
Chapter 3 

Ab initio prediction of mouse and 

human genes with DOUBLESCAN 

3.1 Introduction and motivation 

The architecture of the pair HMM underlying DOUBLESCAN as described in Chapter 2 is suited 

for the comparative prediction of pairs of genes in any pair of related eukaryotic organisms. 

Only by setting up the pair HMM’s transition and emission probabilities with a training set 

of known pairs of genes, is DOUBLESCAN specialised for a certain purpose. 

In this chapter, we show that DOUBLESCAN can be used to analyse pairs of mouse and 

human DNA sequences. For this, DOUBLESCAN’S emission probabilities were derived and its 

transition probabilities optimised with a training set of known mouse and human gene pairs 

[JBD99], see Section 2.3 for the derivation of parameters and Section A.l in Appendix A for 

a description of the training set. Once the parameters of the pair HMM have been set up, 

DOUBLESCAN is applied to a test set of 80 pairs of known orthologous mouse and human 

genes Pac991, see Section A.2 in Appendix A. Note that the only input information to 

DOUBLESCAN are the letters of the two DNA sequences. In particular, the sequences are not 

masked for repeats. 

This chapter evaluates the performance of DOUBLESCAN for finding genes and compares it to 

the performance of GENSCAN [BK97], a non-comparative ab initio gene prediction method. 

We then briefly discuss the alignments of the DNA sequences generated during the gene 

prediction and conclude the chapter by showing that the Stepping Stone algorithm provides a 

good solution for the analysis of long DNA sequences by comparing its predicted state paths 
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and gene predictions to the optimal ones derived with DOUBLESCAN using the Hirschberg 

algorithm. 

3.2 Results 

The results of the comparison are shown in Table 3.1. In the following, the term prediction 

refers to the results retrieved by DOUBLESCAN or GENSCAN, whereas the term annotation 

refers to the gene structures in the data base from which the genes of the training and test 

sets have been derived. 

GENSCAN is a non-comparative ab initio gene prediction method which employs an explicit 

state duration HMM. It is capable of predicting partial, complete and multiple genes. Its 

HMM contains separate states for the exon of a single exon gene and for initial and terminal 

exons, as well as states for promoter, 5’ untranslated region, 3’ untranslated region and the 

poly-A signal. It uses different parameter sets according to the GC contents of the input DNA 

sequence. 

The first thing to note is that the pair HMM with states for UTR-splicing improves the overall 

performance of DOUBLESCAN, especially the sensitivity and specificity for stop codons, the 

specificity for start codons and exons and the sensitivity and specificity for genes as well as 

the rate of wrong genes. 16 % of the overlapping genes are turned into correctly predicted 

genes and 42 % of the wrong genes are completely removed when including UTR-splicing into 

the model, while only 5 % of the correctly predicted genes are turned into just overlapping 

genes. Instead of a correctly predicted start codon, these overlapping genes have a splice 

site in close vicinity 5’ to the annotated start codon which is not predicted or their initial 

exons are completely missing in the prediction. Given its superior performance, DOUBLESCAN 

including the states for UTR-splicing will be taken as the reference model for DOUBLESCAN. 

DOUBLESCAN including UTR-splicing still has a 14 % rate of wrong genes corresponding to 

30 genes which are predicted in addition to those that overlap the annotated gene in each 

DNA sequence. 53 % of the wrong genes are short (less than 106 base pairs length) complete 

single exon genes, 13 % are complete two exon genes with a long intron (more than 656 base 

pairs length) and short coding length (less than 52 base pairs length), 7 % are complete two 

exon genes with a short intron (less than 17 base pairs length) and short coding length (less 

than 49 base pairs length) and the remaining 27 % are partial genes. 

If we post-process DOUBLESCAN’S results as described in Section A.3 in Appendix A, all of 
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Gene 
Sensitivity 
Specificity 
Genes overlapping 
Genes missing 
Genes wrong 
Star t  Codon 
Sensitivity 
Specificity 
Stop Codon 
Sensitivity 
Specificity 
Exon 
Feature Level 
Sensitivity 
Specificity 

Exons missing 
Exons wrong 
Nucleotide Level 
Sensitivity 
Specificity 

Exons overlapping 

DOUBLESCAN DOUBLESCAN DOUBLESCAN GENSCAN 
without including 

UTR-splicing post-processing 

0.51 0.57 0.57 0.47 
0.35 0.43 0.50 0.46 
0.42 0.44 0.46 0.53 

0 0 0.01 0 
0.23 0.14 0.04 0.01 

0.77 0.78 0.75 0.73 
0.64 0.67 0.78 0.91 

0.86 0.91 0.89 0.88 
0.70 0.74 0.86 0.97 

0.79 0.81 0.80 0.84 
0.68 0.74 0.79 0.82 
0.16 0.15 0.15 0.12 
0.03 0.03 0.05 0.03 
0.16 0.10 0.06 0.06 

0.97 0.97 0.96 0.98 
0.97 0.98 0.99 0.94 

Table 3.1: Performance figures for DOUBLESCAN without UTR-splicing, DOUBLESCAN, Dou- 
BLESCAN including post-processing and GENSCAN on the test set. The predictions by DOU- 

BLESCAN were generated using the Stepping Stone algorithm. Sensitivity ia defined as the 
fraction of annotated features which are correctly predicted. Specificity is defined as the 
fraction of predicted features which match an annotated feature. For start and stop codons, 
sensitivity and specificity are shown at feature level, i.e. for entire codons. At feature level, 
sensitivity and specificity as well as the fraction of annotated exons which overlap a predicted 
exon (Exons overlapping), the fraction of annotated exons which do not overlap any predicted 
exon (Exons missing) and the fraction of predicted exons which do not overlap any annotated 
exon (Exons wrong) are given. At gene level, sensitivity and specificity are detailed as well 
as the fraction of annotated genes which overlap a predicted gene (Genes overlapping), the 
fraction of annotated genes which do not overlap any predicted gene (Genes missing) and the 
fraction of predicted genes which do not overlap any annotated gene (Genes wrong). 
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the wrong complete genes, corresponding to 73 % of the wrong genes, are removed. This post- 

processing steps also removes ten (10.7 %) of the overlapping genes. Six of them are complete 

short single exon genes which overlap an exon of the annotated gene. Two other overlapping 

genes which are removed in the post-processing step are complete two exon genes with a 

small coding length (less than 94 base pairs length) which have only a small overlap with the 

annotated genes. However, the post-processing step also removes two complete, overlapping 

multi-exon genes which overlap the annotated genes in most of their exons, but which each 

have one short intron (of 39 base pairs and 45 base pairs length, respectively) due to a mis- 

predicted exon. Overall, the post-processing step improves the performance considerably. It 

keeps the sensitivity at gene level unchanged while at the same time improving the specificity 

by 7 ’$6 and lowering the rate of wrong genes by 10 %. For start codons, it slightly lowers the 

sensitivity by 3 % while at the same time raising the specificity by 11 %. The same tendency 

is shown for stop codons where the sensitivity is lowered by 2 % while the specificity improves 

by 12 %. For exons, the performance at nucleotide level remains almost unchanged. At exon 

level, the sensitivity is lowered by 1 % while the specificity is increased by 5 %. Given the 

overall positive effect of the post-processing step, we discuss in the following parts of this 

chapter the results of DOUBLESCAN after post-processing unless otherwise stated. 

Both for DOUBLESCAN and GENSCAN, the performance for stop codons is significantly higher 

than for start codons, the main reason being that in-frame start codons can be found both at 

the translation start as well as in frame within exons, while in-frame stop codons can only be 

found at the translation end. The sensitivity of DOUBLESCAN for start codons is 2 % higher 

than that of GENSCAN, but its specificity is 13 % lower than that of GENSCAN. DOUBLESCAN’S 

sensitivity for stop codons is slightly higher than that of-GENSCAN, while its specificity is 

11 % lower than that of GENSCAN. Unlike DOUBLESCAN, GENSCAN has dedicated states 

for a promoter and the 5’ untranslated region which model the region 5’ of the translation 

start. These extra states implement detailed knowledge about the upstream region of some 

genes and can therefore help to position the start codon correctly. In addition, GENSCAN 

is biased towards starting and finishing the predicted annotation within the intergenic state. 

Within GENSCAN, also the region 3’ of the translation end has dedicated states which model 

the 3’ untranslated region and a poly-A signal. However, without this extra information, 

DOUBLESCAN has a high sensitivity for both start and stop codons using only similarity 

information between the two DNA sequences. 
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DOUBLESCAN’S sensitivity for exons at nucleotide level is high, the sensitivity being 2 % lower 

and the specificity 5 % higher than those of GENSCAN. At exon level its sensitivity is 4 % 

and its specificity 3 % lower than GENSCAN. The difference in performance for exons between 

the nucleotide and exon level can be explained by cases in which two or more predicted genes 

overlap one annotated gene such that the overlap between the annotated and the predicted 

exons is large, but not perfect. 

At gene level, DOUBLESCAN has a significantly higher sensitivity (10 %) and also higher 

specificity (4 %) than GENSCAN. Three of the gene pairs can not be predicted correctly by 

DOUBLESCAN as the configuration of annotated genes can not be modelled by the underlying 

pair HMM. One of the three gene gene pairs can not be modelled as the initial exons consist 

only of a start codon. The other two pairs of genes lie in pairs of sequences for which one 

sequence starts with intergenic subsequence 5’ to the start codon and the other sequence 

starts directly with the start codon. Removing the corresponding three sequence pairs would 

improve the performance by up to 3 %. The 1 7% rate of missing genes for DOUBLESCAN 

corresponds to one overlapping gene which is removed in the post-processing step. 

In order to see whether or not DOUBLESCAN and GENSCAN preferentially detect different 

types of genes, we have compared the genes which were correctly predicted by one of the 

two methods to those predicted by the other method. About half (44 %) of the genes which 

were found by DOUBLESCAN were incorrectly predicted by GENSCAN. Conversely, 32 % of 

the genes found by GENSCAN were not correctly predicted by DOUBLESCAN. By far the most 

common reason why a gene is correctly predicted by one method and incorrectly predicted 

by the other one is that the start codon is not found correctly or not found at all (accounting 

for 55 % of the genes found by DOUBLESCAN and not correctly predicted by GENSCAN, and 

for 58 % of the genes found by GENSCAN and not correctly predicted by DOUBLESCAN). 

The next common causes are incorrect splicing (accounting for 30 % of the genes found by 

DOUBLESCAN and not correctly predicted by GENSCAN, and for 21 % of the genes found by 

GENSCAN and not correctly predicted by DOUBLESCAN) and the wrong or missing prediction 

of the stop codon (accounting for 23 % of the genes found by DOUBLESCAN and not correctly 

predicted by GENSCAN, and for 25 % of the genes found by GENSCAN and not correctly 

predicted by DOUBLESCAN). Interestingly, GENSCAN tends to miss out whole terminal exons 

whereas DOUBLESCAN only gets the 3’ end of the terminal exon wrong by introducing a 

5’ splice site in close vicinity 5’ to the annotated stop codon. Overall, DOUBLESCAN and 
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GENSCAN complement each other, but we could not identify a pattern as to which genes tend 

to be correctly predicted by which method. 

It is known that the density of genes as well as some of their features, e.g. intron length, 

depend on the GC contents of the DNA sequence [DMG95, ConOl]. To test whether the 

performance of the methods depends on the GC contents of the input DNA sequences, we 

subdivided the test set into the following four subsets according to the GC contents intervals 

defined in Per891. As the GC contents of the two DNA sequences of each pair are well 

correlated, the DNA sequences were sorted by GC contents in pairs. The four intervals are 

gcl = [0,0.43), comprising four sequence pairs, gc2 = [0.43,0.51), comprising 22 sequence 

pairs, gc3 = [0.51,0.57), comprising 26 sequence pairs, and gc4 = [0.57,1], comprising 28 

sequence pairs. Considering the DOUBLESCAN results without the post-processing step, the 

sensitivity and specificity for start codons, stop codons, exons and genes show no dependency 

on the GC contents of the DNA sequences and are the same within statistical errors. The 

same independence of GC contents was found for GENSCAN. However, in GENSCAN this 

independence is explicitly established by choosing the model’s parameters according to the 

GC contents of the input DNA sequence, whereas DOUBLESCAN’S performance is independent 

of the GC contents without using GC dependent parameters. 

3.3 Prediction of conserved subsequences 

DOUBLESCAN without the post-processing step retrieves 69 % of the intergenic subsequences, 

48 % of the intron subsequences and 99 % of the exon subsequences as conserved subsequences. 

The level of conservation in the intergenic subsequences is higher than one would expect for 

long intergenic subsequences, but can be explained by the fact that the intergenic subsequences 

of the test set are close to the translation or transcription start and end of the genes where 

a higher density of conserved subsequences is expected [JBD99]. 

3.4 Validation of the Stepping Stone algorithm 

The Stepping Stone algorithm has been developed in order to accelerate the prediction process 

as both its time and memory requirement scale essentially linearly with the length of the input 

sequence. Since it is not guaranteed to find an optimal state path, we compared both the 

state paths and annotations retrieved by DOUBLESCAN using the Stepping Stone algorithm 
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to those retrieved by DOUBLESCAN using the Hirschberg algorithm on the test set. For these 

purposes we consider the DOUBLESCAN results without post-processing as they correspond 

to the state paths which are to be compared. For 81 % of the DNA sequence pairs, the 

Stepping Stone algorithm finds the optimal state path (this state path need not be the same 

as the optimal state path retrieved by the Hirschberg algorithm as there are generally several 

optimally scoring state paths). Comparing the predicted annotations, 97 % of the predicted 

genes are the same for both algorithms. The agreement for start codons is 100 % and 98 % for 

stop codons. At nucleotide level, the agreement for exons is 100 % and 99.8 %, respectively, 

i.e. close to perfect. 

Compared to the annotation, the performance of the Hirschberg algorithm is the same as 

that of the Stepping Stone algorithm except for a 1 % improvement of the exon sensitivity at 

exon level and the corresponding 1 % decrease of the rate of overlapping exons. 

The average length of the sequences in the test set is around 3300 base pairs and there is on 

average a BLASTN match every 380 base pairs. If we constrain the Stepping Stone algorithm 

and Hirschberg algorithm to use the same maximum amount of memory, the prediction process 

using the Stepping Stone algorithm is on average four times faster than using the Hirschberg 

algorithm. To give an example, the analysis of one pair of DNA sequences of 9604 base pairs 

and 10373 base pairs length, respectively, took about 126340 CPU seconds and about 400 MB 

memory on an Alpha processor with the Hirschberg algorithm, while the analysis with the 

Stepping Stone algorithm took about 13313 CPU seconds using the same amount of memory. 

We have used DOUBLESCAN with the Stepping Stone algorithm on pairs of sequences of more 

than lo5 base pairs length. As the maximum memory to be used can be set by the user, the 

memory requirement can be traded for the time requirement and vice versa. 

Assuming that the density of BLASTN matches is independent of the sequence length, the gain 

in time using the Stepping Stone algorithm increases with the length of the DNA sequences 

to be analysed. 

3.5 Summary and discussion 

The analysis of a test set of 80 pairs of orthologous mouse and human DNA sequences shows 

that DOUBLESCAN performs well at gene level and significantly outperforms GENSCAN, the 

reference non-comparative ab initio method. DOUBLESCAN’S performance at nucleotide level 

is high, its sensitivity being 2 % lower and its specificity being 5 % higher than GENSCAN’S. 



3.5. SUMMARY AND DISCUSSION 53 

At feature level, DOUBLESCAN’S sensitivity for start and stop codons is slightly higher than 

GENSCAN’S, but its specificity is 11 % and 13 %, respectively, lower specificity than GEN- 

SCAN’S. Besides the extra states that help GENSCAN recognise the region 5’ of the translation 

start, it also has an inherent bias towards starting and finishing the state path in intergenic 

regions and is thus biased towards detecting complete genes comprising start and stop codons. 

As our test set is entirely composed of DNA sequences which each contain one complete gene, 

we expect this to help GENSCAN. At exon level, DOUBLESCAN’S sensitivity and specificity are 

4 % and 3 %, respectively, lower than GENSCAN’S. At gene level, DOUBLESCAN outperforms 

GENSCAN’S sensitivity by 10 9% and its specificity by 4 %. One gene which is predicted by 

DOUBLESCAN and which overlaps the annotated gene is removed in the post-processing step 

which corresponds to a 1 % rate of missing genes. DOUBLESCAN and GENSCAN agree in 

more than half of their correctly predicted genes. 72 % of all annotated genes are correctly 

predicted by one or both of the two methods. DOUBLESCAN and GENSCAN thus complement 

each other. However, we could not find an obvious pattern that would allow us to predict 

which genes are correctly identified by which method. 

It is interesting that the performance of DOUBLESCAN relative to GENSCAN increases progres- 

sively when going from fine scale (nucleotide level) to large scale (gene structure). It appears 

that long range constraints such as the exon-intron structure of genes can be captured well in 

the comparative model, even though the detailed modelling is simplified compared to GEN- 

SCAN. 

The performance of DOUBLESCAN and GENSCAN as reported here for a test set of 80 pairs of 

orthologous mouse and human DNA sequences each comprising one single complete gene does 

not permit to conclude that the performance on other test sets, especially long DNA sequences 

comprising multiple genes, will be the same, see for example [GAA+OOa] and [WGMOO]. To 

investigate the performance of DOUBLESCAN on multi gene sequences, pain of long homole 

gous DNA sequences are needed in which the similarities between the two sequences appear 

in collinearity. This requirement implies that long semi-articifial DNA sequences compris- 

ing several single-gene sequences separated by randomly generated intergenic regions (see for 

example [GAA+OOa]) are not likely to constitute an adequate test for comparative gene pre- 

diction methods such as DOUBLESCAN as the level and the patterns of conservation between 

two homologous intergenic subsequences will not necessarily be similar to those between two 

randomly generated intergenic subsequences. 
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Comparing the predictions of the Stepping Stone algorithm and the Hirschberg algorithm, for 

81 % of the sequence pairs is the state path returned by the Stepping Stone algorithm optimal 

and 97 % of the predicted genes axe identical for the two algorithms. The performance of the 

Hirschberg algorithm is almost the same as that of the Stepping Stone algorithm, while the 

gain in time using the Stepping Stone algorithm is significant. This is especially important 

for the analysis of large genomic sequences for which the Stepping Stone algorithm provides 

a very efficient practical solution. 


