the pair 

HMM can be used to predict an annotation for the two input DNA sequences by finding the 

optimal state path, Sqt. To any chosen state path S and a given pair of sequences X and Y, 

the pair HMM assigns the following probability: 

2-1 

P ( X ,  Y, S)  = e,, (k1,Pl) - t S i ( S i S 1 )  * %,+l @i+l,Pi+l) 
i=l 

The sequence of states encountered on the state path is S = (SI, s2,. . . , sz), 2 being the 

length of the chosen state path. t s i ( s i + l )  is the transition probability to go from the i-th 

state si to the i + 1-th state si+l. e , ( k , p )  is the emission probability of state s to read A,(s) 

letters from sequence X ,  namely letters z~-A, ( , ) ,  . . . ,zk-l, and to read A,(s) letters from 

sequences Y, namely letters y p - ~ , ( , ) ,  . . . , yp-l. After the i-th step in the state path, we are 

therefore in state si+l at position ka+l in sequence X and at position pi+l in sequence Y. At 

the end of the state path, i.e. after 2 steps in the pair HMM, all letters of the two sequences 

have been read. 
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As with a single sequence HMM, it is clear that there is a multitude of possible state paths 

for a given pair HMM and a given pair of input sequences. The aim is to find the state path 

which corresponds to a correct annotation for both sequences. The assumption is that, with 

appropriately chosen emission and transition probabilities, the state path with the highest 

probability P ( X ,  Y, S), denoted Sqt, corresponds to a correct annotation. The task is then 

to find this optimal state path, Sqt, that maximises P ( X ,  Y, S). 

The basic method to retrieve the optimal state path is the Viterbi algorithm [Vit67]. We 

also introduce here the Hirschberg algorithm [Hir75] which finds the optimal state path with 

linear memory requirements. 

The Viterbi algorithm 

The optimal state path can be found using the Viterbi algorithm [Vit67]. This algorithm solves 

the optimisation problem in two steps. In the first step, the elements of a three dimensional 

matrix, the Viterbi matrix, are iteratively calculated. In the second step, a traceback process 

through the matrix retrieves the optimal state path. 

Let N be the number of states and T the number of transitions in the pair HMM and L, and 

L, the lengths of the two input sequences X and Y ,  respectively. The value of each element 

in the Viterbi matrix, denoted v(s , i , j ) ,  corresponds to the probability of a state path which 

ends in state s and which has so far read i letters from sequence X and j letters from sequence 

Y. By definition, every state path starts in the begin state, s = 0, and finishes in the end 

state, s = N - 1. 

The elements of the Viterbi matrix are calculated as follows: 

0 Initialisation step: 

Set v(O,O, 0) = 1 and all other v(s, i, j )  = 0. This forces every state path to start in the 

begin state, s = 0. 

0 Recurrence relation: 

The v(s , i , j )  are iteratively calculated by looping over all i E (1,. . . ,Az}, all j E 

(1,. . . , L,} and all states s E (1,. . . , N - 2) (the begin state, s = 0, and the end state, 

s = N - 1, need not be considered as they are only used at the start and end of each 

state path): 



1.5.  THEORETICAL BACKGROUND 26 

where 

- t , / (s)  is the transition probability to go from state s’ to the state s. 

- e , ( i , j )  is the emission probability of state s to read A,(s) letters from sequence 

X ,  namely letters z + A ~ ( ~ ) ,  . . . , zi-1, and to read A,(s) letters from sequences Y ,  

namely letters Y ~ - A ~ ( ~ ) ,  . . . , yj-1. 

- Note that instead of maximising over all states s‘ E { 1, . . . , N - 2) only those states 

s’ for which a transition to s exists have to be considered. 

0 Termination step: 

The constraint that every state path has to end in the end state, s = N - 1, is imple- 

mented by setting 

- 1, L,, L y )  = max&{l,...,N-2} {+’, L, - &(4, Ly - Ayb))  ’ t s v  - 1)) 

This probability can be shown [Vit67] to be equal to the probability of the optimal state 

path, s*pt. 

At this state, the probability of the optimal state path is known, but the path itself has still 

to be retrieved. Once the elements of the Viterbi matrix have been calculated, the optimal 

state path, Swt, is retrieved by starting at the matrix element w(N - l ,L, ,Lg) whose value 

is equal to P ( X ,  Y, Sqt) and by recursively determining the state from which the maximum 

at the current state was derived. Using this traceback method, the sequence of states of the 

optimal state path is retrieved. The annotations of the two DNA sequences as well as the 

conserved subsequences can be deduced from this state path. 

For a pair HMM with N states and T transitions and two sequences of length L, and L,, 

respectively, the memory requirement for the Viterbi algorithm is of order O(N L, - Ly), 
as this is the number of elements in the Viterbi matrix. The time requirement is of order 

O(T L, L,), which is essentially the time consumed to calculate the elements of the Viterbi 

matrix. 

It is clear that the quadratic dependency on the sequence length imposes serious restrictions 

on the applicability of the Viterbi algorithm on long sequences. For example, two sequences 
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of lo3 base pairs length and a pair HMM with 50 states would need about 400 MB memory 

(numbers saved in double format) to save the Viterbi matrix. The same pair HMM used on 

two sequences of lo4 base pairs length would need a hundred times more memory and time 

to complete the calculation of the Viterbi matrix. 

The Hirschberg algorithm 

The dependency of the Viterbi’s memory requirement on the product L,.L, imposes a serious 

constraint on the analysis of long sequences. The Hirschberg algorithm [Hir75] linearises the 

memory requirement while still retrieving the optimal state path. 

The key idea is to make use of the following underlying symmetry: instead of starting the 

calculation at the start of the two sequences, i.e. sequence positions ( q , y l ) ,  we may as well 

start it at their ends, ( z L ~ ,  y~,). This can be done by using a mirrored model which is created 

from the original pair HMM by reversing the directions of all arrows and by permuting the 

begin and end state with respect to the original pair HMM. This reversed pair HMM does 

not admit a probability interpretation any more because the probabilities of the transitions 

emerging from each state do no longer add up to one (instead, the probabilities of the transi- 

tions leading into each state add up to one). In the following, this model is called the mirror 

model. 

The Hirschberg algorithm divides the Viterbi matrix, see (1) in Figure 1.8, into two halves 

which can each be calculated independently. One sub-matrix is calculated using the pair 

HMM starting at (z1,yl) and proceeding towards higher values of the sequence index i, the 

other sub-matrix is calculated using the mirror model starting at (z~,,y~,) and proceeding 

towards lower values of the sequence index i, see (2). Instead of storing the whole Viterbi 

matrix, only the values in a narrow strip like volume are stored because only these are needed 

to continue the calculation, see the hatched areas in (2). The minimum strip width is equal 

to the maximum number of letters which are read from a sequence by a state in the pair 

HMM plus one, to store the row of new values. The process is stopped when the two strips 

overlap, see (3). The probability of the optimal state path, P(X,Y,S,t), is then found by 

multiplying the appropriate values in the two strips and by searching for their maximum 

which is equal to P(X, Y, Sqt). We then not only the know the probability of the optimal 

state path, Sqt, but also the coordinates ( s , i , j )  where the optimal state path crosses the 

two superimposed strips, see (4). The same procedure is then applied to the two emerging 
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sub-matrices whose boundaries are now known, one with sequence coordinates from (z1,gl) 

to (zi,gj) and the other one from (zi,yj) to (z~.,y~~), see (5) and (6), until the adjacent 

coordinates of the optimal state path, (7), are at most separated by a sub-matrix of some 

predefined maximum size, (8). These coordinates are then used as boundary conditions to 

run the Viterbi algorithm separately on all the small sub-matrices. In the end, the state paths 

of the small sub-matrices are concatenated into the optimal state path from start state s = 0 

at (z1,yl) to the end state s = N - 1 at (z~,,y~,). 

Using the Hirschberg algorithm, the memory requirement reduces to O(N rnan{L,, Ly}). As 

each iteration halves the volume of the matrices that have to be calculated, the time used by 

the Hirschberg algorithm is at most twice the time used by the Viterbi algorithm, i.e. still of 

order O(T L, . Ly ) . 
The benefits of the Hirschberg algorithm are: 

0 The memory requirement of the Viterbi algorithm can be reduced to O(N.rnin{L,, Ly}), 
i.e. the memory required to save the two strips which each have length min{L,,Ly}, 

minimal width and height N .  

0 As all sub-matrices have known boundary conditions, they can be calculated indepen- 

dently, possibly in parallel and on several computers. 

To summarise, the Hirschberg algorithm finds the optimal state path and the optimal score 

with a memory requirement which scales only linearly with the sequence length and in a time 

at most twice the time needed by the Viterbi algorithm (as each iteration halves the area which 

has to be calculated, the time used by the Hirschberg algorithm is at most t + t / 2 + t / 4 . .  . = 24, 

i.e. twice the time t taken by the Viterbi algorithm). However, this time requirement of the 

Viterbi algorithm scales with L, - L, and still imposes a serious constraint on the analysis of 

long DNA sequences. In Chapter 2, we introduce a new algorithm which reduces both time 

and memory requirements to effectively linear dependence on the sequence length. 
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Figure 1.8: The Hirschberg algorithm. (1) shows the three-dimensional Viterbi matrix. (2) 
to (8) show only its two-dimensional projection onto the plane spanned by the two sequences 
X and Y. See text for details. 


