

Modelling human complex traits with regression and neural-network based methods

Marton Kelemen

Wellcome Sanger Institute University of Cambridge

This dissertation is submitted for the degree of Doctor of Philosophy

Darwin College

November 2020

Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration except as declared in the Preface and specified in the text. It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. I further state that no substantial part of my thesis has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or Similar institution except as declared in the Preface and specified in the text. I further state that no substantial part of my thesis has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. It does not exceed the prescribed word limit for the relevant Degree Committee. This dissertation contains fewer than the limit of 60,000 words set by the Biology Degree Committee.

Marton Kelemen November 2020

Modelling human complex traits with regression and neural-network based methods

Marton Kelemen

Identifying how epistasis, non-linear genetic effects, contribute to phenotypic variance in humans has been an enduring challenge. So far neither the computational resources that could accommodate higher-order interactions at scale nor the large-scale population cohorts with adequate statistical power were available up until recently. With the advent of graphics processing unit computing farms and neural-network based methods, together with large biobank-scale data sets, such as the UK Biobank which offers a sample size of ~500K, this has been changing. These developments offer opportunities for the development of novel approaches that could provide insights into the genetic underpinnings of complex disease risk and trait variation.

After reviewing the necessary background material, this work consists of three research chapters. The organising theme of these is the building of genotype-phenotype maps, which grow from the simple additive, through the two-way interactions, up to higher-order interactions in the last chapter.

I begin by covering the common quality control steps and basic additive association analyses I carried out that explored the information boundaries of my data which serves as the foundation for the rest of my work. I managed to recover primary association signals described in the literature for my cohorts confirming the validity of my data processing steps. I also describe a novel method that exploits shared genetic effects to improve risk prediction for related traits. Relative to baselines, this improved squared correlations between observed and predicted sub-phenotypes by ~25% and ~19% for ulcerative colitis and Crohn's disease, respectively.

Building on the previously prepared data sets, I searched for two-way interactions using standard statistical methods belonging to the regression framework. In the UK Biobank cohort I pursued a hypothesis-free approach to consider interactions both within and between the genomic domains of SNP, transcription and protein derived predictors. For the much smaller inflammatory bowel disease studies, I followed a hypothesis driven strategy to reduce search space which only considered haplotype-specific interactions between biologically plausible loci to increase power. I found that the results from both of these approaches were consistent with the null hypothesis of no significant contribution to phenotypic variance from non-linear genetic effects.

Parallel to my search for epistasis using regression based models, I also considered the neural-network framework to find indirect evidence for non-linear effects contributing to

phenotypic variance. I confirmed via a large-scale simulation study the potential of neuralnetworks to be able to identify interactions at a higher accuracy than standard regression based methods. In the real datasets, I searched for individual epistatic interactions using both experimental approaches from the literature, together with methods that I developed for this purpose. However, I was unable to find convincing evidence for statistical interactions contributing to complex trait variance.

In summary, I found that despite the large cohorts I had access to and the modern nonlinear methods I deployed, evidence for non-linear genetic effects contributing to complex human trait variance remained elusive.

Acknowledgements

I thank my supervisors Carl Anderson and Chris Wallace, without whom this work would not exist. Thank you for putting up with my stubbornness, I hope that my future work will make you proud. I am immensely grateful for the opportunity to pursue a research topic of my choice, which was made possible by the Wellcome Trust who supported my work financially, and the Mathematical Genomics and Medicine administrators who organised this exceptional programme. I also thank Nadav Brandes for kindly agreeing to share the data and provided help to navigate the PWAS method.

This thesis is dedicated to my mother, Judith Dimitrova, and my father, Lajos Kelemen.

Table of contents

Li	st of fi	igures		2	xvii
Li	st of t	ables			xxi
No	omenc	lature			XXV
1	Intro	duction	n		1
	1.1	Non-li	near encoc	ling of genetic information	1
		1.1.1	Epistasis		2
		1.1.2	The two	main forms of epistasis	3
		1.1.3	The imp	ortance of epistasis in understanding biology	5
		1.1.4	Example	s of statistical epistasis in humans	5
		1.1.5	Variance	component analyses of epistasis	6
			1.1.5.1	An alternative explanation to the apparent lack importance	
				of epistatic variance	7
			1.1.5.2	Is non-linear population genetic variance needed for non-	
				linear information encoding?	8
		1.1.6	Challeng	es of statistical epistasis detection	9
			1.1.6.1	Statistical and computational challenges	9
			1.1.6.2	Linkage Disequilibrium	10
			1.1.6.3	Thresholding effects for traits with a limited recorded range	12
		1.1.7	General	approaches to epistasis detection	12
	1.2	Heritał	oility		14
		1.2.1	Genetic	prediction and heritability	15
		1.2.2	Overview	v of methods that estimate variance components	16
	1.3	Genor	ne-wide as	sociation studies	17
		1.3.1	GWAS b	ackground	17
		1.3.2	GWAS fi	ramework	18

		1.3.2.1 GWAS quality-control	18
		1.3.2.2 The GWAS model and statistical considerations	20
	1.3.3	GWAS insights and recent trends	21
1.4	Transc	criptome-wide association study	22
	1.4.1	TWAS framework	22
	1.4.2	The potential benefits of the TWAS framework	23
	1.4.3	Limitations of TWAS	23
1.5	Protein	n burden score tests	24
	1.5.1	Protein burden test method outline	24
		1.5.1.1 Generating the protein burden scores	24
		1.5.1.2 Protein burden association tests	25
	1.5.2	Potential benefits of the protein burden test	25
1.6	Geneti	ic risk prediction	25
	1.6.1	Polygenic scores	25
	1.6.2	The origin of PRS	26
	1.6.3	Current methods for building PRS	26
		1.6.3.1 Univariate regression based models	27
		1.6.3.2 Whole-genome regression based models	28
		1.6.3.3 LDpred	30
	1.6.4	Recent applications of PRS	32
		1.6.4.1 Limitations	33
	1.6.5	Genetic prediction incorporating non-additive effects	34
1.7	Neural	l-network based methods	35
	1.7.1	The origins of neural-networks	35
	1.7.2	What are neural-networks exactly?	36
	1.7.3	How are neural-networks fit?	38
		1.7.3.1 Stochastic gradient descent	38
		1.7.3.2 Weight initialisation	39
	1.7.4	Advanced neural-network concepts	39
		1.7.4.1 ADAM optimizer	40
		1.7.4.2 Layers that address the vanishing gradient problem	40
		1.7.4.3 ReLU and batch normalization	41
		1.7.4.4 SELU	41
		1.7.4.5 Regularization of neural-networks	42
		1.7.4.6 L1 and L2 norms	42
		1.7.4.7 Early stopping	42

			1.7.4.8	Dropout layer	42
	1.8	Thesis	objectives		43
2	Add	itive mo	odels and	common quality-control steps	45
	2.1	Chapte	er 2 outline		45
	2.2	Datase	ets		45
		2.2.1	Overviev	v of the phenotypes considered	45
			2.2.1.1	UK Biobank traits: height, BMI, fluid intelligence and	
				asthma	46
			2.2.1.2	IBD and its subphenotypes	48
		2.2.2	UK Biob	ank genotype and phenotype data diagnostics	49
		2.2.3	IBD data	sets	50
	2.3	Quality	y Control		51
		2.3.1	Common	a quality control steps	51
			2.3.1.1	Converting genotype probabilities to hard calls	51
			2.3.1.2	Post-imputation quality-control for the UKBB genotypes	52
			2.3.1.3	Post-imputation quality-control for the IBD genotypes	53
			2.3.1.4	Phenotype quality control	54
			2.3.1.5	Further filtering of genotypes for the TWAS and protein	
				burden score tests	55
	2.4	Experi	mental set	up for later analyses	56
			2.4.0.1	Cohort organisation in the UK Biobank	56
			2.4.0.2	Dataset organisation for the IBD datasets	56
	2.5	Additi	ve associat	tion tests	57
		2.5.1	GWAS		57
			2.5.1.1	Post-association QC	57
			2.5.1.2	UKBB association test results	61
			2.5.1.3	IBD association test results	61
		2.5.2	Summary	y of the additive association experiments	63
	2.6	Levera	iging share	ed genetic effects to improve genetic risk prediction for IBD	66
		2.6.1	Establish	ing baselines	66
		2.6.2	Estimatin	ng SNP heterogeneity of effect in the IBD studies	67
		2.6.3	Finding t	he balance between the subphenotypes and IBD	68
		2.6.4	Results f	or predicting IBD subphenotypes	71
		2.6.5	Discussio	on of the improved IBD subphenotype PRS	71

3	Reg	ression	based mo	lels of statistical epistasis	73	
	3.1	Chapte	er 3 outline		73	
	3.2	Dimen	sionality r	eduction in the UKBB	73	
		3.2.1	Transcrip	otome and protein score data-sets	74	
			3.2.1.1	FIRM protein scores	74	
			3.2.1.2	BLUEPRINT transcriptome data	74	
		3.2.2	TWAS fo	or asthma in the UKBB	75	
			3.2.2.1	Imputing the transcriptome	75	
			3.2.2.2	Expression association to the phenotype	76	
			3.2.2.3	UKBB asthma TWAS dimensionality reduction results .	76	
		3.2.3	Protein b	urden score tests in the UKBB	77	
			3.2.3.1	Protein burden score dimensionality reduction results	77	
		3.2.4	Filtering	the protein burden and gene expression scores	78	
		3.2.5	GWAS d	ata	79	
	3.3	Interac	tion tests		79	
		3.3.1	Post-asso	ociation QC	80	
		3.3.2	Interactio	on test results	81	
	3.4	Cross-	domain int	reraction tests	86	
		3.4.1	Cross-do	main filtering	86	
			3.4.1.1	Gene filter for asthma TWAS and protein burden scores .	86	
			3.4.1.2	SNP-Gene cross-filtering	86	
		3.4.2	Cross-do	main interaction results	87	
		3.4.3	Summary	y of the UKBB interaction test experiments	88	
	3.5	Interaction tests in the IBD datasets				
		3.5.1	Biologica	al insight to reduce search-space	90	
		3.5.2	Statistica	l haplotype phasing	90	
			3.5.2.1	The definition and the utility of haplotype phase	90	
			3.5.2.2	Overview of phasing methods	90	
			3.5.2.3	Statistical Methods	91	
			3.5.2.4	Trio and pedigree based phasing	91	
			3.5.2.5	Hidden markov model based phasing	92	
			3.5.2.6	Phasing summary	93	
		3.5.3	Genotype	e and summary data	93	
			3.5.3.1	Collating summary statistics for IBD	94	
			3.5.3.2	Obtaining haplotype configurations	94	
		3.5.4	Two stati	stical models to evaluate haplotype-specific interaction effects	95	

			3.5.4.1	'#Bad haplo' model	95
			3.5.4.2	'haplo regression' model	96
			3.5.4.3	Results for the haplotype-specific interaction tests	96
			3.5.4.4	Post-association QC and discussion of haplotype-specific	
				interaction tests	97
	3.6	Conclu	iding rema	rks	98
4	Pred	liction a	and infere	nce on non-linear genetic effects using neural-networks	101
	4.1	Chapte	r 4 outline	;	101
	4.2	Neural	-networks	in genomics	101
		4.2.1	Relevant	previous work	101
		4.2.2	Opportur	nities and challenges for NNs in genomics	104
		4.2.3	Neural-n	etwork models and data preparation	105
			4.2.3.1	Choosing the model architecture	105
		4.2.4	NN meth	ods used in this chapter	107
			4.2.4.1	Using NNs to evaluate the evidence for non-linearity	107
		4.2.5	Inference	e via neural-networks	108
		4.2.6	Overview	v of my NN inference strategy	108
			4.2.6.1	Uncertainty estimation via dropout	109
			4.2.6.2	Estimating the importance of input features	110
			4.2.6.3	Examining the learned weights of the network directly	110
			4.2.6.4	My NID implementation	111
			4.2.6.5	Inference-via-prediction	111
			4.2.6.6	My inference-via-prediction implementation	112
			4.2.6.7	Common search space reduction strategy	114
			4.2.6.8	OLS baseline	115
	4.3	Simula	tion exper	iments on synthetic data	115
		4.3.1	Genotype	e dataset	115
		4.3.2	Phenotyp	be simulation details	115
		4.3.3	Predictio	n results	118
		4.3.4	Inference	eresults	119
		4.3.5	Discussio	on of the simulation experiments	121
			4.3.5.1	Prediction performance	124
			4.3.5.2	Inference performance	125
	4.4	Neural	-network t	ests on real data	127
		4.4.1	Data prep	paration and model selection	127
		4.4.2	Predictio	n results on real data	128

		4.4.3	Inference results on the asthma cross-domain data		128	
		4.4.4	Summary and limitations		130	
		4.4.5	The outlook of NNs for building PRS	•	132	
5	Con	clusion	1		137	
	5.1	Overv	view and limitations		137	
	5.2	Reflec	ctions on non-linear genetic effects		138	
	5.3	Outlo	ok and future work	•	140	
Ap	Appendix A Simulation results supplementary 1					
Ap	pend	lix B	Neural-network supplementary		191	
			B.0.0.1 Convolutional neural-networks		191	

List of figures

1.1	Hypothetical genotype matrix of n individuals at p loci. Functional epis-	
	tasis can take place between any of the p loci. However, statistical epistasis	
	can only take place between loci 1, 3 and p, which are SNPs. The two loci,	
	2 and 4, do not vary in a population, therefore interactions between them,	
	or even between these and SNPs, cannot contribute to phenotypic variance.	
	Figure and terminology adapted from Angermueller et al. (2016).	4
1.2	Illustration of the haplotype effect as an artefact generator for statisti-	
	cal epistasis. The two SNPs imperfectly tag $(r^2 > 0)$ the untyped SNP3,	
	which is the causal variant affecting the phenotype Y. This pattern can arise	
	even if the r^2 between SNP1 and SNP2 is zero. Statistical epistasis may only	
	be generated by this pattern if the SNP1-SNP2 haplotype is a better tag for	
	SNP3 than either SNPs on their own.	11
2.1	Distributions of the three quantitative phenotypes in the UKBB. Height,	
	body mass index (BMI) and fluid intelligence score (FIS).	47
2.3	Manhattan plot visualising the GWAS1 study without applying post-	
	association QC to consider LD patterns. There are many associations	
	above the genome-wide significance level with no LD structure to support	
	them, a property that marks them out as potential false positives	58
2.4	Four examples that illustrate common cases where the application of	
	the automated filtering either eliminated potential false positive associ-	
	ations, or alternatively, retained those consistent with the nearby signal.	
		60
2.5	Manhattan plots visualising the UKBB GWAS. y-axis shows the $-log10$	
	of the additive association p-values and the x-axis displays the genomic	
	coordinates. The red line represents the genome-wide significance level of	
	$5 * 10^{-8}$	61

 y-axis represents the -log10 of the additive association p-values and the x-axis displays the genomic coordinates. The red line represents the genome-wide significance level of 5 * 10⁻⁸. 2.7 Manhattan plots visualising the IBD, CD and UC GWAS. y-axis represents the -log10 of the additive association p-values and the x-axis displays the genomic coordinates. The red line represents the genome-wide significance level of 5 * 10⁻⁸. 2.8 Plots comparing the GWAS z-scores of my results against relevant studies in the literature. x-axis ('Thesis zscore') represents the z-scores from my 	
 x-axis displays the genomic coordinates. The red line represents the genome-wide significance level of 5 * 10⁻⁸. 2.7 Manhattan plots visualising the IBD, CD and UC GWAS. y-axis represents the <i>-log</i>10 of the additive association p-values and the x-axis displays the genomic coordinates. The red line represents the genome-wide significance level of 5 * 10⁻⁸. 2.8 Plots comparing the GWAS z-scores of my results against relevant studies in the literature. x-axis ('Thesis zscore') represents the z-scores from my 	
 wide significance level of 5 * 10⁻⁸. 2.7 Manhattan plots visualising the IBD, CD and UC GWAS. y-axis represents the -log10 of the additive association p-values and the x-axis displays the genomic coordinates. The red line represents the genome-wide significance level of 5 * 10⁻⁸. 2.8 Plots comparing the GWAS z-scores of my results against relevant studies in the literature. x-axis ('Thesis zscore') represents the z-scores from my 	
 2.7 Manhattan plots visualising the IBD, CD and UC GWAS. y-axis represents the -log10 of the additive association p-values and the x-axis displays the genomic coordinates. The red line represents the genome-wide significance level of 5 * 10⁻⁸. 2.8 Plots comparing the GWAS z-scores of my results against relevant studies in the literature. x-axis ('Thesis zscore') represents the z-scores from my 	62
 sents the -log10 of the additive association p-values and the x-axis displays the genomic coordinates. The red line represents the genome-wide significance level of 5 * 10⁻⁸. Plots comparing the GWAS z-scores of my results against relevant studies in the literature. x-axis ('Thesis zscore') represents the z-scores from my 	
 the genomic coordinates. The red line represents the genome-wide significance level of 5 * 10⁻⁸. 2.8 Plots comparing the GWAS z-scores of my results against relevant studies in the literature. x-axis ('Thesis zscore') represents the z-scores from my 	
 cance level of 5 * 10⁻⁸. 2.8 Plots comparing the GWAS z-scores of my results against relevant studies in the literature. x-axis ('Thesis zscore') represents the z-scores from my 	
2.8 Plots comparing the GWAS z-scores of my results against relevant stud - ies in the literature. x-axis ('Thesis zscore') represents the z-scores from my	62
ies in the literature, x-axis ('Thesis zscore') represents the z-scores from my	
analyses, and the y-axis represents z-scores for the same variants I obtained	
from reference studies in the literature.	65
2.9 Manhattan visualising the adjusted Q values that measured SNP het-	
erogeneity of effect between CD and UC. Left y-axis shows the adjusted	
Q-values and right y-axis shows 1-IFDR. x-axis represents genomic coordinates.	69
2.10 Dot-plots for the IBD subphenotype compose PRS hard threshold ex-	
periments. y-axis represents the r^2 between the predicted and observed	
phenotypes. The dots represent bootstrap samples and the coloured bar is	
the mean across all bootstrap samples. The grey dotted line represents the	
mean across all experiments. The suffix after each plot's name indicates the	
IFDR threshold used to swap between subphenotype and IBD SNP summary	
statistics.	70
2.11 Dot-plots for the IBD subphenotype composite and blended PRS ex-	
periments. y-axis represents the r^2 between the predicted and observed	
phenotypes. The dots represent bootstrap samples and the coloured bar is	
the mean across all bootstrap samples. The naming convention is as follows.	
The first line of each PRS represents the target phenotype on which the PRS	
was evaluated on and the second line represents the source on which the PRS	
was trained on. For example, "predicted: CD trained: Blend" is the PRS that	
was evaluated on the CD phenotype and was trained using the blended PRS	
approach	71
3.1 Manhattan plots visualising all three tissues in the UKBB asthma TWAS	
v-axis represents the $-log10$ of the additive association p-values x-axis	
shows the genomic coordinates. Red line represents the (Bonferroni cor-	
rected) genome-wide significance level of 5×10^{-6} .	77

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Manhattan plots visualising the PWAS test results for the four UKBB	
traits. y-axis represents the $-log10$ of the additive association p-values. x-	
axis shows the genomic coordinates. Red line represents the $-log10$ p-value	
threshold of $5 * 10^{-6}$	78
QQ-plots visualising the p-values of the two-way interaction term for	
the height SNP and protein burden score domain and asthma SNP do-	
main. Grey area represents 95% confidence intervals	81
QQ-plots visualising the p-values of the two-way interaction term for	
the post-QC analyses for the four UKBB traits in the SNP domain. Grey	
area represents 95% confidence intervals.	83
QQ-plots visualising the p-values of the two-way interaction term for	
the post-QC analyses for the four UKBB traits in the protein score do-	
main. Grey area represents 95% confidence intervals	84
QQ-plots visualising the p-values of the two-way interaction term for	
the post-QC analyses for the asthma phenotype in the TWAS domain.	
Grey area represents 95% confidence intervals	85
QQ-plots visualising the p-values of the two-way interaction term for	
the four UKBB trait cross-domain analyses. Grey area represents 95%	
confidence intervals.	88
Missense-eQTL schematic diagram Top: Illustration of the haplotype-	
specific interaction effect between a missense variant and a cis-regulatory	
SNP. In the deleterious haplotype configuration, the missense and the eQTL	
upregulatory alleles are on the same chromosome which results in an increase	
of the faulty gene product. Bottom: a benign haplotype configuration, where	
the hypothetical individual carries the same alleles, but not on the same	
chromosome, which would result in a greater abundance of the normal gene	
product	91
*	

3.9	Hypothetical example for a phenotype column vector and design matrix						
	for the '#bad haplo' model for n individuals. Intercept omitted for clarity						
	but was present in the model fit.	95					
3.10	Hypothetical example for a phenotype column vector and design matrix						

3.10	Hypothetical example for a phenotype column vector and design matrix				
	for the haplotype regression model for n individuals. Intercept omitted				
	for clarity but was present in the model fit	96			

4.1	Neural-network performance on obtaining non-linear solutions under	
	varying conditions for the experiments with a causal fraction of 0.25 of	
	SNPs involved in statistical epistasis. x-axis represents the % of sample	
	size used and y-axis represents the r^2 of predicted vs observed phenotypes on	
	the test set. Facets display experiments of genetic architectures that involve	
	either additive, second, third and fourth-order interactions.	120
4.2	Neural-network performance on obtaining non-linear solutions under	
	varying conditions for the experiments with a causal fraction of 0.95 of	
	SNPs involved in statistical epistasis. x-axis represents the % of sample	
	size used and y-axis represents the r^2 of predicted vs observed phenotypes on	
	the test set. Facets display experiments of genetic architectures that involve	
	either additive, second, third and fourth-order interactions.	121
4.3	The performance of the three evaluated algorithms for statistical epis-	
	tasis detection for the fourth-order series of experiments for the five	
	sample sizes evaluated. The average AUCs for OLS, NID and NNPred are	
	shown blue, purple and green, respectively. n is the number of experiments	
	from which the curves were drawn from.	122
4.4	NN performance in the six experiments where a non-linear solution was	
	preferred. Results given in the format of <i>phenotype - domain</i> . y-axis	
	represents r^2 of predicted vs observed phenotypes on the Test Set. For CD	
	and UC the Test Sets were GWAS1 and GWAS2, respectively.	134
4.5	Diagnostic plots for the asthma cross-domain experiments for putative	
	interaction pairs involving gene-level predictors. Red and blue represent	
	cases and controls, respectively.	135
A.1	NN performance on obtaining non-linear solutions under varying condi-	
	tions for the experiments with a causal fraction of 0.5 of SNPs involved	
	in statistical epistasis. x-axis represents the % of sample size used and	
	y-axis represents the r^2 of predicted vs observed phenotypes on the test	
	set. Facets display experiments of genetic architectures that involve either	
	additive, second, third and fourth-order interactions	190

List of tables

2.1	Correlations between the four occasions the FIS UKBB phenotype was	
	recorded. 'time1', 'time2' and 'time3' are the three different time points	
	where the participants were assessed via in-person tests. 'online' represents	
	the online follow-up test.	49
2.2	UK Biobank summary of phenotypes. 'SNP' h^2 is the LDSC estimated	
	SNP heritability, 'Neff' is the effective sample size. Data was obtained	
	from the Neale lab's 'SNP-Heritability Browser' online service from https:	
	//nealelab.github.io/UKBB_ldsc/index.html, accessed on 01/03/2020	50
2.3	Platform and study size details for the three IBD datasets. 'GWAS1',	
	'GWAS2' and 'GWAS3' refer to the WTCCC1, WTCCC2 and the internal	
	GWAS dataset, respectively.	51
2.4	List of significant covariates for both the UKBB and IBD datasets. Co-	
	variates were selected by a two stage backward selection process to be	
	considered for each dataset and phenotype combination	55
2.5	The number of individuals in the various data splits for each experi-	
	ment for the UKBB phenotypes. The validation set sizes are shown as	
	approximate, as the number of unique individuals not sampled into the train-	
	ing set varied slightly in each bootstrap sample due to the random nature of	
	the resampling process	57
2.6	Landmark associations for my IBD analyses. Comparisons of associa-	
	tions between the GWAS3 dataset and the study by de Lange et al. (2017).	
	'de Lange p' is the p-value from the de Lange et al. study, and 'chrom'	
	indicates the chromosome.	63

2.7	The four traits I selected for a quantitative comparison against refer-	
	ence studies from the literature. The values in the correlation column are	
	Pearson correlation coefficients between the z-scores from my association	
	results and those of the literature. The values in the column 'correlation'	
	$(p < 5 * 10^{-8})$, are Pearson correlation coefficients computed between z-	
	scores that were restricted to have an additive association $p < 5 * 10^{-8}$.	64
3.1	Summary of the number of predictors and interaction tests performed	
	in the UKBB cohort. The columns 'pre/post filtering' display the number	
	of SNPs or PWAS scores pre and post LD filtering out of the total number	
	of < 0.05 FDR corrected predictors. The 'number of tests' columns show	
	the total number of interaction tests performed post-filtering using either the	
	SNPs or the protein burden scores	79
3.2	Summary of the number of TWAS scores and interaction tests per-	
	formed for the asthma phenotype. The column 'pre/post filtering' displays	
	the number of TWAS scores pre and post LD filtering out of the total number	
	of $FDR < 0.05$ corrected predictors. The 'number of tests' column shows	
	the total number of interaction tests performed post-filtering	80
3.3	Summary of post-QC results for the two-way interaction tests for all	
	four UKBB phenotypes for both SNP and protein scores. The 'minimum	
	FDR' column represents the lowest FDR observed in a given experiment,	
	and the 'number of tests' column displays the total number of tests performed.	82
3.4	Summary of post-QC results for the three TWAS tissues for the asthma	
	phenotype The 'minimum FDR' column represents the lowest FDR ob-	
	served in a given experiment and the 'number of tests' column displays the	
	total number of tests performed.	82
3.5	Summary of the model terms of the linear regression between SNPs	
	rs117290331 and rs115122203 for the asthma phenotype. Values in the	
	'beta' column represent the regression coefficient.	82
3.6	Genotype count tables for the asthma phenotype for cases and controls.	
	The values in parentheses are proportions	85
3.7	Summary of the cross-domain filtering process.	87
3.8	The results of the cross-domain two-way interaction tests for all four	
	UKBB phenotypes. The 'minimum FDR' column shows the lowest FDR	
	observed in a given experiment, and the 'number of tests' column displays	
	the total number of tests performed.	87

3.9	Results for the two-way interaction tests between the missense and ${ m eQTL}$
	SNPs for both the 'haplo regression' and '#bad haplo' models. Values
	in the 'p' column show association p-values for the haplotype-specific in-
	teraction term and values in the 'coef' column show their corresponding
	coefficient estimates
4.1	Summary of the differences between typical image classification and
	genetic prediction tasks. n is the number of observations and p is the
	number of input features. H^2 is broad-sense heritability. *Accuracies taken
	from He et al. (2016) and Lee et al. (2018) for images and PRS, respectively. 105
4.2	Summary of the search-space covered by the hyperopt tool. The SELU
	activation function is described in the Introduction in section 1.7.4.4 106
4.3	Fractions of experiments where a non-linear solution was found by the
	NN out 100 simulations with a causal fraction of 0.25 of SNPs involved
	in statistical epistasis. The values in the 'additive' column represent experi-
	ments where the ground truth genetic architecture was purely additive 118
4.4	Fractions of experiments where a non-linear solution was found by the
	NN out 100 simulations with a causal fraction of 0.95 of SNPs involved
	in statistical epistasis. The values in the 'additive' column represent experi-
	ments where the ground truth genetic architecture was purely additive 119
4.5	Inference results for the simulation experiments for the three methods
	(NNPred, NID and OLS) at different percentages of the total sample
	size. 'AUC', 'SE' and 'n' denote the area under the curve, its standard
	error and the number of experiments the preceding values were calculated
	from, respectively. Values under 'all results' represent inference results
	from all 100 experiments. In case a method did not report a result, its
	accuracy was substituted by an AUC of 0.5. Values under 'successful results'
	represent inference results conditioned on individual methods successfully
	reporting a result. Values under 'intersection results' represent inference
	results conditioned all three methods reporting a result. Bold text highlights
	the best method in a given scenario

4.6	Comparison between the significance metrics of the NN and standard	
	statistical methods for the variants identified as potentially interacting.	
	NN_{IS} is the importance score produced by the NID algorithm (arbitrary	
	scale). \mathbf{p}_{train} is the raw interaction p-value from Chapter 3 that considered	
	all predictors which survived the filtering process in the Training Set. \mathbf{p}_{test} is	
	the raw interaction p-value for the same pairs in the Test set. $\mathbf{p}_{testCorr}^{cases}$ is the	
	p-value of the correlation between the predictors in the cases only test in the	
	Test Set.	130
4.7	Diagnostic statistics for each variant potentially involved in interactions.	
	The values in parentheses in the 'MAF' columns are the standard error of	
	the mean.	131
4.8	Training Set genotype fraction tables for the asthma phenotype for cases	
	and controls for the three putative two-way interactions that involved	
	SNP pairs.	132
A.1	Fractions of experiments where a non-linear solution was found by the	
	NN out 100 simulations with a causal fraction of 0.5 of SNPs involved	
	in statistical epistasis. The values in the 'additive' column represent experi-	
	ments where the ground truth genetic architecture was purely additive	189

Nomenclature

Acronyms / Abbreviations

- AUC Area under the curve
- **BMI** Body mass index
- **CD** Crohn's disease
- **CNN** Convolutional neural-network
- **FDR** False discovery rate
- **FIS** Fluid intelligence score
- **FNN** Fully-connected neural-network
- **GPU** Graphics processing unit
- GWAS Genome-wide association study
- HLA Human leukocyte antigen
- HMM Hidden Markov model
- **HWE** Hardy–Weinberg equilibrium
- **IBD** Inflammatory bowel disease
- **KRR** Kernel-ridge regression
- **LD** Linkage disequilibrium
- LMM Linear mixed-effects model
- MAF Minor allele frequency

NN	Neural-network
OLS	Ordinary least squares
PRS	Polygenic risk score
QC	Quality control
REML	Restricted maximum likelihood
RKHS	Reproducing kernel Hilbert space
ROC	Receiver operating characteristic
RR	Ridge regression
SNP	Single-nucleotide polymorphism
T1D	Type 1 diabetes
TF	Transcription factor
TWAS	Transcriptome-wide association study
UC	Ulcerative colitis
UKBB	UK Biobank

WGS Whole-genome sequencing