3 A survey of positively selected regions using 1000

Genomes Project low-coverage Pilot data

3.1 Introduction

Whole genome sequencing of samples from multiple human populations
provides powerful resources for studying evolution at the genomic level in an
unbiased, holistic manner. Compared to genotyping, where only known variants,
most of which have high or moderate frequencies in the population, are analyzed,
sequencing reveals the whole set of variants in a particular genome without any
ascertainment bias. This is beneficial in at least two aspects. One is the presence
of rare variants in the data. In many neutrality tests, genetic diversity and allele
frequency spectra are measured, which play important roles in the detection of
selective sweeps. In genotype data, the majority of those rare variants
(frequency less than 5%) are missing, which greatly reduces the power to detect
selective sweeps that have nearly or already completed, where there may be an
excess of rare alleles. The other aspect is the absence of bias in variant detection.
Genotyping only detects a set of variants that are determined prior to the assay,
regardless of what other variants may be present in the samples. This introduces
bias, especially when the frequency spectrum needs to be measured in different
populations. For example, if we use a certain SNP chip to measure the
differentiation between populations, although we can measure the frequency
differences of the SNPs included in this assay, we may miss a subset of
population-specific SNPs or highly differentiated SNPs in certain population(s),
depending on which population(s) the design of the SNP chip is based on. In this
case, the measure of population differentiation may be highly biased. Sequencing
data, however, can detect all these variants and thus provide the foundation of

an unbiased measure of population differentiation.

The 1000 Genomes Project is an excellent example of such resources. The Pilot 1
(low-coverage) project sequenced 179 individuals from four populations: CEU

(Utah residents with Northern and Western European ancestry from the CEPH
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collection), CHB+JPT (Chinese Han in Beijing, China and Japanese in Tokyo,
Japan) and YRI (Yoruba in Ibadan, Nigeria), with the average coverage of 2-4x40.
15 million SNPs were identified in the Pilot Project along with other types of
genetic polymorphism, which greatly enriched the database of human genomic
variation. As demonstrated in Chapter 2, a genome-wide survey of positive
selection using frequency-spectrum based methods on such sequencing data
would provide deeper insights into the extent to which positive selection has
shaped modern human genomic variation, as well as the biological targets that

may be selected during recent modern human evolutionary history.

In this chapter, neutral and positively selected simulations were performed to
gauge the level of significance, as well as provide insights into the power of
localizing selection targets, and how recombination affects the signals. A
genome-wide scan of positive selection was then carried out on the 1000
Genomes low-coverage Pilot data, and bioinformatic analyses on both the
general features of candidate genes/regions and the possible functional targets
of selection in some strong candidates were performed. The data were generated
in multiple centers as part of the 1000 Genomes Project. All the simulations,
statistical calculations and data analyses in this chapter were done by the author
of this thesis, with help from some participants in the 1000 Genomes Project. An
early version of the results were published as part of the 1000 Genomes Project
Pilot paper, and manuscript describing this work in more detail is under

preparation.

3.2 Materials and Methods

3.2.1 Simulations

We first carried out coalescent simulations using the msHOT packagel?’ to
generate 1Mb long neutral haplotypes in African, European and Asian ancestral
populations 2,000 generations ago, based on the best-fit demographic models?6
for the three populations. Then these simulated haplotypes were used as seed
haplotypes for the forward simulations using mpop®4, as described in section
2.2.1. In forward simulations, one neutral scenario (1,000 independent

simulations) and sixteen selective sweep scenarios were simulated in each
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population. Selection coefficients of 0.001, 0.004, 0.007 and 0.01, and the age of
selective sweeps of 500 generations, 1,000 generations, 1,500 generations and
2,000 generations were used in the selective sweep scenarios, with 250
simulations for every combination of these two parameters. One allele with an
initial frequency of 0.0006 under selection was added in the middle of the
haplotypes at the starting time point of the selective sweep. The genome average
mutation rate of 1.0 x 108 per nucleotide per generation was used in the
simulations. In addition, to mimic the real patterns of recombination in the
genome, we used the HapMap recombination map3° to generate a recombination
hotspot map, and regions of 1 Mb were drawn randomly from the genome and
the recombination hotspots they contained were assigned to the simulated
regions. For the purpose of comparison and understanding of the effects of
recombination hotspots on the signals of selection, we also did another set of
simulations with all parameters being the same, except that a strong
recombination hotspot (2,000-fold greater than the background recombination
rate) with 0 kb, 10 kb, 20 kb, 30 kb or 40 kb distance from the selected allele was
added into the simulated haplotypes. The rest of demographic parameters were
as in Schaffner et al.’s best-fit demographic model for the European population?®.
For computational efficiency, we re-scaled the parameters by a factor of 5, as
described in section 2.2.1. 120 chromosomes were sampled from each
simulation, to match the sample sizes of 1000 Genomes Project low-coverage

Pilot data (see Appendix C for parameters and command lines).

3.2.2 Neutrality tests on simulated data

In order to mimic the real situation of 1000 Genomes low-coverage Pilot data,
where rare SNPs are still under-ascertained, we filtered the simulated data by
matching the proportion of SNPs in each derived allele frequency bin (bin size
0.1) of the simulated data to the 1000 Genomes low-coverage Pilot data in each
population (CEU, CHB+JPT and YRI). Then three frequency-spectrum based tests,
Tajima’s D71, Fay and Wu’s H? and Nielsen’s CLR7¢ were applied to the simulated
data in 10 kb non-overlapping windows across the simulated regions. P values of
each test were calculated based on the distribution of test values of 1000 neutral

simulations in each population. In order to obtain a single score representing the
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signals of all three tests, we calculated the correlations between the p values of
every two tests in neutral simulations to see whether these tests are
independent from each other. Results showed that the absolute value of the
correlation of every pair of tests was less than 0.2. Therefore, we treated these
tests as independent, and combined the p values of each test on the same

window using Fisher’s method104.

3.2.3 Sensitivity and specificity analysis on simulated data

In order to understand the relationships between false positive rate, false
negative rate and false discovery rate of our combined tests under different p
value significance thresholds, we calculated the above rates under seven
thresholds, with 10-fold decrease for each from 4x10-3 to 4x10-9. We obtained
the false positive rate by calculating the percentage of neutral simulations that
were detected as under positive selection. The false negative rates were obtained
by calculating the percentage of 1,000 positive selection simulations with a
selection coefficient of either 0.007 or 0.01, and the age of sweep of either 1,500
or 2,000 generations. We next counted the number of candidate regions from the
1000 Genomes low-coverage Pilot data across the genome under each
significance threshold, and then calculated the false discovery rate based on the
number of false positive regions, which was calculated by multiplying the false
positive rate with the number of 300-kb regions in our empirical data, and
divided by the total number of detected positively selected regions across the

whole genome in each population.

3.2.4 Neutrality tests on 1000 Genomes low-coverage Pilot data

We segmented the whole-genome SNP data from CHB+]JPT, CEU and YRI
populations of 1000 Genomes low-coverage Pilot data into non-overlapping
windows with a length of ~10 kb, where both the starting and ending point of
each window were SNP positions. Windows that lay in regions with mapping
gaps, low mapping quality or heavily filtered SNPs, were excluded (Table 3.1).
The same neutrality tests were applied on these windows in each population as
for simulations, and p values were obtained using the same approach as for the

simulated data.
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Table 3.1 Total number of windows and total length scanned in each population.

Population  Total windows  Total length (bp)

CEU 252,348 2,390,406,461
CHB+JPT 247,432 2,302,196,289
YRI 255,289 2,450,357,355

3.2.5 Identification of candidate regions and genes

After the genome-wide combined p values of our neutrality tests were obtained,
we needed to decide which threshold of significance to use. As we aimed to get a
confident list of candidate regions, we used the stringent Bonferroni
correction!?8. We divided 0.01 by the total number of windows that we applied
the tests to throughout the whole genome, which yielded a threshold of ~4x10-8
(-loge value 17.0). We used this as a cutoff to identify significant windows in each
population. Adjacent significant windows that are less than 150 kb apart were
treated as likely to originate from the same selective sweep, and combined into a

single candidate region.

As our simulations showed that there is ~75% chance that the selection target
falls into the 100 kb region surrounding the peak signal, we identified candidate
genes from the ~100 kb region around the most significant window in each
candidate region. In regions where multiple genes were present, we treated the
gene closest to the peak signal as the candidate gene. In a few cases where two
genes either overlap with each other or have the same distance from the peak

signal, we retained both of them as candidate genes for that region.

We also looked at positions of peak signals relative to the candidate protein-
coding genes. We used three categories of positions: upstream of the gene,
within the gene, and downstream of the gene. First of all, to determine which
side of the gene is upstream or downstream, we obtained information about
whether the gene is on the forward strand or reverse strand of the DNA
sequence for each candidate protein-coding gene. Then we counted the number
of peak windows falling into each category of position. For those peaks that

cover more than one position, we used the proportion of the window in each
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position as the count. For example, if 40% of the peak window is in the upstream
sequence, and the other 60% is in the gene, we count 0.4 into “upstream” and 0.6

into “within gene” for that candidate.

3.2.6 Comparison with previous studies and bioinformatic analyses

We compared our lists of positively selected regions or genes with previous
genome-wide scans of positive selection, as well as with functional annotations.
We obtained annotations of synonymous and non-synonymous changes in the
1000 Genomes Pilot data. In order to see whether there was any enrichment or
depletion of overlaps between our candidate regions/genes and those data sets
being compared with, we randomly picked the same number of regions from the
low-coverage Pilot data accessible genome matching the lengths of the candidate
regions in each population, and counted how many of them overlap with regions
from other studies. We did this 1000 times independently and obtained a
distribution of number of overlaps in each comparison. Then we calculated p
values of the enrichments of all the compared scenarios in our candidate
positively selected region or gene lists, based on the percentile of the
distribution of overlaps in random data sets that our candidate list falls into. In
some of the comparisons and other analyses, we also looked at derived allele
frequencies (DAF) of the variants. The ancestral alleles were identified by the
1000 Genomes Project from analysis on the sequences of human (NCBI36),
chimpanzee (CHIMP2.1), orangutan (PPYG2) and rhesus macaque (MMUL_1)
genomes™ (The 1000 Genomes Project Consortium, Nature 2010, supplementary

information 13.1).

In order to further understand the relationship between the functional
consequences of non-synonymous changes and positive selection, we obtained
the Condel scores!?? of high DAF (= 0.5) non-synonymous variants in the 1000
Genomes low-coverage Pilot data computed in Ensembl release 65 by combining
the SIFT130 and Polyphen213! scores. Non-synonymous variants with higher
Condel scores are more likely to be deleterious. In order to investigate whether
Condel scores of high DAF variants in positively selected genes tend to be higher

than those in the random genes, we performed a Mann-Whitney test!3? on
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Condel scores of high DAF non-synonymous variants in the candidate gene list
versus those in the 1000 independent random sets of matched genes, using the
built-in function in the R package. P values of each comparison between the
candidate gene Condel scores and the random gene Condel scores were obtained

from the test.

We also investigated non-coding functional variants within our candidate
regions. We first obtained lists of variants with a high DAF (= 0.5) that are within
one of four types of non-coding functional elements: UTR, non-coding RNA,
enhancer, and transcription factor (TF) binding motif. The non-coding functional
annotation was obtained from the 1000 Genomes Project Phase 1 and the
ENCODE project®’. For the TF binding motif variants, we further categorized
them into two types: motif gain and motif loss. If the derived allele of a SNP has a
higher frequency in the position weight matrix (PWM) of the bound motif than
the ancestral allele, we call it motif gain. Likewise, if the derived allele of a SNP
has a lower frequency in the PWM of the bound motif than the ancestral allele,
we call it motif loss!33. We then counted the number of high DAF variants within
each of the five categories within our candidate regions, as well as within 1000
sets of random matched regions. We plotted the distribution of number of
variants in each category in the random regions, in order to see if any of them

was enriched by any of the functional elements.

We then used the online gene annotation clustering tool DAVID134 to categorize
our lists of candidate protein coding genes into functional clusters, and obtained
Bonferroni-corrected p values of enrichments in each cluster from DAVID. We
also identified genome-wide significant variants from Genome Wide Association
Studies (GWAS) that fall into our candidate regions. The list of GWAS significant
variants were obtained from the NHGRI “A Catalog of Published Genome-Wide

Association Studies!3>” (http://www.genome.gov/gwastudies/).
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3.3 Results from simulations

3.3.1 Sensitivity and specificity of selective sweep detection using low-

coverage sequencing data

Balancing the false positive and false negative rates in the identification of
statistical significance is a crucial step in a large-scale global survey of statistical
tests. As mentioned above, we chose to use the most stringent p value cutoff
(Bonferroni correction, p = 4x10-8) to identify significant windows. This, of
course, sacrifices the sensitivity of detection. An alternative measure of the p
value significance threshold is the false discovery rate (FDR). Since we are
applying the statistical tests a large number of times, even a very small false
positive rate can result in a large FDR. To measure this, we counted the number
of candidate regions under different p value thresholds, and calculated FDRs
accordingly. We found that even if the false positive rate is 0.6%, the FDR is still
as high as 4%. In order to get a highly confident list of candidate regions, we
would like the FDR to be less than 5%. A Bonferroni-corrected threshold of 4x10-
8gives us 0% and 3% FDR in CEU and YRI, respectively (YRI, Table 3.2). Although
in this case, we were only able to detect ~20% of the moderate-strength positive
selection events, we are confident that the list of candidates we picked out is
mostly real.

Table 3.2 Sensitivity and specificity under different p value significance thresholds in the
YRI population.

P value significance

threshold False positive rate False negative rate False discovery rate
4E-03 30.0% 27.3% 49.2%
4E-04 11.6% 44.0% 25.3%
4E-05 2.5% 56.7% 9.4%
4E-06 0.6% 66.1% 4.0%
4E-07 0.3% 73.9% 3.8%
4E-08 0.1% 79.4% 3.0%
4E-09 0.0% 85.0% 0.0%
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3.3.2 Power of localizing positive selection targets

We found that in our simulations, although on average the most significant
window was the one that contains the selected allele (Figure 3.1), in each
individual simulation with positive selection, the peak signal can fall into any
window across the 300 kb region with the selected allele in the middle. We found
that in our selection simulations in YRI, 79% of the time the most significant
signal is less than 50 kb away from the window with the selected allele, and this
percentage in CEU is 72% (Figure 3.2). Based on this, in our candidate regions in
the empirical data, we have more than 70% confidence that the selection target

is within 50 kb distance from the peak signal.

3.3.3 Effects of recombination hotspots on localization of selection target

Recombination during the progress of a selective sweep can result in the
breakdown of the selected haplotype, which thus disrupts the pattern of genomic
variants in the selected region. In order to understand the effects of the position
of recombination hotspots on the position of peak signals relative to the
positively selected allele, we performed five sets of simulations with s = 0.01, age
of sweep = 1500 generations, and in each set, added an extremely strong
recombination hotspot (2000-fold higher than background rate) with 0-5 kb, 10
kb, 20 kb, 30 kb and 40 kb distance from the selected allele, respectively. Our
results showed that, in general, the closer the recombination hotspot to the
selected allele, the more scattered the distribution of peak signals will be. When
the recombination hotspot is 40 kb or more away from the selected allele, the
effect on the localization power almost vanished. Not surprisingly, when there is
a strong recombination hotspot at one side close to the selected allele, the peak
signal tends to be on the other side of the selected allele (Figure 3.3). However,
in most cases, the peak signal is still most likely to be within 50 kb distance from
the selected allele. Moreover, in these simulations, we used an extremely strong
recombination hotspot, in order to make sure that recombination happens in
most of our simulated regions within the simulated period of time. In reality,
most recombination hotspots are much more moderate, thus the effects may not
be as dramatic. Therefore, when identifying selection target, choosing to use the

region within 50 kb distance from the peak signal as the target is still reasonable
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even if recombination hotspots are present. Having said that, it is still sensible to
be more cautious about the location of the putative selection target when there is

a recombination hotspot near the peak signal.
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Figure 3.1 Averaged scores in neutral and positively selected simulations. The top plot
shows average scores of each 10-kb window across the simulated neutral regions; the bottom
plot shows the same but in simulated regions with selection. The red dashed line shows the
position of the selected allele.
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Figure 3.2 Distribution of peak signals across the simulated regions with selection. Each
bar shows the percentage of peak signals falling in the particular window. The red dashed line
shows the position of selected allele.
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Figure 3.3 Distribution of peak signals in simulations with single strong recombination
hotspots. Each plot shows the distribution of peak signals under the scenario with fixed distance
between the selected allele and the recombination hotspot. The blue dashed line marks position
of the recombination hotspot, and the red dashed line marks position of the selected allele. X-axis
is the window number across the simulated region, and Y-axis is the percentage of peaks falling
into each window.

3.4 Results from 1000 Genomes Project low-coverage Pilot data

3.4.1 Genome-wide scan on 1000 Genomes low coverage data

We applied the same tests and criteria to the 1000 Genomes Project low-
coverage Pilot sequencing data in ~10-kb windows across the whole genome in
CEU, CHB+JPT and YRI populations. We identified 477, 137 and 290 candidate
regions in the three populations, respectively. In all populations, most regions
only have one significant window, but CEU have more regions with larger
numbers of significant windows than the other two populations (Figure 3.4).
Among these candidate regions, 65%, 59% and 64% (308, 81 and 187 regions)

in each of the three populations, respectively, overlap with genes (including
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pseudogenes and non-coding RNAs) within the ~100 kb region around the peak
signal, and among these, 258, 66 and 153 regions overlap with protein-coding
genes in each population, respectively. The candidate regions are highly enriched
with genes, when compared with that of randomly chosen regions across the
genome (p < 0.001). They are also highly enriched in protein-coding genes
compared to random regions (p < 0.001). Some candidate regions overlap with
multiple genes, and as we believe that each candidate region should only have
one selection target, we chose the gene(s) closest to the peak window as the
candidate gene(s). We thus identified 275, 69 and 160 protein-coding genes that
may have undergone positive selection in CEU, CHB+JPT and YRI populations,
respectively (Table 3.3; Appendix D, candidate regions and protein-coding genes
in each population). In a few cases, we identified two candidate genes in one
region, either because these two genes have the same distance from the peak
signal, or because these two genes overlap with each other. We then counted the
number of peak signals at upstream to the candidate gene, within the candidate
gene, or downstream of the candidate gene. We found that in all three
populations, the biggest proportion of peaks is within the candidate genes,

compared to upstream or downstream of the candidate genes (Figure 3.5).

Table 3.3 Number of candidate regions and genes in each population.

CEU CHB+JPT YRI

Candidate regions 477 137 290
Candidate coding genes 275 69 160
Candidate regions with non-coding genes 120 35 89
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3.4.2 Comparison of candidate regions with previous studies

We compared our set of candidate regions with the list of 722 positively selected
regions identified by at least two previous studies in Akey’s review100. We found
100, 42 and 37 regions from those 722 regions that overlap with our list of
candidate regions in CEU, CHB+JPT and YRI populations, respectively.
Collectively there are 153 regions overlapping with our candidates (Appendix E).
This is a high enrichment compared with randomly chosen regions from the
genome (p << 0.001). Interestingly, we also found that within the candidate
regions that overlap with Akey’s list, a larger proportion was found to have
evidence of positive selection in three or more previous studies (Figure 3.6). If
we make a fair assumption that the more previous studies that have confirmed
the candidate region, the more reliable the region is, then our list may represent

a better set of candidate positively selected regions than the collection in Akey’s

review.
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Figure 3.6 Overlap of our candidate regions with Akey’s review. This plot shows the
distribution of number of previous scans showing evidence of positive selection in all the
candidate regions in Akey’s review versus those overlap with our candidate regions.

3.4.3 Analysis of functional variants in candidate regions or genes

We then investigated whether or not our candidate genes were enriched with

any particular type of functional variants. We looked at the overlap of our
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candidate protein-coding genes with the synonymous and non-synonymous
changes in 1000 Genomes Project low-coverage Pilot data*?. We found that the
percentage of non-synonymous changes with high derived-allele frequencies
(DAF = 0.5) overlapping with our candidate selected genes in CEU, CHB+]JPT and
YRI populations was 2.7%, 1.1% and 1.8%, respectively, while the percentage of
synonymous changes with high DAF overlapping with our candidate genes is
3.0%, 0.8% and 1.4% in the three populations respectively. Interestingly, non-
synonymous variants were enriched in all three populations (p = 0.005, 0.004,
0.001 in CEU, CHB+JPT and YRI, respectively), while in CEU and YRI populations,
synonymous changes were also enriched (p < 0.001, p = 0.005, respectively)
(Figure 3.7 A and B). In order to look further at the relationship between
functional consequences of the non-synonymous changes and positive selection,
we performed a Mann-Whitney test on Condel scores of high DAF (= 0.5)
variants in our candidate genes versus the 1,000 random gene sets, and obtained
1,000 p values in each population. If the Condel scores in candidate genes are
significantly higher, we should find a more-than-expected number of small p
values in the distribution of the 1000 Mann-Whitney p values. However, our
results showed that the distributions of p values are not skewed towards the
lower end in all populations (Figure 3.8). This indicates that candidate genes
may not be enriched in deleterious non-synonymous variants. It is worth noting
that here “deleterious” does not necessarily mean “harmful” to the individual; it
means that the variant can alter the structure and/or function of the protein that
the gene encodes, and the impact on the individual can be either beneficial or
harmful. Those deleterious variants with high frequencies in the populations,
however, are highly likely to have some important functional impact and are

thus worth further investigation.
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Figure 3.7 Synonymous and non-synonymous variants in candidate regions. These box
plots show the distributions of the number of synonymous (A) or non-synonymous (B) changes
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We performed Gene Ontology clustering analysis on our candidate protein-
coding genes in each population. Candidate positively selected protein-coding
genes in the CEU population are highly enriched in proteins related to cell
adhesion, signaling proteins and proteins with Ig-like C2-type 3 domain.
Candidate protein-coding genes in YRI population are enriched in proteins with
N-linked glycosylation sites, RhoGEF domains, and proteins involved in
glutamate receptor activity (Table 3.4; see Appendix F for candidate genes
within each enriched functional cluster). Perhaps due to the small number of
candidate genes in the CHB+JPT population, there were no enriched functional
clusters detected. Although functional clusters of candidate genes in each
population are slightly different, they share some important similarities in terms
of biological processes that they are involved in. All these enriched functional
annotation clusters are involved in extracellular signal transduction and
extracellular activities. More specifically, they are involved in the following three
types of biological function: (1) Neurotransmission and synaptic plasticity, which
are essential for learning and memory; (2) cell adhesion and migration, which
plays important roles in the multicellular structure during early development,
signal transduction and protein adsorption; and (3) immunological responses,
which play an essential role in fighting with pathogens. These three areas are
believed to play important roles in modern human evolution, thus it makes sense
that they are highly enriched in genes that have undergone positive selection in

the history of modern humans.

Apart from protein-coding genes, positive selection may also act on other
functional elements in the genome. In order to investigate whether there is any
enrichment of non-coding functional elements, we obtained annotation of
variants within UTRs, non-coding RNAs, enhancers, and TF motif gains and
losses. We calculated the distributions of number of such variants with higher
than or equal to 50% DAF in the 1000 Genomes low-coverage Pilot data in each
population in 1,000 sets of random regions matching our candidate regions, and
looked at where the corresponding number in our candidate regions fall into
these distributions. We found no significant enrichment of any of the five types

of non-coding functional variants in our candidate regions (Figure 3.9). There
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are three possible explanations for the lack of enrichment of non-coding
functional variants. One is that selection on these regulatory elements might
have been weaker and subtler in general, thus we were only able to identify a
small proportion of them, which may not be representative of the whole set of
positively selected non-coding functional elements. The second one is that our
annotation of non-coding functional elements in the human genome has been
very limited, in terms of both completeness and accuracy. The third one is that
we did not categorize these functional elements based on their actual biological
functions or processes. Positive selection may act on all types of non-coding
functional elements, but favor certain types of biological function. However, due
to our very limited understanding of the actual functions of those elements, we

were unable to detect the enrichment.

Table 3.4 Enrichments of functional clusters in the CEU and YRI populations.

CEU
Functional cluster No. of genes Bonferroni p-value
Cell adhesion 27 0.001
Signal 74 0.002
Ig-like C2-type 3 domain 12 0.001
YRI
Functional cluster No. of genes Bonferroni p-value
N-linked glycosylation site 60 0.0007
RhoGEF domain 6 0.01
glutamate receptor activity 5 0.04

We then investigated published significant variants in Genome Wide Association
Studies (GWAS) that fall into our candidate regions. We collected all the GWAS
significant variants (p < 5x108) and identified those that are within our
candidate regions in each population (Table 3.5). We found that a large number
of HLA variants on chromosome 6 fell into our candidate regions in the YRI
population, along with some other variants associated with infectious,

autoimmune or inflammatory diseases. In the CEU population, skin/hair/eye
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Figure 3.9 Non-coding functional variants in candidate regions. These box plots show the
distributions of the number of UTR (A), non-coding RNA (B), enhancer (C), TF motif gain (D) and
loss (E) variants in 1000 sets of random regions that match the candidate regions. The red dots
are corresponding values of the candidate regions.

pigmentation variants overlap with our candidate regions. These reflect our

general understanding of what types of traits are likely to be positively selected
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in each continental population. However, we were not able to perform
enrichment analysis on the GWAS significant variants in our candidate regions,
for three reasons. First of all, the number of GWAS significant variants in each
trait is small in most cases, and it varies substantially from one trait to another.
So the power of detecting the enrichments in each trait is quite limited. Secondly,
it is also not practical to categorize the traits that have been investigated by
GWAS into a small number of meaningful types for enrichment analysis, as the
traits are very diverse. Thirdly, the SNPs picked from previous GWAS studies
might have some bias towards certain interesting traits, diseases or groups of
genes, so they may not represent a whole-genome view of the functional variants.
Having said that, the lists of GWAS significant variants overlapping with our
positive selection candidates still provide valuable insights into what kinds of
traits were under selection, and also give us some good candidate variants for

further functional investigations.

Table 3.5 GWAS significant variants in candidate regions in each population.

A. CEU

Chr  Position rsID Gene(s) Trait/disease SNP risk allele Fr:g::ng}/eof p value
4 15,346,199 rs11724635 BST1 Parkinson's disease rs11724635-A 0.56 1E-16
4 15,347,035 rs4538475 BST1 Parkinson's disease rs4538475-? NR 3E-09
6 30,026,078 rs2517713 HLA-A Nasopharyngeal carcinoma rs2517713-A 0.62 4E-20
6 30,051,046 rs6904029 HLA-A,HCGY9 Vitiligo rs6904029-A 0.29 1E-21
6 30,078,568 rs7758512 ZNRD1, RNF39, HLA-A HIV-1 control rs7758512-? NR 2E-08
8 19,863,608 rs325 LPL HDL cholesterol rs325-T 0.89 8E-26
8 19,863,719 rs326 LPL, C8orf35, SLC18A1 Triglycerides rs326-A 0.78 5E-12
8 19,864,004 rs328 LPL HDL cholesterol/Triglycerides rs328-G 0.09 2E-28
8 19,872,128 rs10105606 LPL Triglycerides rs10105606-C 0.68 4E-26
8 19,875,201 rs10096633 LPL Triglycerides rs10096633-G 0.88 2E-18
8 19,876,926 rs17482753 LPL HDL cholesterol rs17482753-T 0.11 3E-11
8 58,468,572 rs954295 Intergenic Longevity rs954295-C 0.39 4E-09
9 853,635 rs755383 DMRT1 Testicular germ cell cancer rs755383-T 0.62 1E-23
9 16,854,521 rs2153271 BNC2 Freckling rs2153271-C 0.41 4E-10
9 16,905,021 rs3814113 BNC2, LOC648570, CNTLN Ovarian cancer rs3814113-T 0.68 5E-19
11 117,036,941 rs10892151 Apz/:é/AASf’g??AIIA\/iIJLO_‘IA% Triglycerides rs10892151-A 0.028 3E-29
12 39,078,567 rs11564258 MUC19, LRRK2 Crohn's disease rs11564258-A 0.03 6E-21
15 26,039,213 rs12913832 HERC2,0CA2 Eye/hair color rs12913832-A 0.23 1E-300
15 46,179,457 rs1834640 SLC24A5 Skin pigmentation rs1834640-G 0.08 1E-50

B. CHB+JPT

Chr  Position rs 1D Gene(s) Trait/disease SNP risk allele Fr:g;znzr:f p value
4 6,320,957 rs4689388 WFS1, PPP2R2C Type 2 diabetes rs4689388-T 0.57 1E-08
4 6,353,923 rs1801214 WFS1 Type 2 diabetes rs1801214-T NR 3E-08

91



C.YRI

Chr

D DD 0000~ D DN

© W W W W W W O O O DD DD O]

-
N

14

Position
54,538,061
1,068,187
1,085,281
88,994,267
159,850,267
31,349,088
31,360,375
31,360,904
31,366,816
31,371,730
31,382,359
31,382,534
31,420,305
31,430,538
31,435,043
31,444,079
32,677,669
32,681,607
32,682,149
32,684,456
32,685,358
32,686,060
32,694,832
32,700,715
32,710,985
32,712,350

32,713,862

32,733,847
32,765,556

32,771,829

32,771,977
32,773,398
32,775,888
32,779,081
32,786,977
32,788,906
32,808,061
122,187,733

151,248,771

160,601,383
120,076,601
120,081,881
120,114,010
120,121,419
12,662,097
138,251,691
138,261,561

2,215,556

87,542,348

rs D

rs11898505
rs1670533
rs3796619
rs1471403
rs8396
rs13191343
rs2524054
rs12191877
rs9468925
rs2894207
rs9264942
rs10484554
rs3134792
rs2523608
rs2523590
rs7743761
rs477515
rs602875
rs615672
rs9271100
rs660895
rs674313
rs9271366
rs28421666
rs2040406
rs9272346

rs2187668

rs9273349
rs7774434

rs6457617

rs6457620
rs10484561
rs2647044
rs13192471
rs9275572
rs7765379
rs2858884
rs9398652

rs11754661

rs3127573
rs2062377
rs11995824
rs6469804
rs6993813
rs1408799
rs7849585
rs12338076

rs1006737

rs8005161

Gene(s)
SPTBN1
RNF212,SPON2
RNF212,SPON2
MEPE
ETFDH
HLA
HLA-B
HLA-C
HLA
HLA-B,HLA-C
HLA-C
HLA-C
HLA-C
HLA-B
HLA-B
MHC
HLA-DQA1
HLA-DR-DQ
HLA-DRB1
HLA-DRB1
HLA-DRB1
HLA-DRB5
HLA-DRB1
HLA-DQ,HLA-DR
HLA-DRB,HLA-DQB1
HLA

HLA-DQA1, HLA-DQB1

HLA-DQ
HLA-DQB1

HLA-DQA1, HLA-DQA2

HLA-DRB1
HLA-DQB1
HLA-DRB1
HLA-DRB1
HLA-DQA2
HLA-DRB1
HLA-DQA2
GJA1

MTHFD1L

SLC22A2
TNFRSF11B
TNFRSF11B

OPG
OPG
TYRP1
QSOX2
LHX3, QSOX2

CACNAIC

GALC, GPR65

Trait/disease

Bone mineral density (spine)
Recombination rate (females)
Recombination rate (males)
Bone mineral density (spine)
Serum metabolites
Psoriatic arthritis
CD4:CD8 lymphocyte ratio
Psoriasis
Vitiligo
Nasopharyngeal carcinoma
HIV-1 control
Psoriasis
Psoriasis
HIV-1 control
HIV-1 control
Ankylosing spondylitis
Inflammatory bowel disease
Leprosy
Rheumatoid arthritis
Systemic lupus erythematosus
Rheumatoid arthritis
Chronic lymphocytic leukemia
Multiple sclerosis
Nasopharyngeal carcinoma
Multiple sclerosis
Type 1 diabetes

Celiac disease/Systemic lupus
erythematosus

Asthma
Primary biliary cirrhosis

Rheumatoid arthritis/Systemic
sclerosis

Rheumatoid arthritis
Follicular lymphoma
Type 1 diabetes
Rheumatoid arthritis
Alopecia areata
Rheumatoid arthritis
Narcolepsy
Resting heart rate

Alzheimer's disease (late
onset)

Serum creatinine
Bone mineral density (spine)
Bone mineral density (hip)
Bone mineral density (spine)
Bone mineral density (hip)
Blue vs. green eyes
Height
Height

Bipolar disorder and major
depressive disorder
(combined)

Crohn's disease
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SNP risk allele

rs11898505-A
rs1670533-C
rs3796619-T
rs1471403-T
rs8396-T
rs13191343-T
rs2524054-A
rs12191877-T
rs9468925-?
rs2894207-?
rs9264942-C
rs10484554-T
rs3134792-?
rs2523608-G
rs2523590-C
rs7743761-?
rs477515-?
rs602875-A
rs615672-?
rs9271100-?
rs660895-?
rs674313-T
rs9271366-G
rs28421666-?
rs2040406-G
rs9272346-G

rs2187668-A

rs9273349-C
rs7774434-C

rs6457617-T

rs6457620-?
rs10484561-G
rs2647044-A
rs13192471-G
rs9275572-G
rs7765379-?
rs2858884-A
rs9398652-A

rs11754661-A

rs3127573-G
rs2062377-T
rs11995824-G
rs6469804-A
rs6993813-C
rs1408799-C
rs7849585-T
rs12338076-C

rs1006737-A

rs8005161-T

Frequency of
risk allele

0.34
0.23
0.33
0.34
0.3
0.13
0.32
0.15
0.617
0.82
0.34
0.15
NR
0.326
0.164
NR
0.69
0.68
NR
NR
0.21
0.26
0.15
0.88
0.26
0.61

0.26

0.58
0.371

0.49

0.5
0.11
0.13
0.22
0.59

NR
0.81

0.1

0.07

0.13
0.44
0.55
0.51
0.5
0.75
0.33
0.34

0.36

0.12

p value
2E-08
2E-12
3E-24
2E-08
4E-24
2E-72
2E-28
1.-100
2E-33
3E-33
3E-35
2E-39
1E-09
9E-20
2E-13
5.-304
1E-08
5E-27
8E-27
1E-12
1E-108
7E-09
7E-184
2E-18
1E-20
5E-134

1E-50/3E-21

7E-14
3E-26

SE-75/4E-17

4E-186
1E-29
1E-16
2E-58
1E-35
5E-23
3E-08
4E-15

2E-10

7E-10
4E-16
7E-09
7E-15
3E-11
6E-17
5E-14
2E-08

3E-08

4E-18



3.5 Examples of strong candidate genes and their functions

In the final section of results in this chapter, we consider examples of individual

selected genes of particular interest.

3.5.1 Examples of strong positively selected genes in a particular

population

CASP12: previous studies have shown that a stop codon SNP, rs497116, which
makes the protein non-functional, has been fixed or nearly fixed in European and
Asian populations, but is less frequent in the African population. And this was
believed to be due to positive selection acting on the inactive form of this
genel05136_[f this stop codon allele is the selection target, it should have been
selected in all three populations, as it has reached a very high frequency in all of
them. In our genome wide scan, we found strong evidence of positive selection in
the CEU population, as shown in Figure 3.10 A. In 1000 Genomes low-coverage
Pilot data, the derived (stop codon) allele is fixed in both CEU and CHB+]JPT
populations, and has a frequency of 0.924 in the YRI population. However, we do
not see strong signals in the other two populations. There are two possible
explanations. One is data bias. As this selective sweep is likely to have already
been completed in the CHB+JPT population and be nearly complete in the YRI
population, the detection power largely relies on the presence of extremely low
frequency alleles. As will be discussed later, due to the nature of low-coverage
sequencing, the extent to which singletons were filtered out in each population
was different. The variant data in the CEU population have a much higher
percentage of singletons than the other two populations, so the detection power
of this particular sweep may be higher in CEU. The other possible reason is that
the selective sweep happened independently in these three populations, and
thus the strengths and ages of the sweeps were different. This may have caused
the sweeps in the other two populations to be undetectable by our tests.
Nevertheless, it is encouraging that we have been able to obtain a very strong
signal of positive selection in this known selected gene in exactly the same
window as the selected allele, which was not detected by previous genome-wide

scans using genotype data.
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Figure 3.10 Examples of positively selected genes with signals in only one population. Blue
dashed line marks the significance threshold. Candidate genes are shown and positions of
putative selected SNPs are marked as red bars with the rs ID if applicable.

NEDD4L: This gene shows a very strong signal of positive selection in the

CHB+]PT population, but not in the other two populations (Figure 3.10 B). The
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gene encodes the enzyme E3 ubiquitin-protein ligase NEDD4-like, which is
believed to regulate the expression and function of the epithelial sodium
channell37.138 It plays a very important role in salt reabsorption. Studies have
shown that this gene is associated with salt sensitivity!3?, blood pressure!49, and
essential hypertension!#l. Interestingly, it has been reported that African-
Americans are more sensitive to salt than other groups in the US, and they
develop hypertension at younger ages, with more severe consequences. So it
appears that Africans are more sensitive to salt than other groups. Based on
these facts, it is plausible that salt-insensitivity has been positively selected
outside of Africa, due to the adaptation to the new environment. The climate was
hot and dry in most human habitats in Africa, and salt was rare in ancient times,
so retaining salt in the body was very important for the survival of humans.
However, when our ancestors moved out of Africa, the climate was cooler, and
salt was easier to access especially near the sea, so retaining salt in the body was
no longer advantageous, and sometimes could be harmful, as it may cause high
blood pressure. Therefore, there might have been a selective force favoring less
efficient salt reabsorption in out-of-Africa populations. However, if this is the
case, we should expect to see signals in both European and Asian populations.
There are two possible reasons that we did not see signals in the European
population. One is that the selective sweep might have happened earlier in
Europe than in Asia, or the strength of selective force was much higher in Europe,
so that the selective sweep had already been completed for a long time, therefore
the footprint of positive selection had faded. The other explanation might be that
the selection strength in Europe is very low, so the sweep has not reached to a
detectable stage. All in all, the strong signal of positive selection plus the
interesting functional implications of this gene makes it a very good candidate
for further studies on its roles in salt sensitivity and blood pressure, and its
association with hypertension. It may be worth doing functional analyses on
highly differentiated alleles between African and other populations within this

gene to find out which variant(s) is more likely to be the selection target.

HLA gene cluster: The HLA gene cluster on Chromosome 6 showed very strong

signals of positive selection in the YRI population (Figure 3.10 C). The HLA
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(human leukocyte antigen) system lies within the human major
histocompatibility complex (MHC). This cluster contains a large number of genes
related to the immune system of humans. There are different classes of HLA
genes, and they play important roles in disease defense, may cause organ
transplant rejections, and mediate autoimmune diseases. Many variants in this
gene cluster are associated with various autoimmune or inflammatory diseases,
including inflammatory bowel disease, HIV, Vitiligo, Ankylosing spondylitis,
Rheumatoid arthritis and so on (Table 3.5). The positive selection signals in this
locus may indicate the strong selective force of disease defense and immune

functions in the African population.

3.5.2 Candidate genes selected in multiple populations and implications for

the selected functions

ITSN2: This gene shows extremely strong signals in all three populations
(ranked within the top 10 strongest signals in each population; Figure 3.11 A).
Strikingly, the peak signals in all three populations fall into the same windows,
which is the first exon and promoter region of this gene. There are two adjacent
windows showing almost the same strength of signal. Within this ~20 kb region,
we identified 49 variants with a DAF of more than 0.9 in all three populations,
one of which is within the first non-coding exon of the gene, and others in either
intron or 3’ UTR regions (Table 3.6). This gene encodes Intersectin-2, which is
involved in the regulation of the formation of clathrin-coated vesicles!4?, and also
plays a role in clathrin-mediated induction of T-cell antigen receptor (TCR)

endocytosis'43, and may regulate T-cell mediated immune responses.

NCAM?2: This gene, neural cell adhesion molecule 2, shows very strong signals in
all three populations (Figure 3.11 B). The protein encoded by this gene belongs
to the immunoglobulin superfamily. It is a type | membrane protein and may
play important roles in selective fasciculation and zone-to-zone projection of the
primary olfactory axons. It is primarily expressed in the brain, where it is
believed to stimulate neurite outgrowth and to facilitate dendritic and axonal
compartmentalization44. Interestingly, the peak signal of the CHB+]JPT

population is more than 400 kb away from the peak signals of the other two
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Figure 3.11 Examples of positively selected genes with signals in multiple populations.
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Table 3.6 High DAF variants in peak windows of ITSN2. Chromosome coordinates are in
March 2006, NCBI36.

- ref alt ancestral CHBJPT CHBJPT -

Chr CEU position allele allele  allele CEU DAF sesifon DAF YRI position  YRI DAF
2 24435849 C T C 0.983 24435849 0.967 24435849 0.966
2 24436130 G A G 0.975 24436130 0.967 24436130 0.975
2 24436273 C T C 0.983 24436273 0.967 24436273 0.966
2 24436426 C G C 0.983 24436426 0.975 24436426 0.966
2 24436979 C T C 0.975 24436979 0.967 24436979 0.966
2 24437367 T C T 0.983 24437367 0.967 24437367 0.966
2 24437522 C G C 0.983 24437522 0.967 24437522 0.966
2 24437726 C T C 0.908 24437726 0.975 24437726 0.966
2 24438162 G A G 0.967 24438162 0.95 24438162 0.966
2 24439534 G C G 0.983 24439534 0.975 24439534 0.915
2 24439653 G A G 0.983 24439653 0.967 24439653 0.966
2 24440355 T C T 0.983 24440355 0.967 24440355 0.966
2 24440851 C T C 0.992 24440851 0.967 24440851 0.966
2 24440929 G C G 0.975 24440929 0.967 24440929 0.966
2 24440930 G A G 0.975 24440930 0.967 24440930 0.966
2 24441809 A G A 0.983 24441809 0.975 24441809 0.966
2 24442311 G A G 0.975 24442311 0.967 24442311 0.966
2 24442435 C T c 0.983 24442435 0.967 24442435 0.992
2 24442604 T G T 0.992 24442604 0.967 24442604 0.966
2 24442639 C G C 0.983 24442639 0.967 24442639 0.966
2 24444362 G A G 0.983 24444362 0.992 24444362 0.966
2 24444623 G C G 0.983 24444623 0.967 24444623 0.975
2 24445579 C T C 0.992 24445579 0.967 24445579 0.975
2 24445841 A T A 0.983 24445841 0.967 24445841 0.949
2 24445880 A G A 0.983 24445880 0.967 24445880 0.966
2 24446357 T C T 0.983 24446357 0.967 24446357 0.966
2 24446367 G A G 0.983 24446367 0.967 24446367 0.966
2 24446904 T G T 0.983 24446904 0.967 24446904 0.975
2 24447399 G A G 1 24447399 0.967 24447399 0.966
2 24447452 G A G 0.992 24447452 0.967 24447452 0.966
2 24447481 T G T 1 24447481 0.967 24447481 0.966
2 24447753 A G A 0.975 24447753 0.967 24447753 0.966
2 24448832 A G A 0.983 24448832 0.967 24448832 0.966
2 24449141 A G A 0.958 24449141 0.967 24449141 0.992
2 24449259 C T C 0.983 24449259 0.967 24449259 0.966
2 24449274 C T C 0.983 24449274 0.967 24449274 0.975
2 24449318 G A A 0.942 24449742 0.933 24449318 0.949
2 24449992 G A G 0.992 24449992 0.967 24449992 0.966
2 24450279 G A G 0.992 24450279 0.975 24450279 0.966
2 24450287 A G A 0.983 24450287 0.975 24450287 0.966
2 24450338 C T C 0.983 24450338 0.975 24450338 0.966
2 24450541 A T A 0.983 24450541 0.967 24450541 0.966
2 24451714 C T C 0.983 24450866 0.033 24451714 0.966
2 24451783 A G A 0.6 24451783 0.742 24451783 0.483
2 24451815 G A G 0.983 24451815 0.983 24451815 0.983
2 24452162 C T C 0.983 24452162 0.967 24452162 0.966
2 24452243 G A G 0.983 24452243 0.975 24452243 0.975
2 24453789 C T C 0.983 24453789 0.967 24453789 0.975

populations, although CHB+]PT p value in that window is also quite low. All peak
windows are in the intronic regions of this gene, and there are no functionally

known variants.
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SDK1: This gene also showed strong signals in all three populations (Figure 3.11
C). Interestingly, the peak signals of all three populations do not overlap, though
the peaks of CEU and YRI are quite close. The product of this gene is a cell
adhesion protein that guides axonal terminals to specific synapses in developing
neurons. Studies have shown that dysregulation of this protein may play an
important role in podocyte dysfunction in HIV-associated nephropathy14>146, [t
was also shown that a variant within this gene, rs645106, is associated with
hypertension4’ in the Japanese population. This variant is not within any of the
peaks, but is closest to the peak of the CHB+JPT population (about 100 kb

downstream).

ULK4: This gene shows strong signals in both the CEU and YRI populations, and
also low, although not significant based on our stringent threshold, p values in
the CHB+JPT population (Figure 3.11 D). The CEU and YRI peak signals are more
than 300 kb away from each other. The peak signal of the CEU population
contains one exon of the gene. Previous studied have shown a strong association
of ULK4 with diastolic blood pressure (DBP)!48. There are three linked high DAF
non-synonymous changes within this gene that show significant GWAS signals:
rs6768438, rs9816772 and rs9852991, but they are about 100kb upstream of
the peak signal in CEU and even further from the YRI signal. It is likely that this
gene plays important functional roles; however, very little is known about these

functions. Thus it is worth further functional investigation.

3.6 Discussion

In this study, we have for the first time performed a genome-wide survey of
positive selection in the human genome using low-coverage whole-genome
sequencing data. We faced two main challenges: one was how to choose the
genome-wide significance level of our tests; the other was how to localize the
selection target. To solve the first challenge, we needed to decide between a
higher sensitivity and better specificity from our scan. In this study, although we
hoped to identify as many real positively selected regions as possible, we
preferred to obtain a small list of very likely targets instead of a long list with a

high proportion of false positives. Therefore, we needed to achieve a small FDR.
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With this in mind, we looked at the FDR in our simulations under different p
value cutoffs, and decided to choose the one with an FDR less than 5% in all
three populations. Interestingly, this p value cutoff is 0.01 with Bonferroni
correction, which is considered to be the most stringent significance cutoff.
Although in this case our sensitivity is low, we are still able to identify interesting

candidate regions, and we are able to achieve a very low FDR.

Although we could measure our specificity by calculating the FDR based on the
neutral simulations, we were unable to reliably measure the specificity, i.e. the
power of our test to detect positive selection. There are two main reasons for
this. Firstly, unlike the neutral scenario, positive selection has different stages
and strengths, and we do not know the strengths and ages of the selective
sweeps that happened in the human genome. Although we could simulate
several combinations of different selection coefficients and ages of sweeps, we
are very unlikely to mimic the real situation. Secondly, in reality, there are many
other factors that can affect the selective sweep, for example, change of
environment, bottlenecks, population expansion, inbreeding, admixture, and so
on. Although in our simulations, we used the best-fit demographic model to
mimic the major population events, it was not a 100% replication of the real
population history. Therefore, although we could measure the false negative rate
of our simulation, it may not reflect the reality and may be misleading. For
example, in our simulations, we had 16 scenarios of selection, among which we
could only effectively detect selective sweeps with a selection coefficient of at
least 0.007, and an age of at least 1,500 generations. We found that in the
empirical data, we had a large number of windows with much lower p values
then the lowest p value in our selection simulations, indicating that there may
have been much stronger selection in our genome. Therefore, our simulations
could only provide general guidance of how strong the selection has to be in
order to be readily distinguished from the neutral scenario. But needless to say,

this information is crucial in our study.

It is worth noting that the number of candidate regions and genes in the
CHB+]JPT population was much smaller than the other two populations. We

believe that this was due to the lower quality data in this population. The
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proportion of singletons in the CHB+]JPT population is only about one third of
CEU and half of YRI population (Figure 3.12). If we assume that the whole-
genome frequency spectra of the European and Asian population should be
similar, this lack of extremely low frequency alleles in the CHB+]JPT population is
largely due to the heavy filtering of uncertain variants during quality control. As
our tests are looking for extreme patterns of the frequency spectra, this will
affect the strengths of our signals. Although we have filtered our neutral
simulations to match the frequency spectra of low-coverage Pilot data, this still
could not fully eliminate the bias, as the proportion of extremely low frequency
alleles will be much larger in regions under positive selection, whereas the
missing alleles in the variant calling process of the empirical data should be
pretty much randomly distributed. Therefore, more low frequency alleles will be
missing in regions with an excess number of them. Therefore, it is
understandable that the power of detection in the CHB+]JPT population was
much lower, and this should not be mistakenly interpreted as less selection in

this population.
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Figure 3.12 Frequency spectra of 1000 Genomes low-coverage pilot data in each
population.
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Although in our case, we used a very stringent p value significance threshold in
order to obtain a confident list of selected regions, the cutoff is by no means
black and white. As indicated by our simulations, relatively weak selective
sweeps or sweeps that have not yet reached a late stage, may have more
moderate p values. In fact, some genes that are known to have undergone a
selective sweep may not have very strong signals. For example, the gene EDAR,
which is related to hair thickness and tooth morphology, showed multiple
evidence of positive selection in the East Asian population in previous
studies®6:67.78149-153 [n our scan, EDAR showed a peak p value of 1.4x 107 (-loge
value 15.8) in the CHB+JPT population (Figure 3.13). Although this did not pass
our genome-wide significance threshold, it would be considered as a significant p
value if the threshold was slightly lower. Furthermore, as discussed earlier, due
to the ascertainment bias in the CHB+]JPT data, the level of significance of p
values in this population is much lower than in the other two populations
(Figure 3.13). Interestingly, the density of significant p values corresponds to the
proportion of singletons in the data in each population (Figure 3.12 and Figure

3.14). On one hand, this demonstrates the importance of extremely low-
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Figure 3.13 Signals of positive selection of EDAR gene in the CHB+JPT population. As
observed previously, the peak signal lies in an intron, and not over the non-synonymous SNP
rs3827760 often assumed to be the target of selection.
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frequency alleles for detecting selection signals. On the other hand, it shows us
that although for a genome-wide scale study like this, we may set up a stringent
significance threshold to start with, we should not ignore the many other signals
that are not so strong but may still indicate signals of positive selection. However,
for those cases, stronger independent supporting evidence may be needed to

confirm the signals of positive selection.
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Figure 3.14 Distributions of p values in three populations. In order to show the difference of
densities of significant p values in each population, we only showed the distributions of those (-
loge p) values bigger than 12 (equivalent to p values smaller than 6.1E-6). The blue dashed line is
the significance threshold.

With a much higher density of variants in the sequencing data, we were hoping
to achieve a better resolution of signals, which may lead to higher power of
localization of selection targets. In our genome-wide scan, we used windows
sized about 10 kb, which in general contain enough variants to have the
statistical power, and at the same time are small enough for further investigation
to identify the selected variant. However, although on average, it is mostly likely
that the selected allele will fall into the window with the strongest signal, there is

still a high chance that the selected allele is elsewhere. Our simulations
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suggested that there is about 75% chance that the selected allele will be within
the ~100 kb regions centered by the peak signal, though the signal pattern is
made more complicated by recombination near the selected allele. Therefore,
although it is still not easy to localize the selection target into a very small region
or even a variant, by taking into account recombination, we were able to localize

the selected region into a reasonable size for further investigations.

The identification and interpretation of biological targets of selection has for
long been one of the biggest challenges in human evolutionary genetics. Two
main constraints limit our abilities to do so: one is the low power of current
statistical approaches to narrow down the selected genomic region, and the
other is the limited understanding of functions of our genome. We have shown
here that in some cases, selection targets can be narrowed down to a few tens of
kb, so that functional variants can be sought and investigated further. However,
due to the lack of known functional elements within many candidate regions,
biological targets of selection are often hard to identify and interpret. Follow-up
biological experiments can sometimes be done to investigate functions of
plausible selected variants, but it is often time- and resource-consuming, and
difficult to carry out on a large scale. New experimental assays to examine
biological functions of variants on a large scale will be extremely beneficial for

the investigation of biological targets of selection.

104



