o < B

Modelling human complex traits with
regression and neural-network based

methods

Marton Kelemen
Wellcome Sanger Institute

University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Darwin College November 2020






Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work
done in collaboration except as declared in the Preface and specified in the text. It is not
substantially the same as any that I have submitted, or, is being concurrently submitted
for a degree or diploma or other qualification at the University of Cambridge or any other
University or similar institution except as declared in the Preface and specified in the text.
I further state that no substantial part of my thesis has already been submitted, or, is being
concurrently submitted for any such degree, diploma or other qualification at the University
of Cambridge or any other University or similar institution except as declared in the Preface
and specified in the text. It does not exceed the prescribed word limit for the relevant Degree
Committee. This dissertation contains fewer than the limit of 60,000 words set by the Biology

Degree Committee.

Marton Kelemen
November 2020






Modelling human complex traits with regression and

neural-network based methods

Marton Kelemen

Identifying how epistasis, non-linear genetic effects, contribute to phenotypic variance
in humans has been an enduring challenge. So far neither the computational resources that
could accommodate higher-order interactions at scale nor the large-scale population cohorts
with adequate statistical power were available up until recently. With the advent of graphics
processing unit computing farms and neural-network based methods, together with large
biobank-scale data sets, such as the UK Biobank which offers a sample size of ~500K, this
has been changing. These developments offer opportunities for the development of novel
approaches that could provide insights into the genetic underpinnings of complex disease
risk and trait variation.

After reviewing the necessary background material, this work consists of three research
chapters. The organising theme of these is the building of genotype-phenotype maps,
which grow from the simple additive, through the two-way interactions, up to higher-order
interactions in the last chapter.

I begin by covering the common quality control steps and basic additive association
analyses I carried out that explored the information boundaries of my data which serves as
the foundation for the rest of my work. I managed to recover primary association signals
described in the literature for my cohorts confirming the validity of my data processing steps.
I also describe a novel method that exploits shared genetic effects to improve risk prediction
for related traits. Relative to baselines, this improved squared correlations between observed
and predicted sub-phenotypes by ~25% and ~19% for ulcerative colitis and Crohn’s disease,
respectively.

Building on the previously prepared data sets, I searched for two-way interactions using
standard statistical methods belonging to the regression framework. In the UK Biobank
cohort I pursued a hypothesis-free approach to consider interactions both within and between
the genomic domains of SNP, transcription and protein derived predictors. For the much
smaller inflammatory bowel disease studies, I followed a hypothesis driven strategy to reduce
search space which only considered haplotype-specific interactions between biologically
plausible loci to increase power. I found that the results from both of these approaches were
consistent with the null hypothesis of no significant contribution to phenotypic variance from
non-linear genetic effects.

Parallel to my search for epistasis using regression based models, I also considered the

neural-network framework to find indirect evidence for non-linear effects contributing to



vi

phenotypic variance. I confirmed via a large-scale simulation study the potential of neural-
networks to be able to identify interactions at a higher accuracy than standard regression
based methods. In the real datasets, I searched for individual epistatic interactions using
both experimental approaches from the literature, together with methods that I developed for
this purpose. However, I was unable to find convincing evidence for statistical interactions
contributing to complex trait variance.

In summary, I found that despite the large cohorts I had access to and the modern non-
linear methods I deployed, evidence for non-linear genetic effects contributing to complex

human trait variance remained elusive.
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