
Appendix A

Simulation results supplementary

sample size additive 2nd order 3rd order 4th order
10% 0.48 0.44 0.58 0.54
25% 0.24 0.23 0.30 0.46
50% 0.23 0.24 0.34 0.52
75% 0.23 0.21 0.32 0.61

100% 0.19 0.22 0.35 0.71
Table A.1 Fractions of experiments where a non-linear solution was found by the NN
out 100 simulations with a causal fraction of 0.5 of SNPs involved in statistical epistasis.
The values in the ’additive’ column represent experiments where the ground truth genetic
architecture was purely additive.



190 Simulation results supplementary

●

●

●

●

●

0.
00

0.
02

0.
04

0.
06

0.
08

order_1

sample size

r^
2

●

●

●

●

●

linear
non−linear

10% 25% 50% 75% 100%

●

●

●

●

●

0.
00

0.
02

0.
04

0.
06

0.
08

order_2

sample size

r^
2

●

●

●

●

●

linear
non−linear

10% 25% 50% 75% 100%

●

●

● ●
●

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

order_3

sample size

r^
2 ●

●

●
● ●

linear
non−linear

10% 25% 50% 75% 100%

●

●

●

●

●

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

order_4

sample size

r^
2

●

●

●

●

●

linear
non−linear

10% 25% 50% 75% 100%

Fig. A.1 NN performance on obtaining non-linear solutions under varying conditions
for the experiments with a causal fraction of 0.5 of SNPs involved in statistical epistasis.
x-axis represents the % of sample size used and y-axis represents the r2 of predicted vs
observed phenotypes on the test set. Facets display experiments of genetic architectures that
involve either additive, second, third and fourth-order interactions.



Appendix B

Neural-network supplementary

B.0.0.1 Convolutional neural-networks

The NN I described in Chapter one is what is known as a fully-connected NN, or FNN,
which fit a hypothesis-free model that assumes that all input features are equally likely to
interact with each other. However, for many data types, features that are spatially closer
together in the input space are more likely to interact. Consider two intuitive examples: in
most natural images the values of nearby pixels are more likely to form salient features like
edges; similarly, nearby nucleotides are more likely to be part of the same regulatory element
in a DNA sequence. Considering such local structures forms the basis of the convolutional
neural-network (CNN) models.

The assumption of structure in the data is leveraged by CNNs via the introduction of a new
layer type: the convolution layer. Here, neurons only consider a smaller local subset of the
full input space which is termed the ’receptive field’ of the neuron (a term which originated in
the neuroscience literature (Hubel and Wiesel, 1962)). Instead of the hypothesis-free learning
of FNN, in a CNN the neurons learn a vocabulary of features of a pre-defined size, known
as ’kernels’ or filters. As the term ’kernel’ has many completely unrelated mathematical
meanings, from here on, I will be using the term filter, to avoid confusion. Since these
neurons no longer consider the entire input space; instead, they attempt to extract smaller
reoccurring features, they need far fewer parameters to learn which results in greater power.

I will now move on to describe the details of the convolution operation itself. The
convolution operation is a linear transformation where the filter is slid, or ’convolved’,
across the entire feature space which obtains a final output via element-wise multiplications.
As my work involves one dimensional data (SNPs), I will illustrate this concept with 1D
convolutions. Consider the following 1×2 size filter weight w and a 1×4 size Input:



192 Neural-network supplementary

w =
[
w1 w2

]
, Input =

[
I1 I2 I3 I4

]
. (B.1)

Assuming a stride of one and no padding, the filter w may be applied to the Input at three
locations, or patches, to obtain the following Out put:

Out put =
[
O1 O2 O3

]
, (B.2)

where the entries in the Out put are defined by

O1 = w1I1 +w2I2 (B.3)

O2 = w1I2 +w2I3 (B.4)

O3 = w1I3 +w2I4. (B.5)

However, looping through the input space this way is inefficient, as high performance
applications rely on massive parallelisation of computations via generalized matrix multi-
plications (Vasudevan et al., 2017). To facilitate this, the Input is first transformed via an
’im2col’ function that stretches the input out so that all possible patches are represented in a
single matrix L as

L = im2col(Input) =

[
I1 I2 I3

I2 I3 I4

]
. (B.6)

L may then be conveniently used in a single matrix multiplication to obtain a vector identical
to B.2 by

Out put = wL. (B.7)

To generate the entire output (C) of a layer with d filters, w is replaced by a matrix represent-
ing all neuron weights (W ∈ Rd×q) which modifies the above equation to

C = WL. (B.8)

It is notable, that in contrast to the fully-connected NN (eq 1.39), this weight matrix is now on
the left hand side. This is because the layer has d neurons that are restricted to be able to only
learn pre-defined filters of size q. The left multiplication by W also illustrates the parameter-
saving attribute of the convolution layer, as the number of parameters to be learned (d×q)
no longer depends on the number of features in the Input. This allows CNNs to surmount
high-dimensional data, such as high-resolution images or long DNA sequence reads, which
would be beyond the reach of FNNs. Equation B.8 obtains the output C ∈ Rd×(3∗n), where
all individual observations are flattened to be stored along one dimension. To clarify, this



193

would mean that the transformed genotype observations for n individuals are concatenated
into one dimension. Therefore, to connect the output of this layer to the flow of the rest of
the NN function, the matrix C needs to be reshaped and transposed so that each of the n
individuals stay on the rows as

C′ =Vec−1(C)T , (B.9)

where Vec−1 denotes the reshaping operation.
In summary, the convolutional layer’s function may be described as the extraction of

smaller subsets from the input space. These reusable features are then passed forward as
inputs from which subsequent layers learn higher-order representations, which result provides
an explanation why it is a common CNN architectural trait that shallower convolution layers
have fewer filters and deeper ones have more. Shallower layers’ filters learn lower-order
features (such as edges in an image or short motifs in a DNA sequence), and deeper layers’
filters learn higher-order features made up from the shallower layers’ representations. This
is in contrast with fully-connected layers which tend start wide and each subsequent layer
narrows towards the output.

As a side note, my description so far was a simplified explanation of how convolution
layers generate an output, as in most practical applications there is an extra dimension to be
considered. These would represent either the three colour channels for images, or one of the
four nucleotides in the case of DNA sequence data. The equations would then change to
involve tensors instead of 2D arrays, but otherwise would remain identical.

After the aforementioned convolution operation, a subsampling step is commonly used
as the dimensionality of the output would increase by a factor of d ∗Q/p, where Q is the
number of patches (three in the example) and p is the size of the input. To manage the
dimensionality, and also to make the layer less sensitive to a small local changes, either
another convolution layer is used with a larger stride (Springenberg et al., 2014), or a so
called ’pooling layer’ is applied that summarises the output of the a convolution (Weng et al.,
1992).

A popular method that accomplishes the subsampling operation is the ’Max Pooling’
function which is applied by taking the maximum of each image patch. In the example that
I described so far, this would be equivalent to MP = max(σ(C)), which would return the
largest scalar value from the output after the activation by σ . In practice, pooling layers
may have different sizes than the filters. The pooling size used most frequently is two which
downsamples the output of each convolution layer by half. While ’Max Pooling’ is primarily



194 Neural-network supplementary

used to down sample the activations, it is important to note that this also adds non-linearity
as the max() function depends on more than one value.

In conclusion, a single convolution layer may be added into the network I described in eq
1.39 by

Y = σk(. . .σ2(σ1(C′W1)W2) . . .Wk), (B.10)

where C′ is the output of the last convolution layer I derived in B.9.
To maintain clarity of the overall model, a short-hand notation may be used that empha-

sises the layer-by-layer sequential transformations from the input towards the output. In this
notation the model I described so far can be expressed as

NN : [In,C1,FC1,FC2, . . . ,FCk,Out] , (B.11)

where C1 is the convolution layer, FC are k fully connected-layers and in and Out are the
input and output layers, respectively. The element-wise activation functions are also not
shown, but are assumed to take place after each layer with trainable weights. The advantage
of this format is that adding j convolution layers may then simply be expressed by

NN :
[
In,C1,C2, . . . ,C j,FC1,FC2, . . . ,FCk,Out

]
. (B.12)


