
Chapter 3

Fine Scale Mapping using Ancestral

Recombination Graphs

3.1 Approaches to Fine Mapping

As described in the introductory chapter, population-based case-control studies involve in-

dividuals genotyped for a panel of SNPs that capture most, but not necessarily all, of the

genetic variation in a population (Cordell and Clayton, 2005; Palmer and Cardon, 2005).

The individuals are either disease affected cases or unaffected controls, and by analysing the

segregation of SNP alleles between these subpopulations it is possible to identify loci with

statistical association to disease.

One of the simplest tests for association is Pearson’s chi-square test applied to each marker

in turn. When causative polymorphisms are typed or are in strong r2 LD with typed markers,

the chi-square test is likely to successfully signal disease association (Devlin and Risch, 1995;

Pritchard and Przeworski, 2001). However by testing each marker independently, information

about the population history, and in particular, the co-inheritance of alleles, is discarded that

can potentially yield a substantial increase in detective and interpretative power. Indeed, it

is better in principle to model the genealogical forces that produced the pattern of genetic

variation than rely on summary statistics (Nordborg and Tavaré, 2002; McVean, 2002).

There are a number of methods that attempt to model the genealogies of loci in order to
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map diseases; the main idea was first described by Templeton et al. (1987):

“If an undetected mutation causing a phenotypic effect occurred at some point in

the evolutionary history of the population, it would be embedded within the same

historical structure represented by the cladogram.”

That is, if a disease causing allele is harboured at a particular locus, it will be possible to

place a mutation on the genealogical tree at that position, giving a clustering of the cases to

one side of the tree bipartition which that mutation defines.

The power of this approach was argued by Zollner and Pritchard (2005):

“Unless we have the actual disease variants in our marker set, the best information

that we could possibly get about association is to know the full coalescent geneal-

ogy of our sample at that position. If we knew this, the marker genotypes would

provide no extra information; all the information about association is contained

in the genealogy.”

Indeed, if the genealogy were known, not only could disease-associated regions be iden-

tified, but the genealogy would give the ages of the causative mutations, would specify the

haplotypic background of those mutations, help detect allelic and phenotypic heterogeneity

and so on. It would also be possible to optimally impute missing data.

However, the true genealogy is nearly always unknown, and mapping methods must in-

stead use models such as the coalescent-with-recombination. A number of coalescent based

methods have been developed (Graham and Thompson, 1998; Rannala and Reeve, 2001;

Larribe et al., 2002; Morris et al., 2002; Zollner and Pritchard, 2005), but none are computa-

tionally feasible for practical data sets.

In Morris et al. (2002, 2004) a Bayesian, Markov-chain Monte Carlo method is developed

for disease mapping. The genealogical histories of disease causing mutations are modelled by

trees, with the prior distribution of these being based on the coalescent. These are modelled

only for case chromosomes. Another distinctive feature of this method is that it models

multiple disease mutations and sporadic cases, representing each as a separate tree—hence

this is called the “shattered coalescent”. The Markov-chain Monte Carlo algorithm performs
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a random walk in the parameter space, which includes the topology of the shattered tree,

mutation and recombination rates, and the location of the disease locus.

In the method of Zollner and Pritchard (2005) a Markov-chain Monte Carlo method is

used to sample from the distribution of coalescent genealogies for all case and control chro-

mosomes, distinguishing this method from Morris et al. (2002). Furthermore, the genealogies

are sampled from a model that approximates the coalescent-with-recombination. A coalescent

tree is constructed at each position, called a focal point. On the leaves of the tree, the full

extent of the sequences is represented. However, moving up the tree, recombinations occur,

and part of a sequence may split off and follow an unmodelled path. Hence the extent of

the sequence around the focal point reduces when there is a recombination event, and only

the portion of the sequence remaining on that branch is traced further back on the tree.

Averaging over the genealogies, the likelihood of the phenotype data under various models of

mutation and penetrance is estimated.

The computational limits encountered when applying methods based on the coalescent-

with-recombination have partly motivated the development of faster haplotype clustering

methods (Templeton et al., 1987; Molitor et al., 2003; Durrant et al., 2004; Templeton et al.,

2005; Waldron et al., 2006). These cluster the haplotype sequences (for small non-recombining

regions) and perform statistical tests on these clusters. The clustering hierarchy is fast to

calculate, and is often organised as a cladogram (Felsenstein, 1985), which is assumed to

approximate the marginal tree for that region.

The first such method was that of Templeton et al. (1987) (see also Templeton et al.,

1988, 1992; Templeton and Sing, 1993; Templeton, 1995; Templeton et al., 2005). Identical

haplotype sequences are grouped together into a clade, and each clade is linked to the clades

genetically closest to it by mutation events—those events that are required to convert the

haplotypes in one clade into those in another. Here, the region under analysis is assumed to

be effectively non-recombining, and hence can have its population history described in such a

way, although recombinant haplotypes can potentially be detected by searching for branches

of the cladogram with an unexpectedly high number of recurrent mutations.

In Templeton et al. (2005) the clades are grouped together into larger clades, which are
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then tested for correlation with the phenotype using a nested ANOVA: the cladogram is

systematically split into two or more mutually exclusive and exhaustive clades, and each

clade is treated as an allele in an association test.

In Durrant et al. (2004), a hierarchical clustering algorithm is applied to the haplotype

sequences, as described in Chapter 1. A cladogram is constructed for a window of SNPs,

of user-defined width, and the analysis is windowed across the typed region. Correlations

between phenotype and clusters in the cladograms are tested as follows: The cladogram

partitions the haplotypes into clusters, with the first partitioning putting each haplotype into

its own singleton cluster. The next partitioning, moving up the cladogram, merges the two

most similar clusters, and so on. For each partitioning, a logistic regression is performed,

where the model is parameterised in terms of the log-odds of disease for each cluster. A

likelihood ratio test is performed, where the null model is defined by the null partitioning: the

one in which all haplotypes belong to the same cluster, which corresponds to each haplotype

having equal odds of being carried by a case or a control. The partitioning which gives the

strongest signal of association is found, and this gives the association score for that window

of SNPs. P -values can then be calculated by permuting the case/control labels. This method

is implemented as a program called CLADH, to which I compare my method.

However, compared to the ARG, cladograms are a coarse approximation of population evo-

lution, and there is often difficulty in modelling the relationships between similar haplotypes

and handling rare haplotypes. Additionally, it is often assumed that haplotypes are observed

directly and that one can define non-recombining haplotype blocks, which is in general not

the case.

I have developed an ARG based mapping method that has computational efficiency near-

ing that of haplotype clustering methods. I achieve this by using the heuristic approach for

ARG inference described in Chapter 2, and can thereby construct ARGs for thousands of

individuals typed for hundreds of SNPs. This is sufficiently fast that the analysis can be win-

dowed over the whole genome, fitting the scale of proposed large-scale case-control studies.

The simulated experiments described later in this chapter correspond to 800Mb typed at a

density of 1 SNP per 3.3kb, for 1000 cases and 1000 controls.
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In this way, the proposed method fills the gap between methods that are based on more

sophisticated coalescent models but require prohibitive computation, and haplotype based

methods that model less precisely the structure and genealogy of a disease locus.

In addition, compared to the methods of Morris et al. (2002) and Zollner and Pritchard

(2005), which only work locally on marginal trees, this method constructs full ARGs.

I now describe how inferred ARGs can be used for mapping. This mapping approach is

implemented with the ARG inference algorithm in the Margarita program (Minichiello and

Durbin, 2006). I evaluate the power of Margarita on simulated case-control studies and

compare the new method to the chi-square test and CLADH. I also show how Margarita

can be used to infer properties of untyped causative polymorphisms in addition to their

genomic positions, which is perhaps the most novel contribution of this chapter.

3.2 Using Inferred ARGs for Mapping

An ARG generated as described in the previous chapter defines a marginal tree for each

chromosome position (Figure 1.2). For a given position the marginal tree can be extracted

from the ARG by tracing the genealogy of that position back in time from the leaves. When a

recombination is encountered, the genealogy follows the path of the left recombination parent

if the breakpoint is to the right of the position in question, and otherwise it follows the right

parent.

A position can be tested by for association by seeing whether its marginal tree has a

branch on which a hypothetical causative mutation can be placed that suitably explains the

observed disease states of the genotyped individuals—as illustrated in Figure 1.3. (Note that

although such a branch extends over an interval of markers in the ARG, localisation is refined

by recombination events lower down the ARG—these change the number of case and control

chromosomes under the branch at each position.)

The test is as follows: Since the true ARG is unknown, I infer an ensemble of 100 plausible

ARGs. These are generated by running the ARG inference algorithm 100 times, and stochastic

choices made during ARG construction mean that in practice these are all different. For each
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marker, the corresponding 100 marginal trees are extracted from the ARGs. For each marginal

tree, hypothetical disease-predisposing mutations are dropped on each branch in turn. These

cause the case-control individuals (the leaves of the tree) to be bipartitioned into those with

the mutant allele and those with the ancestral allele. A chi-square test can then be used

to detect non-independence between inferred allelic state and disease state. If there are n

leaves then there are n − 3 nonequivalent, non-unary bipartitions of a tree, and hence n − 3

chi-square test statistics for a tree. Assuming that the region spanned by one tree harbours

at most one causative mutation, I take the maximum of these n − 3 test statistics, calling

this the “best cut” score. After finding the best cut score for each of the 100 trees, I take the

mean, giving an association score for the marker (this assumes that all the inferred ARGs are

equally likely).

Although I test for non-independence between alleles and disease, the test could easily

be modified to test for association between genotype and disease (see Chapter 5). Similarly,

a regression could be performed, rather than a chi-square test, allowing the method to be

applied to quantitative phenotype data. Alternatively, the likelihood of the data given the

tree could be calculated, although this would require an explicit disease and mutation model.

Also, it is not necessary to assume that there is only one causative mutation on a tree (Zollner

and Pritchard, 2005).

In Chapter 1, a number of important limitations of the allelic chi-square test are reviewed

(Sasieni, 1997). In particular, under the null hypothesis of no disease association, the allelic

chi-square test statistic is asymptotically χ2 distributed only if the population from which

the cases and controls are sampled is in HWE; the test statistic will be inflated if there is an

excess of homozygotes relative to HWE. This means that the algorithm may select “best cut”

branches that induce the greatest deviation from HWE, without regard to disease association.

However, the appeal of the allelic chi-square test is that it can be calculated very fast, while

determining the genotypes of individuals which result from bipartitioning the haplotypes

requires additional book-keeping.

I calculate the statistical significance of the mapping score at each marker—the marker-

wise P -value—by permuting the assignments of case and control labels of the individuals and
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repeating the test above. By performing multiple permutations an empirical null distribution

is generated from which the P -value can be calculated (Churchill and Doerge, 1994). For

P -values exceeding the precision of the permutations, I fit an extreme value distribution to

the empirical distribution (Dudbridge and Koeleman, 2004), although I do not rely on this

for many of the analyses in this thesis.

Since multiple markers are being tested for association there is a multiple testing issue,

which I correct for by calculating for each marker an experiment-wise P -value: the probability

that any of the typed markers show such a strong association signal by chance. Again, this is

done by permutation: after shuffling the case/control labels, the maximum association score

of all the markers is recorded, so defining an empirical experiment-wise null distribution.

Once again, an extreme value distribution can be fitted in order to estimate small P -values.

3.3 Simulation of Case-Control Studies

To evaluate the performance of the method under a variety of disease models, I simulated

suites of case-control studies. Each suite contained 50 studies simulated under the same

model, which was parameterised according to:

• Recombination model of the population from which the cases and controls were sampled.

• TagSNP ascertainment scheme.

• Whether the sequences were phased or unphased, and the amount of missing data.

• Disease model parameters: genotype relative risk, disease allele frequency and also size

of study.

The case-control studies were sampled from one of two populations, called “constant”

and “hot”, depending on the recombination model. Both populations contained 20,000 1Mb

chromosome sequences, which were simulated using the FREGENE forward simulator by

the authors of that program (Hoggart et al., 2005), and are available for download from the

BARGEN website http://www.ebi.ac.uk/projects/BARGEN.
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• The “constant” population was simulated using the simple (no population expan-

sion or complex demography) Wright-Fisher model with constant recombination rate.

The mutation rate was 1.1 × 10−8 per base pair per generation and the recombination

crossover rate was 2.2 × 10−8 per base pair per generation.

• The “hot” population was simulated with recombination hotspots. These were of

length 2kb and accounted for 1% of the length of the region but 60% of all recombi-

nations. The average recombination crossover rate was the same as before, resulting in

recombination crossover rates within and between hotspots of 6.56×10−7 and 4.44×10−9

per base pair per generation respectively. Gene conversions were also included with a

constant tract length of 50 base pairs and average rate across the genome of 1.1× 10−7.

Gene conversions were assigned the same hotspots as crossovers and their rates within

and between hotspots were 6.56 × 10−6 and 4.44 × 10−8 per base pair per generation

respectively

For both populations, all SNPs with minor allele frequency ≥ 0.005 were recorded (giving

4621 SNPs in the “constant” population and 4825 SNPs in the “hot” population). I then

selected tagSNPs using three schemes:

• “Full” ascertainment. 120 chromosomes were sampled without replacement from

the population and presented to the tagging program TAGGER (de Bakker et al.,

2005). (For the “constant” population, 4235 of the 4621 SNPs were polymorphic in

this sample and thus considered for tagging, for the “hot” population, 4389 out of 4825

were polymorphic). I set TAGGER to use a maximum tagging distance of 100kb and

specified that the tags be optimised for single marker, rather than haplotype-based,

tests.

• 5% ascertainment. As “full”, but only SNPs with minor allele frequency ≥ 5% were

considered in the tagging process.

• Random. Tags were evenly spaced but otherwise selected at random from the SNPs

with minor allele frequency ≥ 5% in the population.
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In all three cases, 300 tagSNPs were chosen for the 1Mb region. For “full” and 5%

ascertainment, these were the best 300 tags as ranked by TAGGER.

The disease model for each suite of 50 case-control studies was specified by parameters q,

GRR(Aa), GRR(AA), and ncc.

• q is the frequency of the disease-predisposing allele;

• GRR(Aa) is the genotype relative risk of the heterozygote;

• GRR(AA) is the genotype relative risk of the mutant homozygote; and

• ncc is the number of case chromosome sequences (which in my simulations is the same

as the number of control sequences).

GRR(Aa) was varied between 1.4 and 2.4; GRR(AA) was set to 2 ∗ GRR(Aa) − 1 (an

additive effect); q was varied between 0.02 and 0.20; and ncc was varied between 500 and 3000.

In order to calculate the penetrances of each genotype at a disease locus, it was also necessary

to specify the population prevalence of the disease; this was set to 1% for all simulated studies.

To simulate a case-control study, I used the following process:

1. From one of the FREGENE populations (all SNPs with minor allele frequency ≥ 0.005),

a SNP with minor allele frequency between q−0.005 and q+0.005 was picked at random

to be causative.

2. Two sequences (a diploid individual) were picked at random (with replacement) from

the population.

3. The individual was assigned to the case set or control set according to the probability

of them having the disease given their genotype at the causative SNP.

4. Steps 2 and 3 were repeated until ncc case sequences and ncc control sequences were

sampled.

5. Only the 300 tagSNPs were output.
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Resampling from the population is not ideal, but I was limited by the size of popula-

tion which it is computationally feasible to simulate. The resampling may be thought of

as performing an additional round of the Wright-Fisher process with a sudden increase in

population size, or as there being unidentified consanguinity in the study. This approach has

been used elsewhere (de Bakker et al., 2005).

3.4 Evaluating the Performances of Mapping Methods

I implemented the algorithm as a Java program called Margarita, and assessed it on both

simulated and real data sets involving thousands of individuals typed for hundreds of markers

across megabase scale regions.

The performance of a mapping method can be measured according to three criteria:

• Power—the probability of obtaining a significant association signal in a region around

a causative polymorphism;

• Localisation—how accurately the methods can estimate the position of a causative

polymorphism; and

• Interpretation—the ability to estimate properties of an untyped causative polymor-

phism (in addition to its position), such as its frequency, which can then guide further

investigation.

The power and localisation of Margarita was compared across a range of disease models

to two other methods: the single marker chi-square test and the CLADH haplotype clustering

method (Durrant et al., 2004). Single marker and haplotype-based tests are those most

commonly used in practice; coalescent methods such as LATAG (Zollner and Pritchard, 2005)

are not computationally feasible for the scale of data I consider here. The single marker chi-

square test is often used, and I have selected tagSNPs that capture much of the population

variation, meaning that this test is not as “naive” as it may be when markers are chosen at

random. From the many available haplotype based methods, I chose to compare the method

to CLADH because CLADH is designed to be applied to megabase scale regions, does not
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require excessive computation, and has been shown to perform well against similar methods

(Bardel et al., 2005).

3.5 Results on a Simulated Suite of Case-Control Studies

As described above, I simulated case-control studies typed for 300 markers across a 1Mb

region. These correspond to fine mapping studies, where a causative polymorphism has been

detected, or is otherwise suspected to exist in a region, and the next step is to finely localise

and interpret that signal.

First, I compare Margarita, CLADH and the chi-square test on a suite of 50 case-

control studies with parameters GRR(Aa) = 2, GRR(AA) = 3, q = 0.04 and ncc = 2000,

sampled from the “constant” population with the “full” ascertainment tag set, and using the

true phased haplotype sequences with no missing data. The association structure for one of

those studies is shown in Figure 3.1.

All Margarita P -values for the simulated studies were calculated by performing 10,000

permutations, and P -values < 0.0001 were estimated by fitting extreme value distributions.

To analyse one case-control study (4,000 haplotype sequences of 300 SNPs) using Margarita

on a 2.8 GHz Pentium IV processor required 3-4 minutes to construct 1 ARG, and 6 hours

to perform the mapping test with 10,000 permutations on 100 ARGs. The mapping test for

Margarita is on marginal trees, which potentially change at each marker and therefore I

took the location of the typed marker to be the point location of the test. However, the

branch that best segregates the cases and controls will be linked to that marker and may not

correspond to it.

When using CLADH, the user is required to specify the number of SNPs in each haplotype

window. I tried the range of window widths used in the CLADH paper (Durrant et al., 2004),

and below I report the best results obtained (using windows of size 5). All CLADH P -values

were calculated with 10,000 permutations and I took the location of the typed SNP closest

to the centre of the window as the point location of the test.

Below I describe the performances of the methods according to the measures of power,
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Figure 3.1: The association structure for a simulated case control study with disease param-
eters GRR(Aa) = 2, GRR(AA) = 3, q = 0.04 and ncc = 2000, sampled from the “constant”
population with the “full” ascertainment tag set. 4 denotes the position of the (untyped)
causative SNP.

localisation and interpretation.

Power. To determine power, I defined a window around the causative SNP and calculated

the proportion of case-control studies with a significant signal (P≤ 0.05) within that window.

Figure 3.2 shows the probability of detecting a marker-wise and experiment-wise significant

association within a window around the untyped causative SNP. I am unable to report the

experiment-wise significances for CLADH because it does not calculate these. When consid-

ering marker-wise significance (top three lines in Figure 3.2), the chi-square test and CLADH

have greater power than Margarita for windows of > 25kb around the causative SNP. How-

ever, when correcting for multiple testing, Margarita has greater power than the chi-square

test (lower two lines). This difference arises because Margarita’s tests at adjacent SNPs

are more strongly correlated through shared ancestry than the chi-square test’s (see Figure
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Figure 3.2: The probability of there being a significant association within an interval around
the causative SNP. For a suite of case-control studies with disease parameters GRR(Aa) = 2,
GRR(AA) = 3, q = 0.04 and ncc = 2000, sampled from the “constant” population with the
“full” ascertainment tag set.
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Figure 3.3: Marker-wise P -values at the marker closest to the causative SNP for 50 studies in a
suite of case-control studies with disease parameters GRR(Aa) = 2, GRR(AA) = 3, q = 0.04
and ncc = 2000, sampled from the “constant” population with the “full” ascertainment tag
set.
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Figure 3.4: Marker-wise P -values at the marker closest to the causative SNP for 50 studies in a
suite of case-control studies with disease parameters GRR(Aa) = 2, GRR(AA) = 3, q = 0.04
and ncc = 2000, sampled from the “constant” population with the “full” ascertainment tag
set.

3.1), reducing the effective number of independent tests across the region.

Figures 3.3 and 3.4 show the marker-wise P -values for the test that is closest (according

to its point location) to the untyped causative SNP in each of the 50 case-control studies.

The P -values attained by Margarita are typically stronger than for the other methods.

I compared the false positive rates of the three methods by counting the number of associ-

ations with marker-wise P -value ≤ 0.05 at a distance of greater than 250kb from the untyped

causative SNP. An association is counted when the signal breaks below the 0.05 cutoff and

then returns above it. The mean number of such false positives for a case-control study from

this suite is 0.70 for Margarita, 6.16 for CLADH and 10.48 for the chi-square test. This

may explain in part the apparent difference in marker-wise power at longer distances (in

Figure 3.2).



56 Fine Scale Mapping using Ancestral Recombination Graphs

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance between association peak and causative SNP (kb)

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
 o

f a
ss

oc
ia

tio
n 

pe
ak

Margarita
χ2−test
CLADH
Random

Figure 3.5: Cumulative distribution of distances between the association peak and the
causative SNP. For a suite of case-control studies with disease parameters GRR(Aa) = 2,
GRR(AA) = 3, q = 0.04 and ncc = 2000, sampled from the “constant” population with the
“full” ascertainment tag set.

Localisation. This means how accurately a method can estimate the position of the

causative SNP. For each of the methods, I took the point location of the test with the strongest

marker-wise P -value as the estimate of causative SNP location. Figure 3.5 shows that Mar-

garita gives better localisation than CLADH and the chi-square test for this suite of studies.

Interpretation. In studies where the causative SNPs are untyped, it is useful to estimate

properties of those SNPs, thus guiding the design of subsequent studies. For example, an

estimate of causative allele frequency (which can also be obtained with haplotype clustering

methods such as Waldron et al. (2006)) can be used to calculate the sample size required in

order to achieve significance. To estimate this, I took the ensemble of marginal trees at the

marker closest to the causative SNP, and recorded the branch (bipartition) of each tree that

showed the strongest disease association—called the best cut.
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Figure 3.6: The distribution of estimated allele frequency in the general population. For a
suite of case-control studies with disease parameters GRR(Aa) = 2, GRR(AA) = 3, q = 0.04
and ncc = 2000, sampled from the “constant” population with the “full” ascertainment tag
set.

For each tree, an estimate of causative allele frequency was obtained by calculating the

fraction of chromosomes that fall under the best cut branch. The frequency of the causative

allele in the controls is taken as the fraction of control chromosomes in the sample which fall

under the best cut, and the frequency of the risk allele in the cases is taken as the fraction of

the case chromosomes in the sample which fall under the best cut. If the population prevalence

of the disease is known, then the frequency of the risk allele in the general population can be

estimated as follows: Let P be the prevalence of the disease, and fU be the fraction of the

control chromosomes under the best cut, and fA the fraction of the case chromosomes under

the best cut, then the estimated frequency of the causative allele q̂ in the general population

is:

q̂ = PfA + (1 − P ) fU
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Figure 3.6 shows the distribution of causative allele frequencies as estimated by the ARGs

constructed for this suite (causative allele frequency 0.04). The median estimate is 0.036.

Note that I only report frequency estimates from studies with a significant association signal.

Additionally, a sample of estimated ancestral haplotypes on which the causative allele may

have arose can be obtained.

3.6 Results Across a Range of Simulated Disease Models

So far, the performances of the three methods have only been evaluated on one suite of

case-control studies, that is, under one disease model. In this section I explore a range of

models by varying each parameter (either the genotype relative risk GRR(Aa), the causative

allele frequency q, or the study size ncc) in turn while fixing the others at “default” values

of GRR(Aa) = 2, GRR(AA) = 2 ∗ GRR(Aa) − 1, q = 0.04 and ncc = 2000. In all these

simulations I used the “constant” population with the “full” tag ascertainment scheme.

Figure 3.7 compares the power of Margarita and the chi-square test to detect an

experiment-wise significant (P≤ 0.05) association within 100kb of the untyped causative SNP.

CLADH is excluded from this comparison because it does not calculate experiment-wise P -

values. When comparing experiment-wise P -values, Margarita outperforms the chi-square

test.

Figure 3.8 shows the localisation performance of the three methods. For the majority of

disease models, Margarita outperforms both the chi-square test and CLADH.

Finally, Figure 3.9 shows the median estimated causative allele frequency in the general

population for a range of suites with varying causative allele frequency (I only report es-

timates from studies with a significant association signal). I compared the performance of

Margarita to a simple haplotype approach. For this, I considered all windows of length up

to 10 SNPs around the causative polymorphism. I tested each haplotype allele for association

with the disease and used the frequency of the most strongly associated haplotype allele to

estimate the frequency of the causative polymorphism. Margarita has a slight downward

bias in its estimate, but it is, nevertheless, reasonable and outperforms the simple haplotype
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Figure 3.7: Probability of an experiment-wise significant signal within 100kb of the causative
SNP (calculated as the proportion of studies in each suite that meet this criterion). Each point
on the x-axis corresponds to a suite of 50 studies. Each of the disease parameters is varied
between suites, while the other parameters are held at “default” values of GRR(Aa) = 2,
GRR(AA) = 2 ∗ GRR(Aa) − 1, q = 0.04 and ncc = 2000. All studies are sampled from the
“constant” population with the “full” ascertainment tag set.
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Figure 3.8: Probability that the association peak is within 100kb of the causative SNP. Each
point on the x-axis corresponds to a suite of 50 studies. Each of the disease parameters is
varied between suites, while the other parameters are held at “default” values of GRR(Aa) =
2, GRR(AA) = 2 ∗GRR(Aa)− 1, q = 0.04 and ncc = 2000. All studies are sampled from the
“constant” population with the “full” ascertainment tag set.
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approach just described, which has a significant upward bias and a higher variance.

3.7 Results Across a Range of Simulated Population Models

and Ascertainment Schemes

For the final set of simulations, the disease model was fixed to GRR(Aa) = 2, GRR(AA) = 3,

q = 0.04 and ncc = 2000, while the data quality, population model and tagSNP ascertainment

scheme were varied.

Figure 3.10 shows the effect of having missing and unphased data on the performance of the

method. For this figure, the same suite of case-control studies (sampled from the “constant”

population) were used but with the samples output either as phased haplotype sequences,

unphased genotype sequences or as phased sequences with 10% missing data. These results

show that Margarita is robust against both these complications. I do not compare to

CLADH because it requires phased haplotypes with no missing data.

Figure 3.11 shows the performance of Margarita on case-control studies sampled from

a population simulated using a recombination hotspot model (the “hot” population). Under

this scenario we see a performance increase for the chi-square test compared to when the

“constant” population is used (compare to Figure 3.10). However, it still performs worse

than Margarita. The chi-square test has increased performance because recombination

hotspots give rise to blocks of strong linkage disequilibrium, resulting in tags that capture

more of the population variation.

Figure 3.11 also compares the effect of tag ascertainment scheme on mapping performance.

The same suite of case-control studies was used, but the samples were “typed” using each of

the three tagSNP selection schemes. Tag selection based on less complete data (specifically,

when the causative polymorphism is not included in the data used to select tags) results in

significantly reduced performance of the chi-square test but has less effect on Margarita.

Furthermore, the SNP ascertainment scheme which is best for the chi-square test (“full”

ascertainment) is not necessarily the best for Margarita (which seems to prefer markers

with frequency ≥ 5%). Consistent with the previous studies, the performance of CLADH
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Figure 3.9: Estimated causative allele frequency versus true frequency q. Each point on the
x-axis corresponds to a suite of 50 studies. q is varied while the other parameters are held at
“default” values of GRR(Aa) = 2, GRR(AA) = 2 ∗ GRR(Aa) − 1, q = 0.04 and ncc = 2000.
All studies are sampled from the “constant” population with the “full” ascertainment tag set.
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Figure 3.10: Performance on a suite of case-control studies with GRR(Aa) = 2, GRR(AA) =
3, q = 0.04, ncc = 2000, sampled from the “constant” population and with the “full” ascer-
tainment tag set. Margarita is applied to this suite under three scenarios: when the data
is phased, when it is unphased and when it is phased but has 10% missing data.

tends to fall between Margarita and the chi-square test.

3.8 Summary

Compared with simpler tests, Margarita gives increased accuracy in positioning untyped

causative loci and can also be used to estimate the frequencies of untyped causative alleles.

Margarita also has greater power after correcting for multiple testing, and this is particu-

larly dramatic for low frequency causative alleles.

In the next two chapters, Margarita is applied to real case-control association studies,

demonstrating how association signals can be dissected using the inferred ARGs.
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Figure 3.11: Localisation for different data, population and tag models. Performance on a
suite of case-control studies sampled from the “hot” population (and with GRR(Aa) = 2,
GRR(AA) = 3, q = 0.04, ncc = 2000). Performance is compared using three different tagSNP
ascertainment schemes.


