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Abstract

The detection of positive natural selection in the human lineage is of great
interest for the understanding of modern human phenotypes and adaptations to
different environmental conditions. Although extensive genome-wide scans for
signatures of positive selection have been performed using genotype data, these
have significant limitations, illustrated by the low overlap among different
studies. Thanks to the Next-Generation Sequencing technology, near-complete
sequence data for both the whole genome and targeted regions are now available,
allowing a nearly unbiased genome-wide scan for positive selection as well as

the possibility of localizing the specific variants selected.

The theme of this PhD thesis is to detect and localize positive selection targets in

the human genome using sequencing data. This includes three projects:

(1) Localizing selection targets in candidate regions identified by LD-based
tests on genotype data, by applying frequency-spectrum based tests
(Tajima’s D, Fay and Wu's H, and a Composite Likelihood Ratio test) to
targeted resequencing data. Two regions were resequenced at high
coverage and putative selection targets were identified.

(2) A genome-wide scan of selective sweeps using frequency-spectrum based
tests on 1000 Genomes Project low coverage Pilot data. Candidate
positively selected regions and genes were identified and some
interesting examples and their plausible selected functions are discussed.

(3) A genome-wide search for regions with very recent ancestry among all
humans. Regions with shared recent coalescence times indicate positive
selection affecting all modern humans, which has an older age than the
recent positive selection identified by neutrality tests. We calculated the
Time to the Most Recent Common Ancestor (TMRCA) of low
diversity/divergence regions in the human genome, with the aim of
identifying regions with very recent common ancestor, which may have

been positively selected during early modern human evolution.
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These three projects altogether demonstrated the value and impact of low-
coverage or high-coverage, targeted or whole-genome sequencing data on
providing new insights into positive natural selection in the modern human
history, and built up the first steps of the exciting new sequencing era for the

exploration of human evolution.
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