
Chapter 6

DOUBLEBUILD

6.1 Introduction and motivation

The design of a pair HMM, i.e. its states and transitions, can be done rather quickly using

pencil and paper. However, the implementation of the pair HMM into programming code

and especially the implementation of alignment algorithms with which the pair HMM can be

used to analyse sequences, can be a time consuming task.

[BD97] present a compiler called DYNAMITE with which a variety of pair HMMs can be

defined and used with alignment algorithms to produce a prediction. The desired pair HMM

is defined in a text file using the DYNAMITE language. This DYNAMITE file is then translated

into C programming code using the DYNAMITE compiler and this C code must then be compiled

with a standard C compiler before it can be executed. The DYNAMITE compiler shields the

user from the underlying implementation into C programming code. This has the advantage

of making the implementation of a pair HMM easy as the user only has to provide a short

definition file using the DYNAMITE language. However, the introduction of an intermediate

compiler makes it difficult for a user to understand and modify the underlying C source code.

My aim in programming DOUBLESCAN and PROJECTOR was to create a set of C++ classes,

called DOUBLEBUILD, which can be used to define a variety of pair HMMs in a short time and

which also provide sophisticated alignment algorithms so that the pair HMMs can be directly

used for the analysis of data. In that respect, DOUBLESCAN and PROJECTOR can be seen as

two sophisticated examples of what can be done with DOUBLEBUILD.

My main motivation for choosing C++ as a programming language was to use an object

oriented language which provides all the features that I needed to realise projects such as

88

6.2. SPECIAL TRANSITIONS WITHIN DOUBLEBUILD 89

DOUBLESCAN and PROJECTOR. Using an object oriented language, there is no need to write

an extra compiler to generate the final source code because the building blocks of the pair

HMM correspond to the classes defined in DOUBLEBUILD with which the programmer can

directly define and operate pair HMMs. This made things easier for me and hopefully also

for the user who may not only wish to use the source code, but who may also wish to modify

or extend it. C++ has the additional benefit that a freely available compiler (GNU compiler)

exists and that an ANSI standard has already been defined which guarantees a high level of

portability of the source code. All relevant data structures are provided by DOUBLEBUILD

itself. In particular, the standard template library is not used.

This chapter first introduces the novel concept of special transitions and the concept of special

emissions within pair HMMs and describe how they are implement within DOUBLEBUILD. It

then presents the three main classes that form the foundation of DOUBLEBUILD, namely the

Sequence class, the PairhmmState class and the Pairhmm class. Their description should

also make clear how these classes interact. Finally, functions of special interest such as a

variety of alignment algorithms are described.

6.2 Special transitions within DOUBLEBUILD

Special transitions are a new concept introduced in this dissertation. Special transitions

within DOUBLEBUILD can be used to make any transition within a pair HMM dependent

on position specific scores. These transitions are implemented in a way which conserves

the probabilistic interpretation of the transition probabilities. The pair HMM underlying

DOUBLESCAN and PROJECTOR is one example for a pair HMM which uses special transitions,

see arrows with dots in Figure 2.4. It uses special transitions to model the sequence signals

around translation start sites and splice sites. These sequence signals are contained in a

sequence interval which is too large to be easily incorporated into one state of the pair HMM,

and the signal itself is too complex to be adequately modelled by the emission probabilities of a

state. Before starting the gene prediction with algorithms such as the Hirschberg algorithm or

the Stepping Stone algorithm, the two input sequences X and Y are first separately searched

for potential translation start sites and splice sites by dedicated programs. Each potential

translation start and splice site is assigned a score which is a measure of the likelihood for this

site to be a true translation start or splice site. These sequence signal scores are stored for

each sequence separately in its corresponding Sequence object. Once the two input sequences

6.2. SPECIAL TRANSITIONS WITHIN DOUBLEBUILD 90

have been scanned for sequence signals, one of the algorithms is used to predict genes and

align the two sequences. The sequence signal scores axe used within the algorithm to modify

the nominal values of the transition probabilities so that the transition has a high probability

if it is supported by strong sequence signal scores at the given sequence positions.

Figure 6.1 shows a generic example with which the general concept of special transitions is

elucidated in the following. Any alignment algorithm such as the Viterbi algorithm, Hirsch-

berg algorithm or Stepping Stone algorithm derives the optimal state path according to the

transition and emission probabilities encountered on the state paths through the pair HMM.

The alignment algorithms work internally with scores which are derived from probabilities by

score = logl(probabi1ity). The transition score for a transition from state from to state t o

at position xpos in sequence X and position y-pos in sequence Y, see Figure 6.1, is calculated

in the following way (description given in pseudo-code):

special-transitionscore(from, t o , X , x-pos, Y, Y-POS) {

if from --+ t o special {

return-score = score (special-transitionprob(from, t o , X ,xpos ,Y , ypos)

}
else {

i f ex i s t s t o ’ with from + to ’ special {

returnscore = score (special~transition~rob(from, to ,X,xpOS ,Y ,YPOS)

+ score (scalefactor)

where
/ 1 - spcial-transition-prob(from,to’,X,x-pom,Y,y-pos) \

sca le factor =

1
e l s e {

1
returnscore =

1
ret urn (returnsc ore)

1

c
to’

:rm-+tol not spsill

tor
:rom+t*’ .psill

transit ion-prob(f rom,to’)

transitionscore(f rom, to)

6.2. SPECIAL TRANSITIONS WITHIN DOUBLEBUILD 91

score
- r

-
Y ccagatacgctagacgtgaccaatgcgatcgcgatgcgcgatcccaaatgtgct position y

t
Figure 6.1: Part of a pair HMM with special transitions. Special transitions correspond to
the mows marked with a big dot. Transitions belong to the state to which they are leading
as indicated by a small dot between the tip of an m o w and its state. When calculating the
probability for the transition from state from to state to which is not special, we have to take
into account the position dependent values of all special transitions emerging from state from
in order to ensure that the probabilities of all transitions emerging from state from always
sum up to one. See the text for a detailed description.

6.2. SPECIAL TRANSITIONS WITHIN DOUBLEBUILD 92

If only non-special transitions are emerging from state from, the transition score for the

transition from state from to state t o at position x-pos and y-pos is equal to the nominal

value of the transition score for going from state from to state t o (t ransi t ionscore(from,

to)) which is independent of the positions in the input sequences. If the transition from state

from to state t o is special, the transition score depends on the positions in the input sequences

andisequal to score(specia1-transition-prob(from, t o , X , x-posy Y , ypos)) , where

the probability returned by special-transitionqrob(from, t o , X , x-posy Y , y-POS) is

calculated by:

special-transitionprob(from, t o , X , x-posy Y , y-pos) {

re turnprob = transitionprob(from, to)

i f from + t o special {

re turnqrob *= posterior-prob(prior , score)

where
pr ior = Jprior_x.prior-y i f t o state of type E m i t X Y

p r i o r 2

p r io r -y

i f t o s t a t e of type E m i t X

i f t o s t a t e of type E h i t Y

score = score-x .t score-y i f t o s t a t e of type E m i t X Y

s c o r e 2

s core-y

i f t o s t a t e of type E m i t X

i f t o s t a t e of type E m i t Y

p r i o r 2 = X.prior(from, t o , x-pos)

prior-y = Y.prior(from, t o , y-pos)

s c o r e 2 = X.score(from, t o , x-pos)

score-y = Y.score(from, t o , y-pos)

and
r i 0 r . 2 ' ~ ~ ~ pos ter iorqrob (pr ior , score) = prio$2.MT.+l-prior

1
1

If the transition from state from to state t o is not special, but if there =e special transitions

emerging from state from (as is shown in the example in Figure S.l), the nominal value of

the non special transition from state from to state t o is adjusted so that the sum of all

6.3. SPECIAL EMISSIONS WITHIN DOUBLEBUILD 93

transition probabilities emerging from state from at any pair of sequence positions (xpos ,
y-pos) remains one. This is done by calculating a scaling factor (scalefactor) by which

the value of the nominal transition probability is multiplied.

Generally, the priors for the special transitions may depend on the position within the se-

quence. To name an example, the value of the prior for the special transition between the

match exon and the emit x 5’ splice site phase 0 state in the pair HMM underlying DOU-

BLESCAN and PROJECTOR depends on whether this is a consensus GT or a non-consensus GC

splice site (see Table D.l and Figure 2.4).

The details of how special transitions are implemented into the C++ classes of DOUBLEBUILD

are described in Section 6.4.

6.3 Special emissions within DOUBLEBUILD

Not only transition probabilities, but also emission probabilities can be made dependent on

the sequence positions. States whose emission probabilities depend on the positions in the

input sequences are called states with special emissions. In PROJECTOR (see Chapter 3),

special emissions are used to implement constraints into the calculation of the optimal state

path. Only those state paths are considered in the calculation of the optimal state path which

reproduce the known annotation of one of the two input sequences. This way we can project

the known genes of one input sequence onto the other input DNA sequence of yet unknown

annotation. PROJECTOR is just one of many possible applications of special emissions within

pair HMMs. The following paragraph illustrates the generality of the concept of special

emissions.

Again, the algorithms internally employ scores, the logarithm of the probabilities, in order to

avoid the numerical difficulties which arise when dealing with small probabilities. However,

as scores and probabilities have a one-to-one correspondence, they can be easily converted

into each other. For any given state t h i s in a pair HMM, see Figure 6.2, the emission score

is calculated in the following way:

special-emissionscore (th is , X , x-pos , Y , y-pos) {

return-score = emission-score (th is , X , x-pos, y , y-pos)

i f t h i s s tate has special emissions {

returnscore += score

6.3. SPECIAL EMISSIONS WITHIN DOUBLEBUILD 94

X acgatgacagataccaggtaaaaagtgacagatagacagatagggggattccc psi tion

t

position y

score

Y ccagatacgctagacgtgaccaatgcgatcgcgatgcgcgatcccaaatgtgct

t
Y P S

Figure 6.2: State of a pair HMM with special emissions. The emission probability at positions
(xpos , ypos) not only depends on the letters read at these sequence positions, but also on
the score at position x-pos in input sequence X and on the score at position y p o s in input
sequence Y. See the text for a detailed description.

where

score = score2 + score-y i f t h i s s tate of type E m i t X Y

scorer

score -y

i f t h i s s tate of type E m i t X

i f t h i s s tate of type E m i t Y

and

s c o r e s = X . score (th i s , xpos)

score-y = Y . score (t h i s , y-pos)

}
return(returnscore1

1

6.4. THE MAIN CLASSES 95

If t h i s state does not have special emissions, the emission score (emission-score (th i s , X ,

x-pos, Y , y-pos)) only depends on the letters read from the input sequences at the given

sequence position (x-pos, y-pos), but not the sequence positions. If t h i s state has special

emissions, the nominal value of the emission score (emissionscore (th i s , X , x-pos, Y ,

ypos)) which only depends on the letters read is modified by a score which depends on the

scores at the given sequence positions (score-x and score-y).

6.4 The main classes

The three main classes of DOUBLEBUILD are the Sequence, the PairhmmState and the

Pairhmm class. Each of the three classes has a set of private variables whose values characterise

every instance of each class.

We first introduce the private variables of each class in order to illustrate how the different

classes interact within a pair HMM. The private variables are more important for the under-

standing of the concept of DOUBLEBUILD than the set of public functions by which the values

of the private variables are accessed.

6.4.1 The Pairhmm class

A Pairhmm object knows the number of states it consists of (int number-of s t a t e s) and has

an array with pointers to each of its states (PairhmmState* model). It has private variables

for storing a state path and provides private functions which are used as the building blocks

of public functions such as the Stepping Stone algorithm and the Hirschberg algorithm.

6.4.2 The Pairhmm-State class

PairhmmState objects constitute the building blocks of a pair HMM and interact with

Sequence objects. The definition of the PairhmmState class was motivated by the idea

that each state should know about itself and its direct neighbours within the pair HMM (a

direct neighbour being a state that can be reached within a single transition).

In its simplest variant, a PairhmmState object knows:

int number-of s t a t e its number within the Pairhmm

int alphabet the alphabet of letters it reads from an input sequence

6.4. THE MAIN CLASSES 96

0 int number-ofletters-toiead the number of letters it reads from an input sequence

0 array<Labelseq> labels-of-letter-toiead the labels it assigns to the letters read

0 array<Phase> phasesaf-letters-toiead the phases it assigns to the letters

0 State-type state-type its own state type, e.g. if it is an E m i t X Y , E m i t X or E m i t Y state

or some other type of state

0 array<Prob> emissionprobs the array of its emission probabilities

0 array<Prob> transitionprobs the array of transition probabilities to states which

c m be reached from this state

0 int number-ofstates the number of states in the pair HMM to which this state be-

longs

0 int number-ofnext-states number of states which can be reached from this state

0 array<int> numbers-ofnext-states array of the numbers of the states which can be

reached from this state

0 int number-of-previous-states number of states which have a transition to this state

0 array<int> numbers-of-previousstates array of the numbers of the states which

have a transition to this state

PairhmmState objects with special emissions

If a state has special emissions, its emission probabilities depend both on the letters it reads

and position specific sequence scores. This concept is .employed in PROJECTOR to predict

an annotation for one of the two input sequences while keeping that of the other sequence

fixed. Suppose we are dealing with the match exon state of PROJECTOR and are keeping the

annotation of sequence X fixed, see Figure 2.4 and Figure B.3 in Appendix B. We want the

match exon state to have non-zero emission probabilities only for letters whose annotation

matches the labels and phases of sequence X . For a given position in sequence X , the emission

probability within the match exon state is calculated by requesting the corresponding score

for that position from object Sequence X. Instead of storing the information for every state

with special emission probabilities and all sequence positions in Sequence X, the information

is only stored for a few states from which the information of the remaining states with special

emissions can be derived. The match exon state derives its information on the position specific

6.4. THE MAIN CLASSES 97

emission probabilities of sequence X by requesting that of state emit x exon state as it suffices

to know where this state is allowed in order to know where the match exon state is allowed.

The private variables used to implement special emissions are:

i n t special-emission indicates if this state has special emissions or not. Its value is

one if this state has special emissions and zero otherwise.

i n t number-of-child-statex is the number of the state under which the position

specific sequence scores for this state are stored in Sequence X, in the above example

this would be the number of the state emit x exon

i n t number-of-child-state-y is the number of the state under which the position

specific sequence scores of this state are stored in Sequence Y (In the above example,

special emission probabilities within the match exon state are only used for the position

specific scores of sequence X as only the annotation of sequence X is kept fixed. In this

case, i n t number-of -child-state-y would be set to zero.)

PairhmmState objects with special transitions

If a state has special transitions, the probability of one or several transitions leading into the

state depends on position specific scores within the input sequences. Both DOUBLESCAN and

PROJECTOR use special transitions to improve the detection of splice sites and translation

start sites. Dedicated programs score potential translation start sites and splice sites within

the two input sequences separately. These position specific scores are then used within the

pair HMM to modify the nominal values of the transition probabilities. If both sequences

have strong signals for being 5’ splice sites at the given sequence positions, the probability of

transferring from the match exon to the match 5’ splice site state is high and small otherwise,

see Figure 2.4.

As for special emissions, the information about the position specific scores as well as the priors

is stored within the Sequence objects of the two input sequences, Sequence X and Sequence

Y. And as for special emissions, also special transitions are implemented in a memory efficient

way by storing information only for a minimum of transitions from which the information

of the remaining special transitions can be easily derived. The probability of the special

transition from the match exon to the match 5’ splice site phase 1 state, see Figure 2.4 and

Figure B.3 in Appendix B, is derived from that of the special transition from the match exon

6.4. THE MAIN CLASSES 98

to the emit x 5’ splice site phase 0 state for input sequence X and from that of the special

transition from the match exon to the emit y 5’ splice site phase 0 state for input sequence Y
by considering the offset of one base pair. For long sequences, these tricks save a considerable

amount of memory.

The private variables dealing with special transitions are:

int special indicates if this state has special transitions or not. Its value is one if this

state has special transitions and zero otherwise.

int number-of -special-transitions-topreviousstates is the number of special

transition leading into this state

array <int > spec i a1 f lags -of -t rans i t ions -t oprevious-s t at e s one-dimensional ar-

ray indicating for each transition leading into this state if it is special (array element

has value one) or not (array element has value zero)

array<int> numbersaf from-child-statesxprevious one-dimensional array indi-

cating for each transition leading into this state the number of the ‘from’ state to be

used for deriving the special transition score for sequence X, if the transition is special.

If an alternative transition is to be used, this number is the number of the ‘from’ state

of the alternative transition. In the above example in which we are dealing with the

match 5’ splice site phase 1 state, the array element for the transition from the match

exon state to the match 5’ splice site phase 1 state is the number of the match exon

state a.~ this is the ‘from’ state of the alternative transition from the match exon state

to the emit x 5’ splice site phase 0 state which is used for deriving the position specific

score of sequence X.

array< int > numbers -of -t o-chi ldst a t e s J -previous onedimensional array indicat-

ing for ea..& transition leading into this state the number of the ‘to’ state to be used for

deriving the special transition score for sequence X, if the transition is special. If an

alternative transition is to be used, this number is the number of the ‘to’ state of the

alternative transition. In the above example in which we are dealing with the match 5’

splice site phase 1 state, the array element for the transition from the match exon state

to the match 5’ splice site phase 1 state is the number of the emit x 5’ splice site phase

0 state as this is the ‘to’ state of the alternative transition from the match exon state

to the emit x 5’ splice site phase 0 state which is used for deriving the position specific

6.4. THE MAIN CLASSES 99

score of sequence X.

array<int> off setfor-previous-states2 onedimensional array indicating for each

transition leading into this state the offset in base pairs to be used if the transition is

special. In the above example in which we are dealing with the match 5’ splice site

phase 1 state, the array element for the transition from the match exon state to the

match 5’ splice site phase 1 state is one as this is the offset between the alternative

transition from the match exon state to the emit x 5’ splice site phase 0 state which is

used when dealing with sequence X and the transition from the match exon state to

the match 5’ splice site phase 1 state.

array <int > numbers -of f rom-child-s t at e s-yprevious

same as array<int> numbers-of from-child-states-x-previous, but for dealing with

input sequence Y

array<int> numbers-of -to-child-states-yprevious

same as array<int> numbers-of -to-child-stateslt-previous, but for dealing with

input sequence Y

array<int> off setfor-previous-states-y

same as array<int> offsetforprevious-states3 , but for dealing with input se-

quence Y

6.4.3 The Sequence class

In its most fundamental form, a Sequence object consists of:

Letter* sequence the sequence of symbolic letters

int lengthaf sequence the length of the sequence

Sequence-Type sequence-type the type of the sequence

int orientation the orientation of the sequence

int s tartpos i t ion and end-position, the start and end positions of the sequence

char* i d the name of the sequence

6.4. THE MAIN CLASSES 100

Sequence objects for use with special emissions

If the input sequence is to be used with a pair HMM whose states have special emissions, the

private variables of the Sequence object have to be set up accordingly, refer to Section 6.4.2

to see how special emissions are dealt with in the Pairhmm-State class.

The private variables which store information on special emissions are:

int number-of special-emissions the number of states for which special emissions

have to be implemented. In general, this is not the number of states in the pair HMM

that have special emissions, but a smaller number of states from which the special

emissions of all states with special emissions are derived. In the case of PROJECTOR, int

number-of special-emissions is 22, but the number of states with special emissions

is 52 (all non silent states of the pair HMM).

arraycint> indices-of special-emissions one-dimensional array which assigns an

index to every implemented state with special emissions. This index is used as the first of

two indices (the second index indicating the position within the sequence) for the arrays

array<Prob> posterior-probsforspecial-emissions and array<Score> scores--

f orspecialsmissions to look up the value of the corresponding posterior probability

or score.

arrayCProb> posterior-probsfor~special~emissions twedimensional array with

the posterior probabilities for all implemented states with special emissions (first index)

and all sequence positions (second index), if the posterior probabilities are to be used

instead of scores

array <Score> scores for -special -emi ss ions twedimensional array with the scores

for all implemented states with special emissions (first index) and all sequence positions

(second index), if scores are to be used instead of posterior probabilities

Sequence objects for use with special transitions

If the input sequence is to be used with a pair HMM which has special transitions, the private

variables of the Sequence object have to provide the information needed by the states which

have special transitions, see Section 6.4.2.

The private variables which store information on special transitions are:

6.4. THE MAIN CLASSES 101

a i n t number-of spec ia l - t rans i t ions the number of special transitions which are im-

plemented. As for special emissions, this is generally not the number of special tran-

sitions in the pair HMM, but a smaller number of special transition from which the

information of all remaining special transitions can be derived, see Section 6.4.2 for

more information. For DOUBLESCAN, the number of special transitions is 25, but they

derive their information from only six special transitions (three for each sequence) and

the information on only these three transitions has to be provided by the Sequence

object of each input sequence.

0 array<int> indices-of -special- transitions two-dimensional array which assigns

an index to every implemented special transition. This index is used to refer to the

transition within other arrays (arrays array<Prob> posterior-probs-for-speciaL-

t r ans it ions, array<Prob> pr io r s -of s p e c i a l -t Tans it ions and array <Score> scores --
for-special-transitions). The f is t index of this array is the state number of the

‘from’ state of the special transition and the second index the state number of the ‘to’

state of the special transition and the return value is the index which is to be used to

refer to that transition within the previously mentioned arrays.

a arrayCProb> posterior-probsfor-special-transitions two-dimensional array with

the posterior probabilities for all implemented special transitions (first index) and all

sequence positions (second index), if the special transitions are to be used with posterior

probabilities rather than with priors and scores.

0 arrayCProb> p r i o r s n f -special- transitions two-dimensional array with the priors

for all implemented special transitions (first index) and all sequence positions (second

index), if the special transitions are to be used with priors and scores rather than with

posterior probabilities. Generally, the priors for special transitions can be dependent

on the position within the sequence. To name an example, the value of the prior for the

special transition between the match exon and the emit x 5’ splice site phase 0 state in

the pair HMM underlying DOUBLESCAN and PROJECTOR depends on whether this is a

consensus GT or a non-consensus GC splice site (see Table D.1 and Figure 2.4).

0 array<Score> scoresfor-special-transit ions two-dimensional array with the scores

for all implemented special transitions (first index) and all sequence positions (second

index), if the special transitions are to be used with priors and scores rather than with

posterior probabilities .

6.5. ALIGNMENT ALGORITHMS 102

6.5 Alignment algorithms

The public functions of the Pairhmm class provide several algorithms by which the pair HMM

can be used to analyse data.

6.5.1 The Viterbi algorithm

The Viterbi algorithm in its original form [Vit67] was mainly implemented to verify the other

algorithms. It calculates the optimally scoring state path for the given pair HMM and two

input sequences.

6.5.2 The Hirschberg algorithm

The Hirschberg algorithm, see Section 1.5.2 and Figure 1.8, takes two Sequence objects

and an integer value (int max-area) as the input and calculates the optimally scoring state

path for the given pair HMM and the two input sequences in linear memory and quadratic

time dependence. The value of max-area indicates the maximum size (in the two sequence

dimensions) of sub-matrices which are directly calculated by the Viterbi algorithm. The

smaller this value, the more iterations have to be performed within the Hirschberg algorithm

before each sub-matrix is small enough to be calculated using the Viterbi algorithm.

As the Hirschberg algorithm works internally with two pair HMMs, the original pair HMM and

the mirrored model of the original pair HMM, the mirrored version has to be provided as an-

other input parameter. It is created by the public Pairhmm function int getm.irrored(void)

before the Hirschberg algorithm is called.

6.5.3 The Stepping Stone algorithm

The Stepping Stone algorithm, see Section 2.4 and Figure 2.5, takes two Sequence objects

and a list of (z,y) coordinates as input which are simultaneously ordered in their 2 and y

coordinates and derives the highest scoring state path in the thus restricted subspace of the

Viterbi matrix. The input values, int xmargin and int y m g i n , indicate the size of the

overlap in the two sequence dimensions that two adjacent sub-matrices shall have. The input

parameter int max-area is the same as for the the Hirschberg algorithm. If a sub-matrix is

smaller than its value, it is directly calculated by the Viterbi algorithm during the traceback

process. Otherwise, it is calculated using a special variant of the Hirschberg algorithm.

6.5. ALIGNMENT ALGORITHMS 103

As opposed to the previously described implementation of the Hirschberg algorithm whose

calculation is initialised by the constraint that every state path has to start in the begin

state 9 = 0 at sequence positions (qy) = (l,l), the calculation within this variant of the

Hirschberg algorithm is initialised by a small sub-matrix of already precalculated values (this

sub-matrix corresponds to the volume by which the current sub-matrix overlaps its lower left

neighbouring sub-matrix, see Figure 2.5). The internal use of the Hirschberg algorithm is the

reason why the mirrored model of the original pair HMM has to be provided as input to the

Stepping Stone algorithm.

