
Chapter 6 

DOUBLEBUILD 

6.1 Introduction and motivation 

The design of a pair HMM, i.e. its states and transitions, can be done rather quickly using 

pencil and paper. However, the implementation of the pair HMM into programming code 

and especially the implementation of alignment algorithms with which the pair HMM can be 

used to analyse sequences, can be a time consuming task. 

[BD97] present a compiler called DYNAMITE with which a variety of pair HMMs can be 

defined and used with alignment algorithms to produce a prediction. The desired pair HMM 

is defined in a text file using the DYNAMITE language. This DYNAMITE file is then translated 

into C programming code using the DYNAMITE compiler and this C code must then be compiled 

with a standard C compiler before it can be executed. The DYNAMITE compiler shields the 

user from the underlying implementation into C programming code. This has the advantage 

of making the implementation of a pair HMM easy as the user only has to provide a short 

definition file using the DYNAMITE language. However, the introduction of an intermediate 

compiler makes it difficult for a user to understand and modify the underlying C source code. 

My aim in programming DOUBLESCAN and PROJECTOR was to create a set of C++ classes, 

called DOUBLEBUILD, which can be used to define a variety of pair HMMs in a short time and 

which also provide sophisticated alignment algorithms so that the pair HMMs can be directly 

used for the analysis of data. In that respect, DOUBLESCAN and PROJECTOR can be seen as 

two sophisticated examples of what can be done with DOUBLEBUILD. 

My main motivation for choosing C++ as a programming language was to use an object 

oriented language which provides all the features that I needed to realise projects such as 
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DOUBLESCAN and PROJECTOR. Using an object oriented language, there is no need to write 

an extra compiler to generate the final source code because the building blocks of the pair 

HMM correspond to the classes defined in DOUBLEBUILD with which the programmer can 

directly define and operate pair HMMs. This made things easier for me and hopefully also 

for the user who may not only wish to use the source code, but who may also wish to modify 

or extend it. C++ has the additional benefit that a freely available compiler (GNU compiler) 

exists and that an ANSI standard has already been defined which guarantees a high level of 

portability of the source code. All relevant data structures are provided by DOUBLEBUILD 

itself. In particular, the standard template library is not used. 

This chapter first introduces the novel concept of special transitions and the concept of special 

emissions within pair HMMs and describe how they are implement within DOUBLEBUILD. It 

then presents the three main classes that form the foundation of DOUBLEBUILD, namely the 

Sequence class, the PairhmmState class and the Pairhmm class. Their description should 

also make clear how these classes interact. Finally, functions of special interest such as a 

variety of alignment algorithms are described. 

6.2 Special transitions within DOUBLEBUILD 

Special transitions are a new concept introduced in this dissertation. Special transitions 

within DOUBLEBUILD can be used to make any transition within a pair HMM dependent 

on position specific scores. These transitions are implemented in a way which conserves 

the probabilistic interpretation of the transition probabilities. The pair HMM underlying 

DOUBLESCAN and PROJECTOR is one example for a pair HMM which uses special transitions, 

see arrows with dots in Figure 2.4. It uses special transitions to model the sequence signals 

around translation start sites and splice sites. These sequence signals are contained in a 

sequence interval which is too large to be easily incorporated into one state of the pair HMM, 

and the signal itself is too complex to be adequately modelled by the emission probabilities of a 

state. Before starting the gene prediction with algorithms such as the Hirschberg algorithm or 

the Stepping Stone algorithm, the two input sequences X and Y are first separately searched 

for potential translation start sites and splice sites by dedicated programs. Each potential 

translation start and splice site is assigned a score which is a measure of the likelihood for this 

site to be a true translation start or splice site. These sequence signal scores are stored for 

each sequence separately in its corresponding Sequence object. Once the two input sequences 
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have been scanned for sequence signals, one of the algorithms is used to predict genes and 

align the two sequences. The sequence signal scores axe used within the algorithm to modify 

the nominal values of the transition probabilities so that the transition has a high probability 

if it is supported by strong sequence signal scores at the given sequence positions. 

Figure 6.1 shows a generic example with which the general concept of special transitions is 

elucidated in the following. Any alignment algorithm such as the Viterbi algorithm, Hirsch- 

berg algorithm or Stepping Stone algorithm derives the optimal state path according to the 

transition and emission probabilities encountered on the state paths through the pair HMM. 

The alignment algorithms work internally with scores which are derived from probabilities by 

score = logl(probabi1ity). The transition score for a transition from state from to state t o  

at position xpos  in sequence X and position y-pos in sequence Y, see Figure 6.1, is calculated 

in the following way (description given in pseudo-code): 

special-transitionscore(from, t o ,  X ,  x-pos, Y, Y-POS) { 

if from --+ t o  special { 

return-score = score (special-transitionprob(from, t o  , X  ,xpos ,Y , ypos)  

} 
else { 

i f  ex i s t s  t o ’  with from + to ’  special { 

returnscore = score (special~transition~rob(from, to ,X,xpOS ,Y ,YPOS) 

+ score (scalefactor)  

where 
/ 1 - spcial-transition-prob(from,to’,X,x-pom,Y,y-pos) \ 

sca le factor  = 

1 
e l s e  { 

1 
returnscore = 

1 
ret  urn (returnsc ore ) 

1 

c 
to’ 

:rm-+tol not spsill 

tor 
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transit ion-prob( f rom,to’ ) 

transitionscore(f rom, to)  
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score 
- r 

- 
Y ccagatacgctagacgtgaccaatgcgatcgcgatgcgcgatcccaaatgtgct position y 

t 
Figure 6.1: Part of a pair HMM with special transitions. Special transitions correspond to 
the mows marked with a big dot. Transitions belong to the state to which they are leading 
as indicated by a small dot between the tip of an m o w  and its state. When calculating the 
probability for the transition from state from to state to which is not special, we have to take 
into account the position dependent values of all special transitions emerging from state from 
in order to ensure that the probabilities of all transitions emerging from state from always 
sum up to one. See the text for a detailed description. 
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If only non-special transitions are emerging from state from, the transition score for the 

transition from state from to state t o  at position x-pos and y-pos is equal to the nominal 

value of the transition score for going from state from to state t o  ( t ransi t ionscore(from, 

to ) )  which is independent of the positions in the input sequences. If the transition from state 

from to state t o  is special, the transition score depends on the positions in the input sequences 

andisequal to score(specia1-transition-prob(from, t o ,  X ,  x-posy Y ,  ypos) ) ,  where 

the probability returned by special-transitionqrob(from, t o ,  X ,  x-posy Y , y-POS) is 

calculated by: 

special-transitionprob(from, t o ,  X ,  x-posy Y ,  y-pos) { 

re turnprob  = transitionprob(from, to )  

i f  from + t o  special  { 

re turnqrob  *= posterior-prob(prior , score) 

where 
pr ior  = Jprior_x.prior-y i f  t o  state of type E m i t X Y  

p r i o r 2  

p r io r  -y 

i f  t o  s t a t e  of type E m i t X  

i f  t o  s t a t e  of type E h i t Y  

score = score-x .t score-y i f  t o  s t a t e  of type E m i t X Y  

s c o r e 2  

s core-y 

i f  t o  s t a t e  of type E m i t X  

i f  t o  s t a t e  of type E m i t Y  

p r i o r 2  = X.prior(from, t o ,  x-pos) 

prior-y = Y.prior(from, t o ,  y-pos) 

s c o r e 2  = X.score(from, t o ,  x-pos) 

score-y = Y.score(from, t o ,  y-pos) 

and 
r i 0 r . 2 ' ~ ~ ~  pos ter iorqrob  (pr ior ,  score) = prio$2.MT.+l-prior 

1 
1 

If the transition from state from to state t o  is not special, but if there =e special transitions 

emerging from state from (as is shown in the example in Figure S.l), the nominal value of 

the non special transition from state from to state t o  is adjusted so that the sum of all 
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transition probabilities emerging from state from at any pair of sequence positions (xpos , 
y-pos) remains one. This is done by calculating a scaling factor (scalefactor)  by which 

the value of the nominal transition probability is multiplied. 

Generally, the priors for the special transitions may depend on the position within the se- 

quence. To name an example, the value of the prior for the special transition between the 

match exon and the emit x 5’ splice site phase 0 state in the pair HMM underlying DOU- 

BLESCAN and PROJECTOR depends on whether this is a consensus GT or a non-consensus GC 

splice site (see Table D.l and Figure 2.4). 

The details of how special transitions are implemented into the C++ classes of DOUBLEBUILD 

are described in Section 6.4. 

6.3 Special emissions within DOUBLEBUILD 

Not only transition probabilities, but also emission probabilities can be made dependent on 

the sequence positions. States whose emission probabilities depend on the positions in the 

input sequences are called states with special emissions. In PROJECTOR (see Chapter 3), 

special emissions are used to implement constraints into the calculation of the optimal state 

path. Only those state paths are considered in the calculation of the optimal state path which 

reproduce the known annotation of one of the two input sequences. This way we can project 

the known genes of one input sequence onto the other input DNA sequence of yet unknown 

annotation. PROJECTOR is just one of many possible applications of special emissions within 

pair HMMs. The following paragraph illustrates the generality of the concept of special 

emissions. 

Again, the algorithms internally employ scores, the logarithm of the probabilities, in order to 

avoid the numerical difficulties which arise when dealing with small probabilities. However, 

as scores and probabilities have a one-to-one correspondence, they can be easily converted 

into each other. For any given state t h i s  in a pair HMM, see Figure 6.2, the emission score 

is calculated in the following way: 

special-emissionscore ( th is ,  X ,  x-pos , Y ,  y-pos) { 

return-score = emission-score ( th is ,  X ,  x-pos, y ,  y-pos) 

i f  t h i s  s tate  has special emissions { 

returnscore += score 
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X acgatgacagataccaggtaaaaagtgacagatagacagatagggggattccc psi tion 

t 

position y 

score 

Y ccagatacgctagacgtgaccaatgcgatcgcgatgcgcgatcccaaatgtgct 

t 
Y P S  

Figure 6.2: State of a pair HMM with special emissions. The emission probability at positions 
(xpos ,  ypos)  not only depends on the letters read at these sequence positions, but also on 
the score at position x-pos in input sequence X and on the score at position y p o s  in input 
sequence Y. See the text for a detailed description. 

where 

score = score2  + score-y i f  t h i s  s tate  of type E m i t X Y  

scorer  

score -y 

i f  t h i s  s tate  of type E m i t X  

i f  t h i s  s tate  of type E m i t Y  

and 

s c o r e s  = X .  score ( th i s ,  xpos) 

score-y = Y .  score ( t h i s ,  y-pos) 

} 
return(returnscore1 

1 
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If t h i s  state does not have special emissions, the emission score (emission-score ( th i s ,  X ,  

x-pos, Y ,  y-pos)) only depends on the letters read from the input sequences at the given 

sequence position (x-pos, y-pos), but not the sequence positions. If t h i s  state has special 

emissions, the nominal value of the emission score (emissionscore ( th i s ,  X ,  x-pos, Y ,  

ypos))  which only depends on the letters read is modified by a score which depends on the 

scores at the given sequence positions (score-x and score-y). 

6.4 The main classes 

The three main classes of DOUBLEBUILD are the Sequence, the PairhmmState and the 

Pairhmm class. Each of the three classes has a set of private variables whose values characterise 

every instance of each class. 

We first introduce the private variables of each class in order to illustrate how the different 

classes interact within a pair HMM. The private variables are more important for the under- 

standing of the concept of DOUBLEBUILD than the set of public functions by which the values 

of the private variables are accessed. 

6.4.1 The Pairhmm class 

A Pairhmm object knows the number of states it consists of ( int  number-of s t a t e s )  and has 

an array with pointers to each of its states (PairhmmState* model). It has private variables 

for storing a state path and provides private functions which are used as the building blocks 

of public functions such as the Stepping Stone algorithm and the Hirschberg algorithm. 

6.4.2 The Pairhmm-State class 

PairhmmState objects constitute the building blocks of a pair HMM and interact with 

Sequence objects. The definition of the PairhmmState class was motivated by the idea 

that each state should know about itself and its direct neighbours within the pair HMM (a 

direct neighbour being a state that can be reached within a single transition). 

In its simplest variant, a PairhmmState object knows: 

int number-of s t a t e  its number within the Pairhmm 

int alphabet the alphabet of letters it reads from an input sequence 
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0 int  number-ofletters-toiead the number of letters it reads from an input sequence 

0 array<Labelseq> labels-of-letter-toiead the labels it assigns to the letters read 

0 array<Phase> phasesaf-letters-toiead the phases it assigns to the letters 

0 State-type state-type its own state type, e.g. if it is an E m i t X Y ,  E m i t X  or E m i t Y  state 

or some other type of state 

0 array<Prob> emissionprobs the array of its emission probabilities 

0 array<Prob> transitionprobs the array of transition probabilities to states which 

c m  be reached from this state 

0 int  number-ofstates the number of states in the pair HMM to which this state be- 

longs 

0 int  number-ofnext-states number of states which can be reached from this state 

0 array<int> numbers-ofnext-states array of the numbers of the states which can be 

reached from this state 

0 int  number-of-previous-states number of states which have a transition to this state 

0 array<int> numbers-of-previousstates array of the numbers of the states which 

have a transition to this state 

PairhmmState objects with special emissions 

If a state has special emissions, its emission probabilities depend both on the letters it reads 

and position specific sequence scores. This concept is .employed in PROJECTOR to predict 

an annotation for one of the two input sequences while keeping that of the other sequence 

fixed. Suppose we are dealing with the match exon state of PROJECTOR and are keeping the 

annotation of sequence X fixed, see Figure 2.4 and Figure B.3 in Appendix B. We want the 

match exon state to have non-zero emission probabilities only for letters whose annotation 

matches the labels and phases of sequence X .  For a given position in sequence X ,  the emission 

probability within the match exon state is calculated by requesting the corresponding score 

for that position from object Sequence X. Instead of storing the information for every state 

with special emission probabilities and all sequence positions in Sequence X, the information 

is only stored for a few states from which the information of the remaining states with special 

emissions can be derived. The match exon state derives its information on the position specific 
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emission probabilities of sequence X by requesting that of state emit x exon state as it suffices 

to know where this state is allowed in order to know where the match exon state is allowed. 

The private variables used to implement special emissions are: 

i n t  special-emission indicates if this state has special emissions or not. Its value is 

one if this state has special emissions and zero otherwise. 

i n t  number-of-child-statex is the number of the state under which the position 

specific sequence scores for this state are stored in Sequence X, in the above example 

this would be the number of the state emit x exon 

i n t  number-of-child-state-y is the number of the state under which the position 

specific sequence scores of this state are stored in Sequence Y (In the above example, 

special emission probabilities within the match exon state are only used for the position 

specific scores of sequence X as only the annotation of sequence X is kept fixed. In this 

case, i n t  number-of -child-state-y would be set to zero.) 

PairhmmState objects with special transitions 

If a state has special transitions, the probability of one or several transitions leading into the 

state depends on position specific scores within the input sequences. Both DOUBLESCAN and 

PROJECTOR use special transitions to improve the detection of splice sites and translation 

start sites. Dedicated programs score potential translation start sites and splice sites within 

the two input sequences separately. These position specific scores are then used within the 

pair HMM to modify the nominal values of the transition probabilities. If both sequences 

have strong signals for being 5’ splice sites at the given sequence positions, the probability of 

transferring from the match exon to the match 5’ splice site state is high and small otherwise, 

see Figure 2.4. 

As for special emissions, the information about the position specific scores as well as the priors 

is stored within the Sequence objects of the two input sequences, Sequence X and Sequence 

Y. And as for special emissions, also special transitions are implemented in a memory efficient 

way by storing information only for a minimum of transitions from which the information 

of the remaining special transitions can be easily derived. The probability of the special 

transition from the match exon to the match 5’ splice site phase 1 state, see Figure 2.4 and 

Figure B.3 in Appendix B, is derived from that of the special transition from the match exon 
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to the emit x 5’ splice site phase 0 state for input sequence X and from that of the special 

transition from the match exon to the emit y 5’ splice site phase 0 state for input sequence Y 
by considering the offset of one base pair. For long sequences, these tricks save a considerable 

amount of memory. 

The private variables dealing with special transitions are: 

int  special indicates if this state has special transitions or not. Its value is one if this 

state has special transitions and zero otherwise. 

int  number-of -special-transitions-topreviousstates is the number of special 

transition leading into this state 

array <int > spec i a1 f lags -of -t rans i t ions -t oprevious-s t at e s one-dimensional ar- 

ray indicating for each transition leading into this state if it is special (array element 

has value one) or not (array element has value zero) 

array<int> numbersaf from-child-statesxprevious one-dimensional array indi- 

cating for each transition leading into this state the number of the ‘from’ state to be 

used for deriving the special transition score for sequence X, if the transition is special. 

If an alternative transition is to be used, this number is the number of the ‘from’ state 

of the alternative transition. In the above example in which we are dealing with the 

match 5’ splice site phase 1 state, the array element for the transition from the match 

exon state to the match 5’ splice site phase 1 state is the number of the match exon 

state a.~ this is the ‘from’ state of the alternative transition from the match exon state 

to the emit x 5’ splice site phase 0 state which is used for deriving the position specific 

score of sequence X. 

array< int  > numbers -of -t o-chi ldst  a t  e s J -previous onedimensional array indicat- 

ing for ea..& transition leading into this state the number of the ‘to’ state to be used for 

deriving the special transition score for sequence X, if the transition is special. If an 

alternative transition is to be used, this number is the number of the ‘to’ state of the 

alternative transition. In the above example in which we are dealing with the match 5’ 

splice site phase 1 state, the array element for the transition from the match exon state 

to the match 5’ splice site phase 1 state is the number of the emit x 5’ splice site phase 

0 state as this is the ‘to’ state of the alternative transition from the match exon state 

to the emit x 5’ splice site phase 0 state which is used for deriving the position specific 
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score of sequence X. 

array<int> off setfor-previous-states2 onedimensional array indicating for each 

transition leading into this state the offset in base pairs to be used if the transition is 

special. In the above example in which we are dealing with the match 5’ splice site 

phase 1 state, the array element for the transition from the match exon state to the 

match 5’ splice site phase 1 state is one as this is the offset between the alternative 

transition from the match exon state to the emit x 5’ splice site phase 0 state which is 

used when dealing with sequence X and the transition from the match exon state to 

the match 5’ splice site phase 1 state. 

array <int > numbers -of f rom-child-s t at e s-yprevious 

same as array<int> numbers-of from-child-states-x-previous, but for dealing with 

input sequence Y 

array<int> numbers-of -to-child-states-yprevious 

same as array<int> numbers-of -to-child-stateslt-previous, but for dealing with 

input sequence Y 

array<int> off setfor-previous-states-y 

same as array<int> offsetforprevious-states3 , but for dealing with input se- 

quence Y 

6.4.3 The Sequence class 

In its most fundamental form, a Sequence object consists of: 

Letter* sequence the sequence of symbolic letters 

int  lengthaf sequence the length of the sequence 

Sequence-Type sequence-type the type of the sequence 

int  orientation the orientation of the sequence 

int s tartpos i t ion  and end-position, the start and end positions of the sequence 

char* i d  the name of the sequence 
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Sequence objects for use with special emissions 

If the input sequence is to be used with a pair HMM whose states have special emissions, the 

private variables of the Sequence object have to be set up accordingly, refer to Section 6.4.2 

to see how special emissions are dealt with in the Pairhmm-State class. 

The private variables which store information on special emissions are: 

int number-of special-emissions the number of states for which special emissions 

have to be implemented. In general, this is not the number of states in the pair HMM 

that have special emissions, but a smaller number of states from which the special 

emissions of all states with special emissions are derived. In the case of PROJECTOR, int 

number-of special-emissions is 22, but the number of states with special emissions 

is 52 (all non silent states of the pair HMM). 

arraycint> indices-of special-emissions one-dimensional array which assigns an 

index to every implemented state with special emissions. This index is used as the first of 

two indices (the second index indicating the position within the sequence) for the arrays 

array<Prob> posterior-probsforspecial-emissions and array<Score> scores-- 

f orspecialsmissions to look up the value of the corresponding posterior probability 

or score. 

arrayCProb> posterior-probsfor~special~emissions twedimensional array with 

the posterior probabilities for all implemented states with special emissions (first index) 

and all sequence positions (second index), if the posterior probabilities are to be used 

instead of scores 

array <Score> scores for -special -emi ss ions twedimensional array with the scores 

for all implemented states with special emissions (first index) and all sequence positions 

(second index), if scores are to be used instead of posterior probabilities 

Sequence objects for use with special transitions 

If the input sequence is to be used with a pair HMM which has special transitions, the private 

variables of the Sequence object have to provide the information needed by the states which 

have special transitions, see Section 6.4.2. 

The private variables which store information on special transitions are: 
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a i n t  number-of spec ia l - t rans i t ions  the number of special transitions which are im- 

plemented. As for special emissions, this is generally not the number of special tran- 

sitions in the pair HMM, but a smaller number of special transition from which the 

information of all remaining special transitions can be derived, see Section 6.4.2 for 

more information. For DOUBLESCAN, the number of special transitions is 25, but they 

derive their information from only six special transitions (three for each sequence) and 

the information on only these three transitions has to be provided by the Sequence 

object of each input sequence. 

0 array<int> indices-of -special- transitions two-dimensional array which assigns 

an index to every implemented special transition. This index is used to refer to the 

transition within other arrays (arrays array<Prob> posterior-probs-for-speciaL- 

t r ans  it ions, array<Prob> pr io r s  -of s p e c i a l  -t Tans it ions and array <Score> scores -- 
for-special-transitions). The f is t  index of this array is the state number of the 

‘from’ state of the special transition and the second index the state number of the ‘to’ 

state of the special transition and the return value is the index which is to be used to 

refer to that transition within the previously mentioned arrays. 

a arrayCProb> posterior-probsfor-special-transitions two-dimensional array with 

the posterior probabilities for all implemented special transitions (first index) and all 

sequence positions (second index), if the special transitions are to be used with posterior 

probabilities rather than with priors and scores. 

0 arrayCProb> p r i o r s n f  -special- transitions two-dimensional array with the priors 

for all implemented special transitions (first index) and all sequence positions (second 

index), if the special transitions are to be used with priors and scores rather than with 

posterior probabilities. Generally, the priors for special transitions can be dependent 

on the position within the sequence. To name an example, the value of the prior for the 

special transition between the match exon and the emit x 5’ splice site phase 0 state in 

the pair HMM underlying DOUBLESCAN and PROJECTOR depends on whether this is a 

consensus GT or a non-consensus GC splice site (see Table D.1 and Figure 2.4). 

0 array<Score> scoresfor-special-transit ions two-dimensional array with the scores 

for all implemented special transitions (first index) and all sequence positions (second 

index), if the special transitions are to be used with priors and scores rather than with 

posterior probabilities . 
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6.5 Alignment algorithms 

The public functions of the Pairhmm class provide several algorithms by which the pair HMM 

can be used to analyse data. 

6.5.1 The Viterbi algorithm 

The Viterbi algorithm in its original form [Vit67] was mainly implemented to verify the other 

algorithms. It calculates the optimally scoring state path for the given pair HMM and two 

input sequences. 

6.5.2 The Hirschberg algorithm 

The Hirschberg algorithm, see Section 1.5.2 and Figure 1.8, takes two Sequence objects 

and an integer value (int max-area) as the input and calculates the optimally scoring state 

path for the given pair HMM and the two input sequences in linear memory and quadratic 

time dependence. The value of max-area indicates the maximum size (in the two sequence 

dimensions) of sub-matrices which are directly calculated by the Viterbi algorithm. The 

smaller this value, the more iterations have to be performed within the Hirschberg algorithm 

before each sub-matrix is small enough to be calculated using the Viterbi algorithm. 

As the Hirschberg algorithm works internally with two pair HMMs, the original pair HMM and 

the mirrored model of the original pair HMM, the mirrored version has to be provided as an- 

other input parameter. It is created by the public Pairhmm function int  getm.irrored(void) 

before the Hirschberg algorithm is called. 

6.5.3 The Stepping Stone algorithm 

The Stepping Stone algorithm, see Section 2.4 and Figure 2.5, takes two Sequence objects 

and a list of (z,y) coordinates as input which are simultaneously ordered in their 2 and y 

coordinates and derives the highest scoring state path in the thus restricted subspace of the 

Viterbi matrix. The input values, int  xmargin and int y m g i n ,  indicate the size of the 

overlap in the two sequence dimensions that two adjacent sub-matrices shall have. The input 

parameter int max-area is the same as for the the Hirschberg algorithm. If a sub-matrix is 

smaller than its value, it is directly calculated by the Viterbi algorithm during the traceback 

process. Otherwise, it is calculated using a special variant of the Hirschberg algorithm. 
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As opposed to the previously described implementation of the Hirschberg algorithm whose 

calculation is initialised by the constraint that every state path has to start in the begin 

state 9 = 0 at sequence positions (qy) = (l,l), the calculation within this variant of the 

Hirschberg algorithm is initialised by a small sub-matrix of already precalculated values (this 

sub-matrix corresponds to the volume by which the current sub-matrix overlaps its lower left 

neighbouring sub-matrix, see Figure 2.5). The internal use of the Hirschberg algorithm is the 

reason why the mirrored model of the original pair HMM has to be provided as input to the 

Stepping Stone algorithm. 


