
Chapter 1

Introduction

1.1 Mot kat ion

All the inherited information that determines the physiology of an organism is encoded in a

genome which is present in each cell of the organism. The genome of an organism typically

consists of one or more molecules, each consisting of a linear succession of four DNA (de-

oxyribonucleic acid) bases symbolised by the four letters A, C, G and T. The complexity of an

entire organism is thus encoded in a few long molecules of apparently striking simplicity.

Recent systematic genome sequencing efforts have determined the complete sequence of A,

C, G and T letters for a number of organisms. Knowledge of the complete DNA sequence

gives us the opportunity to study the genetics of organisms both at a fundamental molecular

level and on a global scale. Since the first genome of a multi-cellular organism, the nematode

Caenorhabditis elegans, was sequenced in 1998 [eSC98] comprising about 100 Mb (million

bases), the genome sequence of the fruit fly Drosophila melanogaster (120 Mb) [ea001 and of

the plant Arabidopsis thaliana (125 Mb) [IniOO] have been determined. We have good quality

draft sequences of the human Homo sapiens [ConOl] and the mouse Mus musculus genomes

[Con021 (both around 3000 Mb) which will be completed in the near future. We are thus for

the first time in the possession of the blueprints of several organisms, but without knowing

how to understand the DNA text’s contents.

The life of an organism depends on a variety of molecules that carry out specific tasks, one

of the major groups being proteins. Each protein consists of a linear sequence of amineacids

which is encoded in a subsequence of the genome, called a gene. One of the most important

challenges is to find the sections of the DNA which encode proteins, i.e. to find protein coding

1

1.1. MOTIVATION 2

genes, and to determine the amino-acid sequence of the encoded protein.

With the sequencing of the mouse genome soon to be finished, we can compare the human

DNA sequence to that of the evolutionarily related mouse genome. By comparing the DNA

sequences of two related organisms, we can not only study the large scale organisation of

their genomes, but can also try to use pairs of related subsequences to predict genes. This is

a promising approach because related organisms have similar proteins which are encoded by

conserved genes in the DNA of the genomes. By finding and comparing subsequences which

are conserved between two genomes we can try to predict protein coding genes.

The main goal of my work presented here is to develop a method for the comparative prediction

of protein coding genes in pairs of related genomes. This task can be compared to the invention

of a method for the automatic deciphering of the Rosetta stone. This stone contains one text

in three different languages (Egyptian hieroglyphics, Demotic and Greek), see Figure 1.1, and

was carved in 196 BC in Egypt. When it was found in 1799, only one of the three languages

(Greek) was known. Manual comparative analysis of the three texts was completed in 1822

and led to the first understanding of both Egyptian hieroglyphics and Demotic. The task

of comparatively deciphering the DNA texts of several related organisms is similar to the

Rosetta stone deciphering in that we know that subsections of the texts are in close relation

to each other, but it is complicated by the following:

0 We do not have a DNA text which we completely understand, i.e. a text corresponding

to the Greek text of the Rosetta stone does not exist in the DNA deciphering problem.

0 The different sections of related DNA texts are not necessarily collinear or have a one-

to-one correspondence. Figure 1.2 shows an example. There are 22 chromosomes plus

the X and Y chromosomes in the human genome and 19 chromosomes plus the X and

Y chromosomes in the mouse genome and the current estimate is that about 99 %

of the mouse genes have a corresponding human gene. We thus have to deal with

rearrangements within the related DNA texts and cannot expect the contents of the

texts (e.g. genes) to have a one-to-one correspondence.

0 The DNA texts can be very long (around 3000 million A, C, G, T letters each for both

the mouse and the human genome) and cannot be manually compared on a global scale

and in a reproducible and efficient way.

We do not know all the functional entities within DNA texts (like chapters, paragraphs,

��������� � ���	��
 ��� � � �

� !+5,0%���:�*K��gGhC ��������5��)*��� ��N ����� �L�,���(����) �����,����K �
���\0��%�>�(�$���RT4�-!#�$�L�'!&������� !&� ! 5�D�����!&)�� �%! A
�(�'��5,M+D�� �%!&.(�H� ���������RT4�Z!#�X�����";$!& % %M&�$!&� '8��;S����!&.")��% �����-M+�P�@�(�Z���RT4�Z!&� �8���(�(�UK\�L�������%M&)*��5���
����.R��!+�,�%�/��N �����3���RT4�
�����P� .R�����������U�,�� %!&��5Z��)*�����/��N �����Q���%���(�3���RT4���(K �L���3��!+5,�%M&!+5,������ "�@��� :����)� %�

� C ���,M+��;=D89+K

� !+5,0%��� �*K E G �)*��5�� ��.()�M+� .R�����������>�,�% %���%.R��<>�(�a���(���W�C0%;$)��\. �����,;S�,���,;S� �(GXJ !#�\����� ;$!& � %M+��V�)��%
���(`��(�')�M/;S�,0%���:. �����,;S�,���,;$����J �,� �����FM+�(N �S)��% �'!+5,���WV " !@�%� # K YJ�����F���%)*�$;$�,���H� <�0��S�����S)�M&M#� ��N
���%�=�C0%;$)��F. �����,;S�,���,;$�Z�%)��8)�.R���'�������>�,�% %!&�%5Z�'��M&)*���� \�'�(5,!+�,�\!&�\������;S�,0�����5������,;$��K
HJM#�����������
����)*��.R�����������>�,�% �!&��5 ���(5,!+�,�%��;$)�D)*�%�>��)*�-!#�)W����)*���')��%5��� ���(5,!+�,� !&� �����F�����%�(������5,)��%!#��; J ���(�
�C0%;$)��B.'�%���,;S�,���,;S� �(G])��% ;S�,0%���Z. �����,;S�,���,;$�SETVJ)��% I���%)*� �����(��� !&�8���].R�,M&M&!&����)*� !+�aD:<>�(�a���(���
���%�J�C0%;$)���)��� -;S�,0����J. �����,;S�,���,;$����)*�@����� M&)*��5��J�'.()�M+�>J ���(� �C0%;$)���. �����,;S�,���,;S� �(GZ)��% ";S�,0%���
. �����,;S�,���,;S��� �(G$)��� � "dV K

1.1. MOTIVATION 4

... ctcagccttgtgtgagttgaggggaggtgtcacatccagctggagtcctttctaagcagc
cacagcctgatcctcccacttcctcccccaagaaaacattgt~tgatggccataccc
tgaggttctggtccaaatcggactttctatgaccttctgggtctctagtgaaaactaaag
actcctctccagaaaaaaacatttggtttctaatgaggcctggaatcttattcttgacct
ggggagcggaatccctttttgcagtactcccgggccctctgttggggcctccccttcctc
tccagggtggagtcgaggaggcggggctgcgggcctccttatctctagagccggccctgg
ctctctggcgcggggccccttagtccgggctttttgccATGGGGTCTCTGTTCCCTCTGT
CGCTGCTG'ITRTMTGGCGGCCGCCTACCCGGGAGTTGGGAGCGCGCTGGGACGCCGGA
CTAAGCGGGCGCAAAGCCCCAAGGGTAGCCCTCTCGCGCCCTCCGGGACCTCAGTGCCCT
TCTGGGTGCGCATGAGCCCGGAGTTCGTGGCTGTGCAGCCGGGGAAGTCAGTGCAGCTCA
ATTGCAGCAACAGCTGTCCCCAGCCGCAGAATTCCAGCCTCCGCACCCCGCTGCGGCAAG
GCAAGACGCTCAGAGGGCCGGGTTGGGTGTCTTACCAGCTGCTCGACGTGAGGGCCTGGA
GCTCCCTCGCGCACTGCCTCGTGACCTGCGCA~AAAACACGCTGGGCCAC~CCAGGA
TCACCGCCTACAgtgagggacaggggctcggtcccggctggggtgaggggagggggctgg
aagaggtgggggaagggt agt t gacagt cgct ct at agggagcgcc cgcggac c t cac t c
agaggctcccccttgccttagAACCGCCCCACAGCGTGA~GGAGCCTCCGGTCTTAA
AGGGCAGGAAATACACTTTGCGCTGCCACGTGACGCAGGTGTTCCCGGTGGGCTACTTGG
TGGTGACCCTGAGGCATGGAGCCGGGTCATCTATTCCGAAAGCCT~AGCGCTTCACCG
GCCTGGATCTGGCCAACGTGACCTTGACCTACGAG~G~~TGGACCCCGCGACTTCT
GGCAGCCCGTGATCTGCCACGCGCGCCTCAATCTCGACGGC~GGTGGTCCGCAACAGCT
CGGCACCCATTACACTGATGCTCGgtgaggcacccctgtaaccctggggactaggaggaa
gggggcagagagagttatgaccccgagagggcgcacagaccaagcgtgagctccacgcgg
gtcgacagacctccctgtgt tccgt tcctaat tc tcgcct tc tgctccc~GGAGCC
CCGCGCCCACAGCTTTGGCCTCCGGTTCCATCGCTGCCCTTGTAGGGATCCTCCTCACTG
TGGGCGCTGCGTACCTATGCAAGTGCCTAGCTATGAAGTCCCAGGCGtaaagggggatgt
t ct atgccggctgagcgagaaaaagaggaat atgaaacaat ctggggaaatggccat aca
tggtggctgacgcctgtaatcccagcactttgggaggccgaggcaggagaatcgcttgag
cccaggagttcgagaccagcctggacaacaacatagtgagaccccgtctatgcaaaaaataca
caaattagcctggtgtggtggcccgcacctgtggtcccagctacccgggaggctgagttg
ggaggatcctttgagccctgaaagtcgaggttgcagtgagccttgatcgtgccactgcac
tccagcctgggggacagagcacgaccctgtctccaaaaataaaataaaaataaaaataaa
tattggcgggggaaccctctggaatcaataaaggcttccttaaccagcctctgtcctgtg
acctaagggtccgcattactgcccttcttcggaggaactggtttgtttttgttgttgttg
ttgtttttgcgatcactttctccaagttccttgtctccctgagggcacctg~ttcct
cactcagggcccacctggggtcccgaagccccagactctgtgtatccccagcgggtgtca
cagaaacctctccttctgctggccttatcgagtgggatcagcgcgggccggggagagcca
cgggcaggggcggggtggggttcatggtatggctttcctgattggcgccgccgccaccac
gcggcagctctgattggatgttaagtttcctatcccagccccaccttc~accctgtgct
t t c c t g g a g g c c a a a c a a c t g t g g a g c g a g a a c t c a t c t c c a c g c t g
gagtgagac cacgaatggtggggaggggagggt c ccacggacat at tgagggacgtggat
acgcagaagaggtatccatgtggtggcagccgggaaggggtgatcagatggtccacaggg
aatatcacaaactcgaattctgacgatgttctggtagtcacccagccagatgagcgcatg
gagttgggggtggggggtgtcaaagcttggggcccggaagcggagtcaaaagcatcaccc
tcggtcccttgttctcgcgtggatgtcagggcccccacccaccgagcagaaggcggactc
aggggcgctccagggtggctcgagctcacacacgctgagtagacacgtgcccgctgcacc
ctgggtaaatacagacccggagccgagcggattctaatttagacgcccgcgaacgctgcg
cgcacgcacacgtgtcctcggctcgctggcactttcgtcccgccccctccgtcgcgtgcg
ggagctgacccggaggggtgcttagaggtatggctccgcggggtcaaaaggagaaggatc
agtgagagaggcatccccacaccctccc ...

Figure 1.3: A short subsequence of DNA from the human Homo sapiens genome comprising
one protein coding gene which is evolutionarily related to the gene contained in the mouse Mus
musculus sequence shown in Figure 1.4. The protein coding parts of the gene are highlighted
by capitalisation. They correspond to the protein coding exons which are shown as hashed
boxed in Figure 1.5. The DNA sequence of the whole Homo sapiens genome would correspond
to about one million pages.

1.1. MOTIVATION 5

...g agtgtcttgtgagtttgtgtacagtcatcacatcagttaggcaaagccctaaggactgc
cgactcccataatgcctcatgtctggtaacctaacctaaccctaactctgagtctgtggat
caggttggtccccacccccaccccctttcttttttgagaca~tctctttgtggccatg
gatgtcctgaaatctgctatgtggaatgggctggccttgacttcacaaagat~ccaac
ctgtctcctgaatgctaggactaaatgacaaagccactgccatgtct~aaaatctacg
ttagatagacagggtttcccagtgtagatcaggatggccttgaacttacagagatctgcc
t ccctgggagtgct gggat caaaggcatgtgccat caccaagcgtt at t t t at t t t tt aa
t tt t t aaagact t ct tggggc t t acgt aaaaact aaagagcaggt ccagaact gtgcaat
ggcttttggttgattgtagggtctgatgggaggggaggcaggtatcttcatcagggccgg
ccgaggcccattctggggcgggccagggtgccttcttatctcctgcggccagcctaaac
tccctggcgttccgcccgcacttcagcgcgggctttgtgccATGGAGTCTGCCCTTCTGC
TCCCGTCGCTTTTGCTGGTGGCTGCCTATCCGAGGGGTGGGAGCCCCCAGCAAGAGTGGA
TGCAAAGTCCTCCCGCGCCTTCCGTGACCTCAGCACCI'TTCTGGGTGCGTCTTAATCCAG
AGCTAGAGGCCGTGCCTCCCGGG~TCAGCGTG~AACTGCAGCCACAACTGCCCCC
TGCCGGTGCATTCCAGCCTCGCACCCAACTGCGGCAGGGAAAGATAG~AATGGATCCG
GCTGGGTATCTTACCAGCTACTGGATGTGAGGGCCTGGAATTCCAAGGTGCGCTGCGTCG
TCACTTGCGCAGGAGAAACCCGAGAGGCCACCGCCAGGATCACTGCTTACAgtgagggag
accggggctcaggccgggctggggtgaggggagaggggtggaggaagcggatagatggta
attgctttaaggggtgcctgtgggccttatctctcttgccttagAAC~CCAGAAGCGT
GATCTTGGAGCCTCCGGTCCAGTGGGCCACAAGTACACTCTGCGAT~ATGTGACACA
CGTGTTCCCAGTGGGATGTGGTGAGCCTGAGAAGAGGT~CGAGTGATTTATCA
TGAAAGCCTGGAGCGCTTCACCGGTTCAGATTTGGCTAATGTCACI'TTGACCTACGTGAT
GCGGGCCGGACTCAACGACC~~AGCCACTCACCTGCCATGCGCGCCTCAATCTCGA
CGGGCTAGTGGTGCGCAGCAGCTCGGCACCTG'lTATGTTGACAGTCCTCGgtgaggcatc
ctgtaatcccagggaatgggtgcgggagaggggatgttgccactccaagggggcctgcag
aacaggcgtgggctccacgcttggcggtaacctcctcagacctcctagttcctgattttcactcc
tgcccacagCTTTAAGCCCAGCCTCTATAGCCTTGGCCTCTACCTCCATCGCAACCCTGG
TGGGGATCCTCCTGGCTGTGGGGGCTGTCTACGTGCGCAAGTACCTGGCTGTGCAGACTt
agttatagatctgttttcgatgcctgacaagaggg~gaaaagaacttcag~aatt
aattcagagactcttattgaaacaataaagtcttcctcctc~ctctgccttac~tc
ttggagaaagtggtttcttttttaaggtaccttaccttactttttccaaattccttacgtagggg
ctgaagat t agt agatt agaggt agt act ggaggaaacaacacct t gaaat t t ct cct t c
aagg c c ag c at ggggt c c t agaac c cgagt t c c t c t g cgt agagt t t t gt t ag c t t t at t
tgtgcggggcagaaagactaaactgacctcccctccagggctgactcttggtatggcttt
ttctgattggctccgctgatacaggcc~agctctgattgg~ctaagtttcccttctc
ctccctccttttccactacggagcctgtgcgttactagagaaggccagcgggtggagcta
gacct gat t ccccaaggtt at cat t aattggggggggggggggaggtagaaacact cgag
t aggcggggcctt ctt caagt agtagaggaagcggct aact agataggaaat ct agcata
gcaacaagttaagagatgattgttcaggccacgtgagctgtcacagacttgcttcctggc
gttgtgcttgttgtctccgagtctggtatgtatgtagagagggatgtcaaagctggggtc
aaagtgtccccagttgatcttttggtccagcgtgaattgcagaatctcgcactagttacc
cagtagaggcggccacactcctggcgaggagggcgcagaagctctgctgagagactagac
a c a c a a c a g c g t t g t a g a c a c a t t c c c g c t g c a c t c t g g g g c c g
gagtcgactctaatttagaagcctgcgaacgctgcgcacacgcacacgtgtccgagtctt
gctggcact t gat ccccct ct t c ct t cgccgcgt gcgcggag . . .

Figure 1.4: A short subsequence of DNA from the mouse Mus musculus genome comprising
one protein coding gene. The protein coding parts of the gene are highlighted by capitali-
sation. They correspond to the protein coding exons which are shown as hashed boxed in
Figure 1.5. The DNA sequence of the whole Mus musculus genome would correspond to
about one million pages.

1.2. BIOLOGICAL BACKGROUND 6

sentences and words) and how they structure the text hierarchically. We know for

example of protein coding genes and promoters and other small entities, but do not

know very much about how they are grouped into larger functional entities.

As is apparent from viewing only small pieces of DNA data such as those shown in Figure 1.3

and Figure 1.4, computational methods which can be applied to large amounts of data in a

reproducible way have much potential for helping to unravel the text of genomes by proposing

answers to biologically interesting questions which can be experimentally verified.

This introductory chapter provides the biological background, an overview of already existing

methods for gene prediction and the theoretical background on which my work is built. Chap

ter 2 presents the pair HMM underlying DOUBLESCAN and PROJECTOR, two new methods

which can be used for the comparative prediction of genes, as well as a new algorithm, called

the Stepping Stone algorithm, by which genes can be predicted with essentially linear time

and memory requirements, thus enabling large scale analyses. Chapter 3 demonstrates that

DOUBLESCAN can be used to predict genes in mouse and human DNA. Chapter 4 presents

a variant of DOUBLESCAN, called PROJECTOR, by which genes which are known in one or-

ganism can be used to find related genes in another related organism as exemplified on a

set of mouse and human DNA sequences. Chapter 5 demonstrates that DOUBLESCAN and

PROJECTOR can be easily adapted to analyse other pairs of related genomes by showing their

performance for predicting genes in C. elegans and C. briggsae DNA sequences. Chapter 6

introduces a library of C++ classes by which large and complex projects such as DOUBLESCAN

and PROJECTOR can be implemented in a short time.

1.2 Biological background

In eukaryotes, a subsequence of the genomic DNA is linked to its functional expression as a

protein by a series of steps which can be roughly grouped into [HRS+87]:

0 transcription of a DNA subsequence into an RNA (ribonucleic acid) sequence

0 modification of the RNA sequence to produce a mature messenger RNA

0 translation of the messenger RNA sequence into a protein sequence

0 modification of the protein sequence

1.2. BIOLOGICAL BACKGROUND 7

genomic DNA

RNA

mRNA

Protein

I I I I I I I
I I I I I I I
I I I I I I I
I I I I 1 I I
I I I I 1 I I
I I I I I I I
I I I I I I I

I
I
I
I
I
I
I
I 5' I I I I I I I

I I I I I I I *

/ /
\ \ \ I /
\ \ \

\ \
\ \ I splicing /

/

\ \ \
I / /

\ I I / / /
\ I I /

\ \ \
/

\ \ \ \ I I / /
\ \ \

/- \ I

translation L \ I
\ I
\ /
\ /
\ /
\ /
\ /

3'

Figure 1.5: Schematic view of the steps by which a subsequence of the genomic DNA is linked
to the amino-acid sequence of the protein it encodes. Each box (see boxes at RNA level)
represents an exon and each kinked line an intron. The protein coding parts of each exon are
hashed. See the text for a description of the processes.

1.2. BIOLOGICAL BACKGROUND 8

See Figure 1.5 for a schematic view of the events in which the sequences involved are sim-

plistically represented as linear molecules. A subsequence of the genomic DNA is transcribed

into an RNA molecule by RNA polymerase after the genomic DNA has been prepared for

transcription. The RNA molecule then undergoes a variety of modifications such as the mod-

ifications of its ends (as shown in Figure 1.5 for the 3’ end) and splicing. During splicing

small nuclear ribonucleoproteins (snRNPs) excise intronic sequences and join the exons into

a shorter messenger RNA molecule (mRNA). This mRNA molecule is then transported from

the nucleus to the cytoplasm where the continuous segment of exons is translated into the

corresponding sequence of amino-acids by the ribosome and a variety of tRNA molecules.

Depending on the final location of the protein, the amino-acid sequence may undergo modi-

fications such as the cleavage of signal sequences. The protein coding part of a gene starts at

the 5’ end with a start codon and finishes on the 3’ end before a stop codon. Splice sites are

the 5’ and 3’ ends of introns.

The aim in ab initio gene prediction is to find genes and to infer their gene structures from a

given DNA sequence of A, C, G and T letters only. The assignment of functional information to

the DNA sequence is called annotation. By knowing the annotation of the DNA sequence i.e.

the exon-intron structure of its genes as shown in Figure 1.5, we can directly infer the amino-

acid sequence of the corresponding protein. In principle, it suflices to known the protein

coding parts of the exons of a gene to derive the amino-acid sequence of the encoded protein.

For the rest of this dissertation, the term gene refers to protein coding genes and the term

exon to the protein coding part of an exon unless stated otherwise.

Traditionally, ab initio gene prediction methods for eukaryotes deal with one DNA sequence

at a time. Methods for comparative gene ab initio gene prediction exploit the fact that related

proteins have similar amino-acid sequences which are encoded in genes of similar exon-intron

structure and that the exons of related genes are typically much more conserved than the

introns which do not encode protein information.

As the method presented in this dissertation annotates two DNA sequences simultaneously,

gene prediction methods which deal with only one sequence are only briefly reviewed and only

those that are of relevance to this work are presented.

1.3. EXISTING NON-COMPARATIVE METHODS 9

1.3 Existing non-comparative methods for ab initio gene pre-

diction

There have been numerous studies with the aim to predict the intron and exon structure

of eukaryotic genes given the DNA sequence as the only input information. Each of them

typically consists of one or more programs which employ one or more methods to finally

arrive at a prediction. The discussion is grouped by the methods employed rather than by

the different ways in which they are combined into one program to emphasise the different

underlying concepts.

1.3.1 Types of evidence

When trying to annotate a sequence of DNA we can make use of a variety of sequence signals

which indicate the presence of functional elements or which mark a boundary between them.

The principal measures used are:

Coding measures Exons and introns exhibit a different usage of nucleotide patterns. One

statistically significant measure of difference found [CB86, JMCBSO, FLS92, FT92] was that

of relative frequencies of six nucleotide words, so-called hexamers.

Sequence signals Besides a compositional bias between exons and introns, their boundaries

can be detected by certain sequence signals, as for example the acceptor and donor splice sites

at the 5’ and 3’ sides of introns. Other signals include the translation initiation signal around

the start codon (Kozak consensus [K o z ~ ~]) , the translation terminal signal around the stop

codon, the poly-adenylation signal and promoter sequences.

The individual statistical significance of any of these measures is not sufficient to reliably

predict the exon and intron structure of a given DNA sequence [BEKSl, CA961. Only by

combining several signals into a valid gene structure can we attempt to successfully predict

genes.

1.3.2 Methods

This section concentrates on the description of those methods for integrating sequence signals

which have turned out to be the most successful in ab initio gene prediction, namely neural

networks, discriminants and hidden Markov models.

1.3. EXISTING NON-COMPARATIVE METHODS 10

Besides these methods, other methods, such as rule-based methods (as used in the program

GENEID [GKDS92]), linguistic methods (see for example the program GENLANG [DS94]) and

decision trees (employed by the program MORGAN [SDFH97]) have been proposed to predict

exons or genes.

Neural networks

Neural networks in gene prediction are typically used for combining signals from numerous

sources, as for example from sequence motifs and nucleotide frequencies, into one score.

A neural network consists of an input layer of so-called neurons which accept the input values,

i.e. the scores. The input signals propagate from the neurons of the input layer to the neurons

of one or more layers of hidden neurons until the propagated signal finally reaches the output

neuron. The final result depends on the architecture of the neural network as well as on

the function with which each neuron merges several incoming scores into one outgoing score.

These functions typically depend on multiple parameters which are given some initial values

without knowing their optimal values. These parameters and even the architecture of the

neural network can be adjusted by training it with a representative data set for which the

correct outcome is known. The trained neural network can then be used on unknown data

sets. Signal propagation in the neural network is unidirectional though the training of the

parameters need not be. A general overview on neural networks can be found in [Bis95].

Neural networks are used in the GRAIL program [UM91] to identify exons which are later

assembled into genes. The program GENEPARSER [SS93] exemplifies how neural networks

can be used in conjunction with other methods to predict the intron and exon structure

of a DNA sequence. The neural network is used to combine the scores of different sources

of information such as codon usage, compositional complexity, length distributions, k-tuple

frequencies and splice site signals into one score under the hypothesis that an exon or intron

is found at a certain position in the DNA sequence. Dynamic programming is then used to

assemble these potential exons and introns at different positions along the DNA sequence into

a gene structure with a valid splicing pattern which maximises the overall score.

Discriminant met hods

Linear discriminants are another approach to the classification of signal sequences that was

used in the programs HEXON and FEX [SSL96]. Here an optimal separating plane is obtained

1.3. EXISTING NON-COMPARATIVE METHODS 11

between the true and false examples viewed as points in a multi-dimensional space, under the

assumption that the true and false distributions are both gaussian with the same covariance

matrix, but different means. The program MZEF [Zha97] employs quadratic discriminants

[McL92] to predict independent internal coding exons in genomic DNA sequences. The char-

acteristic features (e.g. splice site scores) of true and false internal exons are assumed to

be described by two multinomial distributions in a multi-dimensional space which may have

different means and different covariances. Quadratic discriminants can model the boundary

between these two distributions and thus distinguish between true and false exons more ef-

fectively than linear discriminants as they are not limited to separating the two distributions

by hyper-planes.

Hidden Markov models

Hidden Markov models (HMMs) are a mathematical method to linearly label a sequence

with labels from a finite set of states. The states of the finite set can be defined to reflect

our knowledge of the biological problem and classify the letters of the input sequence into

mutually exclusive classes, as for example ‘intron’ and ‘exon’ and other labels used for an

annot at ion.

A hidden Markov model can be imagined as a finite set of states which are connected by

directional transitions. Each transition connects two states and has a transition probability

associated with it. Each state has a predefined action, for example it reads one letter from

the input sequence and thereby assigns the state’s label to it. From that state one can pass to

one of the states to which it is connected. By thus walking along a state path in the Markov

model, the letters of the input sequence are successively labelled with state labels.

The following paragraphs give some definitions and explain Markov models by giving a simple

example.

Definitions A Markov model or Markov chain associates every random variable of a discrete

time stochastic process x1,x2,. . . with a state from a finite set of states. A Markov chain is

said to be of order n if the probability of a transition from state si at time i to state $i+l at

time i + 1 depends only on the n previous states (si-n, . . . s i) . If the transition probabilities

are independent of time, the Markov chain is said to be homogeneous, and inhomogeneous

otherwise.

1.3. EXISTING NON-COMPARATIVE METHODS 12

The notion of Markov chains can be extended by associating a probability distribution r,

with every state s in order to model the time the Markov chain spends in this state. This

type of Markov chain is called a semi Markov model HOW^^].
Another way to extend the notion of Markov chains is to define a so-called hidden Markov

model (HMM) for which every step xi of the Markov process consists itself of a stochastic

process that generates the observed values yi. Also this inner stochastic process can take

values from another finite state space [BP66, Rab891. If the underlying Markov process is

a semi Markov Model, the model is called an explicit state duration hidden Markov model,

generalised hidden Markov model or hidden semi Markov model (HSMM) [Rab89, KHRE961.

A text book on the application of Markov models in the context of biology is [DEKM98].

Example of a simple Markov model The above definitions can be illustrated by the

example of a very simple Markov model which is entirely trivial, but which helps to make the

distinction between a Markov model and a hidden Markov model clear.

As already mentioned, a Markov model can be imagined as a finite set of states which are

connected by transitions. Each state corresponds to one of the four observable bases of

the DNA alphabet (Le. A, C, G and T). The states are connected by directional transitions

which each have a transition probability associated with them. t,(y) denotes the transition

probability for going from state x to state y. By reading the letters of an input DNA sequence

X = (q , x 2 , . . . ,xz) of length 2, xj E {A, C,G,T}, the Markov model assigns the following

probability to the sequence:

2-1

P (X) = n t,i h + l)
i=l

As each state of this Markov model corresponds to one of the four possible observables A, C,

G and T, the state path in this Markov model simply corresponds to the sequence of letters

in the input DNA sequence.

Turning the Markov model into a hidden Markov model The above Markov model

can be turned into a hidden Markov model by separating the states from the observables and

by introducing emission probabilities e, for each state s. The emission probability of state s

for reading letter "cj at position j in the sequence is denoted e,(zj).

For a hidden Markov model, the above formula for the probability which the hidden Markov

1.3. EXISTING NON-COMPARATIVE METHODS 13

within

Figure 1.6: Example of a simple HMM which classifies the letters of an input DNA sequence
into those within and those outside CpG islands.

model assigns to an input DNA sequence X = (21 , 2 2 , . . . , 22) and a chosen state path

S = (SI, s2,. . . , SZ) of length 2 then reads:

2 - 1

P (X , S) = e,, (2 1) * rI t s i (Si+l) e%+, h + l)
i=l

The use of emission probabilities in hidden Markov models facilitates the definition of states

which closely represent biologically motivated classes. To give an example, see Figure 1.6:

when searching a DNA sequence for CpG islands [Bir87], we can encounter situations where

a C in the DNA sequence can either be a frequently occurring C within a CpG island (read

by the state within CpG island and thereby labelled C within CpG island) or a C outside a

CpG island (read by the state outside CpG island and labelled C outside CpG island) which

we would expect to encounter only rarely. The emission probabilities of these two states can

be defined to distinguish between these two classes, e.g. the state within CpG island might

have a high emission probability for reading a C and the state outside CpG island have a

lower emission probability for reading a C. CpG islands are typically several thousand bases

long and are better modelled using first order emission probabilities estate(xiIzi-l) so that the

probability of reading letter xi at position i in the sequence depends on the letter zi -1 at the

previous position i - 1.

The action of states in HMMs can be extended to read zero, one or more letters from the

input sequence.

Using an HMM to predict an annotation Once the states and transitions of a hidden

Markov model have been defined to capture the features of the biological system which one

wishes to describe and its emission and transition probabilities have been set, it can be used

to assign a probability to a given input sequence and a chosen state path. In general, there

exist a multitude of possible state paths and it is not clear a priori which state path to choose.

1.3. EXISTING NON-COMPARATIVE METHODS 14

As the state path can be translated into an annotation of the input sequence, the aim is to

select the state path that corresponds to the correct annotation of the sequence. The task is

therefore to find a method which retrieves the desired state path for a given input sequence

and a given HMM.

The above formula for P (X , S) expresses the probability which the hidden Markov model

assigns to a given input sequence X and a chosen state path S as function of the transition

and emission probabilities encountered on the state path. If the emission and transition

probabilities of the HMM have been chosen appropriately, we assume that the state path

with the highest probability P (X , S), denoted SWt, corresponds to the correct annotation.

The task is then to find this optimal state path, Sopt, which maximises P (X , S). This optimal

state path can be retrieved using the Viterbi algorithm [Vit67] and is therefore also called the

Viterbi path. Once the optimal state path has been determined, its sequence of states can be

translated into an annotation of the input sequence.

HMM based gene prediction programs The program GENSCAN [BK97] employs an

explicit state duration HMM which models the length distribution of exons. It is capable

of predicting complete, partial and multiple genes and simultaneously predicts genes on the

forward and the reverse complemented strand of the input DNA sequence. GENSCAN’S HMM

has separate states for the exon of single exon genes and for initial, intermediate and terminal

exons, as well as for a promoter, the 5’ untranslated region, the 3’ untranslated region and the

poly-A signal. The HMM integrates information about several sequence signals such as splice

sites, promoters, poly-A signals and start codons. GENSCAN’S parameters are chosen according

to one of four GC contents intervals [DMG95, ConOl] in which the GC contents of the input

sequence falls. Initially, GENSCAN was trained to predict human genes, but its performance at

nucleotide or exon level on genes of rodent (mostly mouse and rat DNA sequences) and non-

mammalian vertebrates (fish, amphibian, reptilian and avian DNA sequences) is not much

lower than that for primate genes, see [Bur97, pp. 106-1071. GENSCAN is one of the reference

programs for the ab initio prediction of human genes.

A program which combines an HMM with neural networks is GENIE [KHRE96]. The program

HMMGENE [Kro97] is also based on an HMM, but uses series of identical states to model

length distributions for exons whereas DOUBLESCAN employs an explicit state duration HMM.

For a given input sequence, HMMGENE reports the best labeled state path using a heuristic

1.4. EXISTING COMPARATIVE METHODS 15

method (N-best method) rather than the most likely state path using the exact Viterbi

algorithm as is done by GENSCAN.

1.3.3 Summary

The methods presented above can be grouped in two main groups: methods which can have

a probabilistic interpretation and those which cannot. Those based on Markov models are

the most amenable to a probabilistic interpretation. With some effort, rule-based methods,

linguistic methods, decision trees and discriminants can also be provided with a probabilistic

framework, see [SH94]. Neural networks lack this feature as probability tags attached to

the input cannot be propagated to the output. This lack of statistical accessibility does not

mean that they have an inferior performance with respect to other methods, but it limits the

amount we can learn about how they produce results, how they can be trained and why they

may fail to perform well.

Some features of the above methods, for example rule-based methods or decision trees, can

be captured by hidden Markov models. The advantage of the latter method is that it can

simultaneously work on splice sites in a way a decision tree method might do, and at the same

time keep track of more global features such as the exon phase. If a hidden Markov model

is set up correctly, it will by definition retrieve a valid state path. There is, for example, no

need to go through a set of single exons and to decide how to combine them into one gene, a

partial gene, several genes or maybe even no gene at all.

These are the main reasons why we chose to work with Markov models. Comparisons of the

performance of different gene predicion program on a variety of data sets can be found in

[BG96, Cla97, RHH+OO].

1.4 Existing comparative met hods

Research in the area of ab initio prediction of genes has so far focused on methods that

take one DNA sequence and predict its gene structure, e.g. [BK97], and comparative gene

prediction methods have only recently started to emerge. They use the same types of evidence

as non-comparative methods, see Section 1.3.1, together with similarity information from

evolutionarily conserved subsequences and gene structures. The following paragraphs present

the different methods which are used to combine these types of evidence into a prediction.

1.4. EXISTING COMPARATIVE METHODS 16

1.4.1 Conservation detect ion met hods

Many of the earlier comparative methods do not aim to identify functional elements such as

exons or entire gene structures, but only report subsequences which are conserved between

two input DNA sequences without explicitly assigning a functional annotation to them.

Dot plots This method is based on the simple idea that two sequences can be compared

by drawing one sequence along one axis and the other sequence along the other axis of a

two-dimensional matrix and by assigning a 1 to a matrix element if the two corresponding

letters of the sequences match, and a 0 where they do not match. This gives rise to a two

dimensional matrix with 1s and Os. Two identical subsequences give rise to a diagonal of Is,

whereas nonmatching subsequences correspond to areas with randomly distributed 1s. This

is the basic principle upon which dot-plots are based. These plots can be refined by averaging

over a selected diagonal and by applying some threshold value as done in the DOTTER program

[SD96].

Dot plots do not predict a functional annotation as the underlying method does not know

about exons, introns and valid gene structures.

Percent identity plots In this method, a gapped alignment is made between two se-

quences, say A and B. The percent identity plot is made by showing one of the two sequences,

say sequence A, along the horizontal axis with the vertical axis showing how similar this part

of sequence A is to the section of B which this is aligned to. Conserved regions show a high

value of percent identity, non-conserved regions a low value.

A program called PIP was used in [OMM+97] to gain a first overview of the level of similarity

between two DNA sequences. The authors refined their analysis by searching for gapped

alignments using the SIM program [HHMSO] in which the user can specify the penalty for

a non-match and the two parameters for affine gap-penalties. These alignments were then

transformed into precent identity plots relative to the positions in one of the two sequences.

Similarly to dot plots, also percent identity plots do not give a functional annotation and do

not predict genes.

Block aligner A pair hidden Markov model called DBA (‘DNA block aligner’) was intro-

duced in [JBD99] to divide DNA subsequences into segments of different levels of percent

1.4. EXISTING COMPARATIVE METHODS 17

identity. However, its states do not capture the different types of conservation between pro-

tein coding and non coding subsequences. DBA thus does not try to identify exons, introns

or gene structures and was used in [JBD99] to study non protein coding DNA sequences in

orthologous mouse and human gene pairs.

1.4.2 Met hods for cornparat ive functional predict ion

The following methods have all emerged in the last few years and aim to make use of com-

parative information in two DNA sequences to predict functional elements such as exons or

entire gene structures (refer to Figure 1.7 for an overview).

Prediction of protein coding subsequences The first attempt towards a comparative

prediction of pairs of exons in two evolutionarily related DNA sequences was made in [KZOO]

by introducing the program WABA (‘wobble aware bulk aligner’). The underlying pair hidden

Markov model (pair HMM, see Section 1.5.1 for an introduction) can distinguish between

the different types of conservation between conserved protein coding and non coding DNA

subsequences. It identifies and aligns subsequences which may be protein coding. However,

as the pair HMM neither includes special states for splice sites nor uses scores from a splice

site prediction program, the identification of the exact exon boundaries is not attempted.

Incorporating similarity information into non-comparative hidden Markov mod-

els Cross species similary can be incorporated into non-comparative methods such as hidden

Markov models which operate on one DNA sequence only. [KFDBOl] proposed an extension

of the GENSCAN program [BK97], called TWINSCAN, which integrates cross-species similarity

at DNA level into the probabilities of a non-comparative model. In the first step, a local align-

ment is generated between the target sequence (which is the DNA sequence to be annotated)

and the informant sequence (which is a DNA sequence which is similar to the target sequence).

This local alignment is then converted into a conservation sequence which indicates for every

nucleotide in the target sequence one of three possible levels of conservation. Using the target

sequence of DNA letters and the conservation sequence, the state path which maximises the

joint probability of observing both the nucleotide and the conservation sequence is derived

using the same optimisation algorithm as in GENSCAN. This joint probability is the product

of the DNA sequence’s probability and the conservation sequence’s probability. The latter is

calculated according to a conservation model which is defined for every state in the HMM of

1.4. EXISTING COMPARATIVE METHODS 18

/
/

b

(1) input rn

output e

/
/

(4) input 1 i output

input

/

/

/
/

Figure 1.7: Overview over different types of ab initio gene prediction methods: (1) non-
comparative gene prediction (e.g. GENSCAN), (2) non-comparative gene prediction which
integrates homology information from a local alignment (e.g. TWINSCAN), (3) comparative
gene prediction which is based on a global alignment (eg. GLASS and ROSETTA), (4) com-
parative gene prediction which is based on a local alignment (e.g. CEM and SGP-1) and
(5) comparative gene prediction where both alignment and genes are simultaneously pre-
dicted (DOUBLESCAN used with the Hirschberg algorithm). Refer to the text for a detailed
description of the methods.

1.4. EXISTING COMPARATIVE METHODS 19

GENSCAN and which is based on fifth order Markov chains. TWINSCAN is not symmetric in

the two input sequences and typically uses repeat-masked input sequences.

Comparative gene prediction in both sequences using a multi-step approach Any

method for comparative ab initio gene prediction has to solve two problems: that of aligning

the two input sequences and that of predicting gene structures for each of the two input

sequences. One can try to solve these two problemes simultaneously (as is attempted in this

dissertation, see Chapter 2, Chapter 3 and Chapter 5) , but one can also try to solve them

with some level of independence.

The latter approach was taken in the following studies:

[BPM+OO] predicts gene structures in a two step approach by first globally aligning the two

input DNA sequences using the program GLASS and by then identifying coding exons in both

sequences and by merging them into identical gene structures using the program ROSETTA.

The gene structures in the two sequences are assumed to have the same number of exons. The

program does not deal with the two strands of each sequence simultaneously, but generates

two independent gene predictions, one for each strand. The program works throughout with

repeat-masked sequences which are used both for generating the global alignment and also

the final gene structures.

Another multi-step program, called CEM (‘conserved exon method’), is presented in [BHOO].

In the first step, a local alignment of the two repeat-masked input sequences is generated

using one of the existing programs. The next steps are executed for every match of the

local alignment separately: a set of putative conserved exons is identified for every sequence

separately. Next, only those pairs of putative conserved exons are retained that contain the

match. The optimal alignment between the start point of each exon pair and the midpoint

of the match, as well as that between the midpoint of the match and the end point of each

exon pair is calculated using full dynamic programming. These alignments are converted

into a set of alignments between every start and every end point which each have the score

associated to it that was calculated in the dynamic programming. For every match of the

initially generated local alignment, we then have a set of n-tuples each consisting of a start

and end point, an alignment between them and a score. Complete gene structures are then

built from this set of all n-tuples using dynamic programming with the assumption that the

correct orthologous gene structures have the highest overall alignment score. CEM is capable

1.4. EXISTING COMPARATIVE METHODS 20

of predicting partial, complete and multiple genes. It predicts genes on both strands by

running once on the forward and once on the reverse complemented strand and then merging

the results into one set of genes which can lie on both strands. The prediction steps in CEM

rely very much on the matches returned by the local alignment. If an exon pair is not hit by

a match in the local alignment, it will be missing in the predicted genes. Similar genes are

assumed to have the same number of exons.

Another example for the multi-step approach to comparative gene prediction is introduced in

a program called SGP-1 (‘syntenic gene prediction’) [WGJMOGOl]. In the first step, a local

pairwise alignment is computed with one of the available programs. The matches of the local

alignment may then be post-processed to reduce noice, if desired. In the second step (which

is completely independent of the first step), a list of potential exons is generated for each of

the two sequences separately. In the third step, the results of the first two steps are merged

by retaining only those exons that are compatible with the alignment. This generates pairs

of potential exons. In the fourth step, each exon pair is a assigned a score which is the sum of

a similarity score and a sequence signal score. Finally, the list of exons is assembled into gene

structures for each sequence independently. SGP-1 can deal with genes on both strands as

well as with the partial and multiple genes. Further, as it is based on a local alignment of the

two sequences, the genes do not have to appear collinearly within the two sequences. As the

gene structures within each sequence are assembled independently of the other sequence, a

one-to-one relationship between the genes in the two sequences or a one-to-one correspondence

between the exons of two related gene structures are not automatically guaranteed. SGP-1

relies on the initial local alignments only for the definition of potential exons, but does not use

similarity information to predict similar gene structures in the two sequences simultaneously

(though this is what is likely to happen effectively if the sequences are well conserved and the

local alignments coincide with the global alignment). There are thus very few steps involved

in SGP-1 which depend quadratically on the length of the input sequence and which axe thus

time and memory consuming (a problem which GLASS and ROSETTA face to some extent and

which limits the use of the fully pair HMM based programs DBA and WABA to rather short

sequences). On the other hand, the similarity information is there and it should be possible

to make good use of it in the simultaneous prediction of gene structures in the two sequences.

1.4. EXISTING COMPARATIVE METHODS 21

Ab initio comparative gene prediction using pair HMMs Pair hidden Markov mod-

els (pair HMMs) are the natural generalisation of hidden Markov models (see Section 1.3.2)

to two input sequences. They provide a fully probabilistic framework and the pair HMM’s

states, transitions and parameters have an intuitive interpretation. Pair HMMs are intro-

duced in Section 1.5.1. As the mathematical concept of Markov models was very successfully

applied to non-comparative ab initio gene prediction as shown by the program GENSCAN, see

Section 1.3.2, it is tempting to try to use pair HMMs for the comparative ab initio prediction

of genes.

[NGMOl] present a method called PRO-GEN which they evaluate on a set of human-mouse,

human-Xenopus and human-Drosophila rnelanogaster gene pairs. The underlying pair HMM

can deal also with pairs of genes that are related by events of exon-fusion or exon-splitting,

but it assumes each of the two input DNA sequences to contain exactly one complete gene.

It predicts genes only in the input sequences, but not simultaneously in their corresponding

reverse complemented strands. In a first step, potential splice sites and translation start and

end sites are predicted for each of the two input DNA sequences separately. The Viterbi

matrix is then calculated taking into into account the constraints imposed by the potential

splice sites and translation start and end sites. The Viterbi algorithm is then used to derive

the optimally scoring state path through the pair HMM with memory and time requirements

which depend quadratically on the length of the input sequence. Pairs of codons within

exons are scored using scores from the PAM120 matrix, whereas introns are not scored on

a nucleotide by nucleotide basis, but rather by a fixed constant which is independent of the

intron’s length. A prediction generated by PRO-GEN consists of a complete gene in each DNA

sequence as well as an alignment between corresponding exons. Note that the program does

not predict conserved subsequences within introns or intergenic regions.

The pair HMM presented in this dissertation has been accepted for publication [MD02].

Recently, similar strategies were proposed by other authors [PACOl], but no implementation

and evaluation has yet been published.

1.4.3 Summary

The comparative methods above can be subdivided into those that try to predict functional

elements and those that do not. The latter provide some sort of alignment between two

input DNA sequences which subdivides every sequence into subsequences of different levels of

1.4. EXISTING COMPARATIVE METHODS 22

conservation without explicitly giving them a functional prediction. The findings in [JBD99]

suggest that the length and percent identity of these conserved subsequences are generally

not sufficient to allow their reliable functional annotation.

In order to attempt the comparative prediction of genes, sequence signals such as splice sites

and start codons have to be integrated into the prediction process and single functional ele-

ments such as potential exons have to be grouped into valid gene structures. As mentioned

earlier, any method for comparative ab initio gene prediction has to solve both an align-

ment and a gene prediction problem. These two problems can be solved simultaneously or

sequentially, with some independence (see Figure 1.7).

Except for the method presented in [NGMOl] (which assumes the presence of one complete

gene in each input DNA sequence), the method proposed in [PAC011 and the method pre-

sented in this dissertation, the methods developed so far align and predict gene structures

sequentially. This approach has the advantage that the time and memory requirements of

most steps in the prediction process scale linearly with the length of the input DNA sequence

as they are applied to each sequence independently. The multi-step methods for compar-

ative ab initio gene prediction are therefore naturally well suited for applications on large

DNA sequences. However, as the final gene prediction steps rely on the initial local or global

alignment between the two input sequences, errors in the initial alignment may propagate to

the gene prediction step which then has difficulties correcting for them. These methods thus

assume that a fairly accurate local or global alignment can be made between the two input

sequences. Furthermore, the prediction of the final gene structures in the two sequences is

either done independently and thus does not make maximal use of the similarity information

(as e.g. in the program SGP-1) or is done in very close dependence (as e.g. in the program

CEM) which is probably best suited for pairs of closely related genes.

As opposed to the multi-step methods which try to solve the alignment and gene prediction

sequentially, pair HMM based methods are suited to solve both in one step. As is shown

in this work (see Chapter 2), the states and transitions of a pair HMM can be set up to

simultaneously align the two input DNA sequences and to predict gene structures in both

of the two sequences. The aim is to thereby obtain both, improved gene predictions and an

improved global alignment which should also highlight conserved subsequences of yet unknown

function, see (5) in Figure 1.7. The mathematical concept of pair HMMs can be used in a

fully probabilistic way and sequence signals such as splice site scores and start codon scores

1.5. THEORETICAL BACKGROUND 23

can be fully integrated.

Depending on the definition of states, the pair HMM can also be set up to be able to align

more diverged pairs of genes which are related by events of exon-fusion or exon-splitting.

The main advantage of pair HMM based methods is that the gene prediction process is not

separated from the alignment process and the similarity information between the sequences

is fully used to aid the gene prediction process and vice versa. The heuristical ideas and

assumptions used in the multi-step methods which may impose unjustified prejudices and

restrictions on the gene finding procedure, are essentially not needed within pair HMMs and

the prediction process relies only on a few very basic assumptions. However, the integrated

alignment and gene prediction approach has the disadvantage that the time and memory re-

quirements of the prediction process scale quadratically with the length of the input sequence

which limits the applicability to rather short DNA sequences or makes the implementation

technically challenging. We solve this problem by introducing the Stepping Stone algorithm

whose memory and time requirements scale linearly with the length of the input sequence,

see Chapter 2.

It remains to be seen how well multi-step methods perform in comparison to each other and

to pair HMM based methods, how each method performs on more diverged pairs of genes and

how readily it can be adapted to successfully analyse other pairs of genomes. It will be crucial

to see how the performance of each method scales when going from nucleotide level to gene

level as this should be a good indicator of how well and in which way similarity information is

utilised within each method (except for TWINSCAN and PRO-GEN, the gene level performance

of the above mentioned comparative methods is not reported).

1.5 Theoretical background

Traditionally, ab initio gene prediction deals with one DNA sequence at a time. Among the

most successful methods are hidden Markov models as exemplified by GENSCAN [BK97] and

HMMGENE [Kro97]. In order to extend gene prediction to work on two DNA sequences

simultaneously, we employ an extension of hidden Markov models, called pair hidden Markov

models (pair HMMs) [DEKM98, KZOO].

1.5. THEORETICAL BACKGROUND 24

1.5.1 Pair hidden Markov models

In analogy to the previously introduced Markov models, see Section 1.3.2, the definition of a

state can be extended to deal with two sequences instead of only one sequence. All previously

given definitions and remarks which were made for variants of Markov models in Section 1.3.2

also apply to pair hidden Markov models.

The difference between a pair HMM and an HMM is that a pair HMM deals with two input

sequences instead of only one. The states of a pair HMM read letters from only one of the

two input sequences or from both of them. As for HMMs, a state of a pair HMM assigns

an emission probability to the letters it reads. The pair HMM then passes to one of the

states to which the current state is connected by directed transitions and assigns a transition

probability to this action. This procedure is repeated until all letters of both sequences have

been read. The sequence of states passed through is called the state path.

Each state assigns labels to the letters it reads, as for example ‘intron’ or ‘exon’. A state path

can therefore be translated into annotations for both DNA sequences.

1.5.2 Alignment algorithms

Once the transition and emission probabilities of the pair HMM have been specified, the pair

HMM can be used to predict an annotation for the two input DNA sequences by finding the

optimal state path, Sqt. To any chosen state path S and a given pair of sequences X and Y,

the pair HMM assigns the following probability:

2-1

P (X , Y, S) = e,, (k1,Pl) - t S i (S i S 1) * %,+l @i+l,Pi+l)
i=l

The sequence of states encountered on the state path is S = (SI, s2,. . . , sz), 2 being the

length of the chosen state path. t s i (s i + l) is the transition probability to go from the i-th

state si to the i + 1-th state si+l. e , (k , p) is the emission probability of state s to read A,(s)

letters from sequence X , namely letters z~-A, (,) , . . . ,zk-l, and to read A,(s) letters from

sequences Y, namely letters y p - ~ , (,) , . . . , yp-l. After the i-th step in the state path, we are

therefore in state si+l at position ka+l in sequence X and at position pi+l in sequence Y. At

the end of the state path, i.e. after 2 steps in the pair HMM, all letters of the two sequences

have been read.

1.5. THEORETICAL BACKGROUND 25

As with a single sequence HMM, it is clear that there is a multitude of possible state paths

for a given pair HMM and a given pair of input sequences. The aim is to find the state path

which corresponds to a correct annotation for both sequences. The assumption is that, with

appropriately chosen emission and transition probabilities, the state path with the highest

probability P (X , Y, S), denoted Sqt, corresponds to a correct annotation. The task is then

to find this optimal state path, Sqt, that maximises P (X , Y, S).

The basic method to retrieve the optimal state path is the Viterbi algorithm [Vit67]. We

also introduce here the Hirschberg algorithm [Hir75] which finds the optimal state path with

linear memory requirements.

The Viterbi algorithm

The optimal state path can be found using the Viterbi algorithm [Vit67]. This algorithm solves

the optimisation problem in two steps. In the first step, the elements of a three dimensional

matrix, the Viterbi matrix, are iteratively calculated. In the second step, a traceback process

through the matrix retrieves the optimal state path.

Let N be the number of states and T the number of transitions in the pair HMM and L, and

L, the lengths of the two input sequences X and Y , respectively. The value of each element

in the Viterbi matrix, denoted v(s , i , j) , corresponds to the probability of a state path which

ends in state s and which has so far read i letters from sequence X and j letters from sequence

Y. By definition, every state path starts in the begin state, s = 0, and finishes in the end

state, s = N - 1.

The elements of the Viterbi matrix are calculated as follows:

0 Initialisation step:

Set v(O,O, 0) = 1 and all other v(s, i, j) = 0. This forces every state path to start in the

begin state, s = 0.

0 Recurrence relation:

The v(s , i , j) are iteratively calculated by looping over all i E (1,. . . ,Az}, all j E

(1,. . . , L,} and all states s E (1,. . . , N - 2) (the begin state, s = 0, and the end state,

s = N - 1, need not be considered as they are only used at the start and end of each

state path):

1.5. THEORETICAL BACKGROUND 26

where

- t , / (s) is the transition probability to go from state s’ to the state s.

- e , (i , j) is the emission probability of state s to read A,(s) letters from sequence

X , namely letters z + A ~ (~) , . . . , zi-1, and to read A,(s) letters from sequences Y ,

namely letters Y ~ - A ~ (~) , . . . , yj-1.

- Note that instead of maximising over all states s‘ E { 1, . . . , N - 2) only those states

s’ for which a transition to s exists have to be considered.

0 Termination step:

The constraint that every state path has to end in the end state, s = N - 1, is imple-

mented by setting

- 1, L,, L y) = max&{l,...,N-2} {+’, L, - &(4, Ly - Ayb)) ’ t s v - 1))

This probability can be shown [Vit67] to be equal to the probability of the optimal state

path, s*pt.

At this state, the probability of the optimal state path is known, but the path itself has still

to be retrieved. Once the elements of the Viterbi matrix have been calculated, the optimal

state path, Swt, is retrieved by starting at the matrix element w(N - l ,L, ,Lg) whose value

is equal to P (X , Y, Sqt) and by recursively determining the state from which the maximum

at the current state was derived. Using this traceback method, the sequence of states of the

optimal state path is retrieved. The annotations of the two DNA sequences as well as the

conserved subsequences can be deduced from this state path.

For a pair HMM with N states and T transitions and two sequences of length L, and L,,

respectively, the memory requirement for the Viterbi algorithm is of order O(N L, - Ly),
as this is the number of elements in the Viterbi matrix. The time requirement is of order

O(T L, L,), which is essentially the time consumed to calculate the elements of the Viterbi

matrix.

It is clear that the quadratic dependency on the sequence length imposes serious restrictions

on the applicability of the Viterbi algorithm on long sequences. For example, two sequences

1.5. THEORETICAL BACKGROUND 27

of lo3 base pairs length and a pair HMM with 50 states would need about 400 MB memory

(numbers saved in double format) to save the Viterbi matrix. The same pair HMM used on

two sequences of lo4 base pairs length would need a hundred times more memory and time

to complete the calculation of the Viterbi matrix.

The Hirschberg algorithm

The dependency of the Viterbi’s memory requirement on the product L,.L, imposes a serious

constraint on the analysis of long sequences. The Hirschberg algorithm [Hir75] linearises the

memory requirement while still retrieving the optimal state path.

The key idea is to make use of the following underlying symmetry: instead of starting the

calculation at the start of the two sequences, i.e. sequence positions (q , y l) , we may as well

start it at their ends, (z L ~ , y~,). This can be done by using a mirrored model which is created

from the original pair HMM by reversing the directions of all arrows and by permuting the

begin and end state with respect to the original pair HMM. This reversed pair HMM does

not admit a probability interpretation any more because the probabilities of the transitions

emerging from each state do no longer add up to one (instead, the probabilities of the transi-

tions leading into each state add up to one). In the following, this model is called the mirror

model.

The Hirschberg algorithm divides the Viterbi matrix, see (1) in Figure 1.8, into two halves

which can each be calculated independently. One sub-matrix is calculated using the pair

HMM starting at (z1,yl) and proceeding towards higher values of the sequence index i, the

other sub-matrix is calculated using the mirror model starting at (z~,,y~,) and proceeding

towards lower values of the sequence index i, see (2). Instead of storing the whole Viterbi

matrix, only the values in a narrow strip like volume are stored because only these are needed

to continue the calculation, see the hatched areas in (2). The minimum strip width is equal

to the maximum number of letters which are read from a sequence by a state in the pair

HMM plus one, to store the row of new values. The process is stopped when the two strips

overlap, see (3). The probability of the optimal state path, P(X,Y,S,t), is then found by

multiplying the appropriate values in the two strips and by searching for their maximum

which is equal to P(X, Y, Sqt). We then not only the know the probability of the optimal

state path, Sqt, but also the coordinates (s , i , j) where the optimal state path crosses the

two superimposed strips, see (4). The same procedure is then applied to the two emerging

1.5. THEORETICAL BACKGROUND 28

sub-matrices whose boundaries are now known, one with sequence coordinates from (z1,gl)

to (zi,gj) and the other one from (zi,yj) to (z~.,y~~), see (5) and (6), until the adjacent

coordinates of the optimal state path, (7), are at most separated by a sub-matrix of some

predefined maximum size, (8). These coordinates are then used as boundary conditions to

run the Viterbi algorithm separately on all the small sub-matrices. In the end, the state paths

of the small sub-matrices are concatenated into the optimal state path from start state s = 0

at (z1,yl) to the end state s = N - 1 at (z~,,y~,).

Using the Hirschberg algorithm, the memory requirement reduces to O(N rnan{L,, Ly}). As

each iteration halves the volume of the matrices that have to be calculated, the time used by

the Hirschberg algorithm is at most twice the time used by the Viterbi algorithm, i.e. still of

order O(T L, . Ly) .
The benefits of the Hirschberg algorithm are:

0 The memory requirement of the Viterbi algorithm can be reduced to O(N.rnin{L,, Ly}),
i.e. the memory required to save the two strips which each have length min{L,,Ly},

minimal width and height N .

0 As all sub-matrices have known boundary conditions, they can be calculated indepen-

dently, possibly in parallel and on several computers.

To summarise, the Hirschberg algorithm finds the optimal state path and the optimal score

with a memory requirement which scales only linearly with the sequence length and in a time

at most twice the time needed by the Viterbi algorithm (as each iteration halves the area which

has to be calculated, the time used by the Hirschberg algorithm is at most t + t / 2 + t / 4 . . . = 24,

i.e. twice the time t taken by the Viterbi algorithm). However, this time requirement of the

Viterbi algorithm scales with L, - L, and still imposes a serious constraint on the analysis of

long DNA sequences. In Chapter 2, we introduce a new algorithm which reduces both time

and memory requirements to effectively linear dependence on the sequence length.

1.5. THEORETICAL BACKGROUND 29

L X

(2)

Y

t
(7)

Figure 1.8: The Hirschberg algorithm. (1) shows the three-dimensional Viterbi matrix. (2)
to (8) show only its two-dimensional projection onto the plane spanned by the two sequences
X and Y. See text for details.

