
Chapter 3

Regression based models of statistical
epistasis

3.1 Chapter 3 outline

This chapter covers my search for two-way interactions via classical statistical methods that
belong to the regression framework. Section 3.2 details my approach for dimensionality
reduction that produced the transcriptome and protein score views of my UKBB cohorts.
Section 3.2 describes my search for epistasis in the GWAS data and in the derived gene-level
domains in the UKBB. Cross-domain experiments where the different genomic views (SNPs,
TWAS and protein scores) were integrated to search for interactions across the different
domains are described in section 3.4.

In the analyses described in section 3.5, I pursued a hypothesis-driven approach to
search for statistical epistasis in the IBD datasets, where the search-space was reduced to
only consider the evidence for haplotype-specific interactions between specific coding and
regulatory variants.

3.2 Dimensionality reduction in the UKBB

As I described in the Introduction in section 1.1.7, managing the dimensionality of the search-
space, by the reduction of the total number of tests to increase power, is of key importance
to increase the chance to successfully detect statistical epistasis. Therefore, I employed the
following dimensionality reduction strategy. I generated derived gene-level predictor datasets
that summarise information on the gene-level based on genetically predicted expression
levels and protein burden scores. Additionally, I applied the established best practices of
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filtering predictors on both additive effects and LD (Cordell, 2009; Marchini et al., 2005;
Van Steen, 2012a; Wood et al., 2014).

In the subsequent sections where I describe the various processing steps, I will be referring
to the ’Main Set’ and ’Test Set’ edits of the UKBB cohort. These were created in the previous
chapter and a detailed explanation of their parameters can be found under Chapter 2 section
2.4, where Table 2.5 provides the specifics on the exact number of individuals in each set.

3.2.1 Transcriptome and protein score data-sets

Transcriptome-wide association studies (TWAS) and the protein burden score tests allow one
to search for signal on the gene-level rather than on the SNP-level, and these frameworks
offer several important advantages. Aggregating many SNPs into a single predictor reduces
the dimensionality, which in turn reduces the multiple testing burden. Additionally, such
gene-scores may capture signal in scenarios where multiple SNPs with small but genuine
congruent effects do not meet the genome-wide significance threshold individually; however,
when aggregated into a single predictor they may collectively reach significance.

The next two sections describe how I generated the TWAS and protein score datasets that
I will use to perform my analyses subsequently in this chapter and in Chapter 4 as well.

3.2.1.1 FIRM protein scores

FIRM is a machine-learning model that considers the proteomic context of missense SNPs.
This model evaluates each variant based on its location within the protein sequence, the nature
of the amino acid substitution and finally, annotations from the UniProt, Pfam and ClinVar
databases. Thus, FIRM scores quantify each SNP’s predicted effect at the biochemical
functional level, rather than on the clinical outcome at the organism level. This makes FIRM
unique compared to other variant effect prediction tools which assess mutation pathogenicity
(Brandes et al., 2019b).

The predicted effect score of each SNP is a value between zero and one, which represents
complete loss of function and no harmful effect on the protein, respectively. The authors of
this method have kindly agreed to share their database of generated scores for 97,013,422
UKBB markers.

3.2.1.2 BLUEPRINT transcriptome data

One of the aims of the BLUEPRINT epigenome project is to provide high-resolution tran-
scriptomic profiling of cis-genetic factors in three major human immune cell types, CD14+
monocytes, CD16+ neutrophils and naive CD4+ T-cells (Chen et al., 2016). For brevity, I



3.2 Dimensionality reduction in the UKBB 75

will refer to these cell types as monocytes, neutrophils and T-cells from here on. This project
includes a reference panel that has expression data on 194, 192 and 171 individuals and sum-
mary statistics for 84,982,294, 76,901,636 and 87,575,990 marker-expression quantitative
trait locus mapping association tests for monocytes, neutrophils and T-cells, respectively.

3.2.2 TWAS for asthma in the UKBB

As I described in the Introduction in section 1.4, the TWAS framework may be used to derive
biological insight on a gene-level basis; however, for my purposes I was primarily interested
in using it as a dimensionality reduction tool. The TWAS framework consists of two main
stages, the generation of PRS that capture the genetic component of the expression of each
gene, and an association step that relates the phenotype to these PRS.

3.2.2.1 Imputing the transcriptome

To date most successful TWAS were aimed to identify individual gene-phenotype associations.
These studies relied on filtering on MAF and/or on eQTL p-value, followed by the application
of either LASSO or elastic net to identify markers suitable to predict the transcriptome
(GTEx Consortium et al., 2015; Gusev et al., 2016; Zhu et al., 2016). However, I believe
that continuous weighting is preferable to discarding information when possible. Therefore,
I opted for using the LDpred method instead, as it has been shown to outperform PRS
generating methods that rely on hard thresholds (Khera et al., 2018; Lee et al., 2018).
The reason behind LDpred’s success is that, in contrast to hard thresholding and filtering
approaches that eliminate SNPs completely (such as those relying on L1 norms), it applies a
continuous weighting scheme that leverages all of the data from all variants. This considers
both the confidence in SNP association signal as well as local LD structure (Vilhjálmsson
et al., 2015). Therefore, I chose LDpred to impute gene expression based on the three
reference panels I described in section 3.2.1.2.

I generated per-gene expression PRS that relied on the summary statistics extracted from
the BLUEPRINT data for each gene for my cohort. There were 16,516, 14,621 and 16,945
genes available for monocytes, neutrophils and T-cells, respectively. I then combined the
eQTL summary data with the individual GWAS genotypes to aggregate SNPs into expression-
level predictors for each individual. The step-by-step procedure to generate these scores
was as follows. First, I exported out the SNPs in my cohort that had a matching eQTL
summary result in the BLUEPRINT data into a separate PLINK file. Next, I generated
the LD-adjusted eQTL SNP coefficients using the LDpred ’gibbs’ function. It is important
to emphasise that at this stage LDpred did not consider the GWAS phenotype. All SNP
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coefficients refer to the SNPs’ relationship to gene expression in a tissue, rather than to
disease status. Thus, the LDpred LD-shrinkage was based purely on the eQTL summary data
and an LD reference panel generated from the GWAS genotypes. The GWAS phenotype
itself was only considered at the last stage, where I used it to select the highest performing
causal fraction parameter (p) for each gene, based on the gene expression PRS performance
at predicting the GWAS trait. This is in contrast with standard TWAS approaches, such as
PrediXcan (GTEx Consortium et al., 2015), where the target phenotype is not considered
when building the expression-scores. However, I wanted to determine the causal fraction of
SNPs based on the performance on an independent subset of the cohort of the target trait. I
reasoned that this would emphasise eQTLs most relevant to the GWAS phenotype, as that
was the final association target, not the gene expression (as in the PrediXcan study). Finally,
I built a per-gene PRS using the LDpred ’score’ function for all genes and all individuals in
each of the three tissues via

Êi = GgeneβeLDpred, (3.1)

where Êi denotes the imputed expression for gene i in a particular tissue, Ggene denotes the
SNPs in the gene and βeLDpred denotes the adjusted eQTL coefficients for these SNPs which
were determined in the previous step. I repeated this procedure for all bootstrap samples, for
the Main Set and for Test Set datasets as well.

3.2.2.2 Expression association to the phenotype

To perform the standard TWAS additive association test on the Main Set, I fit a simple
univariate OLS linear model of the phenotype against each gene’s predicted expression level
as

Y = Êiβ
GeneExpr
i + e, (3.2)

where Êi denotes the expression for gene i in a particular tissue, β
GeneExpr
i is its associated

coefficient and e is a noise term.

3.2.2.3 UKBB asthma TWAS dimensionality reduction results

The results for the three tissues investigated for the UKBB asthma phenotype are presented
in Fig 3.1. I observe that these results appear to closely mirror their GWAS counterpart
from Chapter 2 (Fig 2.5), and upon visual inspection it may be said that they resemble lower
resolution versions of the latter. The three asthma TWAS among themselves also look very
similar to each other, which is not surprising, since the only difference between them is the
differential weighting of the gene-level predictors derived from the three tissues.
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(a) Asthma - monocytes (b) Asthma - neutrophils

(c) Asthma - T-cells

Fig. 3.1 Manhattan plots visualising all three tissues in the UKBB asthma TWAS. y-
axis represents the −log10 of the additive association p-values. x-axis shows the genomic
coordinates. Red line represents the (Bonferroni corrected) genome-wide significance level
of 5∗10−6.

3.2.3 Protein burden score tests in the UKBB

Similarly to TWAS, protein burden tests may also be deployed to identify individual genes
with relevance to the phenotype. However, just like with TWAS, I was mainly interested
in this framework’s dimensionality reduction capability. My workflow for conducting the
protein burden score analyses followed closely the one described by the authors of this
method (Brandes et al., 2019a), the details of which I described in the Introduction in section
1.5.1. I performed gene-score generation step on the Main and Test Sets, as well as all
bootstrap samples using the ’PWAS’ tool’s "calc_gene_effect_scores" function. I also filtered
out all genes which had less than two constituent SNPs, as in that case applying a FIRM
score as a weight to a single predictor would not have provided an advantage over the original
GWAS. This process generated a total of 7,283 gene-scores that I then used for the association
step.

3.2.3.1 Protein burden score dimensionality reduction results

The protein burden test results for the four UKBB phenotypes are presented in Fig 3.2. The
UKBB protein burden score test results also appear to be broadly congruent with their GWAS
Manhattan counterparts, which reflect the fact that they were both derived from the same
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underlying genotype datasets. Visual inspection suggested that the protein score results were
slightly more noisy than their GWAS counterparts. However, this apparent noise may be
explained by the fact that these were gene-level associations, generated from a much sparser
panel of only 61,081 underlying SNPs across only 7,283 genes; thus, the same level of LD
support would not be expected to be present as for their GWAS counterparts.

(a) Height - PWAS (b) BMI - PWAS

(c) FIS - PWAS (d) Asthma - PWAS

Fig. 3.2 Manhattan plots visualising the PWAS test results for the four UKBB traits.
y-axis represents the −log10 of the additive association p-values. x-axis shows the genomic
coordinates. Red line represents the −log10 p-value threshold of 5∗10−6.

3.2.4 Filtering the protein burden and gene expression scores

For the gene level predictors that I produced in sections 3.2.2.1 and 3.2.3, I employed a
similar filtering strategy that I used on SNPs (described in section 3.2.5). I performed
FDR correction on the full unfiltered list of scores. As the gene-level predictors are real
numbers in a format that is not compatible with PLINK, I was unable to use standard LD
clumping. Instead, I implemented my own LD filtering strategy that also considered evidence
of association. Briefly, this consisted of eliminating all except one of the predictors that were
within 2000kb windows and had a pairwise r2 > 0.1, preferentially keeping gene-scores with
lower additive association p-values. Finally, I intersected these index gene-scores with those
that had an FDR < 0.05 to select the top most likely independent associations among these.
The summary of this filtering process is shown in Tables 3.1 and 3.2.



3.3 Interaction tests 79

3.2.5 GWAS data

To reduce the potential for haplotype effects to induce statistical epistasis, and also to keep the
dimensionality of my datasets low enough to be suitable for my later neural-network analyses,
I applied following filtering steps to reduce the number of SNPs to the low thousands. I
performed FDR correction on the full unfiltered list of SNPs. Then, I used PLINK’s LD
clumping feature on the genotype data and GWAS summary statistics to filter out SNPs
within 2000kb windows that had an r2 > 0.1. Finally, I intersected these LD-clumped index
SNPs with those that had an FDR < 0.05 to select the top most likely independent associations
among these. This process resulted in 1,277, 7,547, 3,247 and 656 SNPs for FIS, height,
BMI and asthma, respectively.

3.3 Interaction tests

Using the Main Set of my UKBB cohort, I fit the following regression model with an
interaction term to test for statistical epistasis

Y = β1P1 +β2P2 +β1,2P1 ∗P2 + e, (3.3)

where Y denotes a phenotype column vector and e is a random noise term. The P are the
predictors, which may refer to either SNPs or gene-level predictors, such as protein burden
scores or TWAS expression scores, and the β s are their corresponding coefficients. The total
number of tests I performed for each experiment are summarised in Tables 3.1 and 3.2.

phenotype SNP Protein scores
pre/post filtering number of tests pre/post filtering number of tests

FIS 94,918 / 1,277 814,727 129 / 97 4,656
Height 689,573 / 7,547 28,474,832 1,234 / 991 490,545
BMI 345,034 / 3,247 5,269,882 416 / 334 55,611

Asthma 19,361 / 656 214,841 44 / 37 666
Table 3.1 Summary of the number of predictors and interaction tests performed in the
UKBB cohort. The columns ’pre/post filtering’ display the number of SNPs or PWAS scores
pre and post LD filtering out of the total number of < 0.05 FDR corrected predictors. The
’number of tests’ columns show the total number of interaction tests performed post-filtering
using either the SNPs or the protein burden scores.
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Tissue TWAS
pre/post filtering number of tests

monocytes 715 / 358 57,292
neutrophils 628 / 297 39,061

T-cells 743 / 344 52,651
Table 3.2 Summary of the number of TWAS scores and interaction tests performed for
the asthma phenotype. The column ’pre/post filtering’ displays the number of TWAS scores
pre and post LD filtering out of the total number of FDR < 0.05 corrected predictors. The
’number of tests’ column shows the total number of interaction tests performed post-filtering.

3.3.1 Post-association QC

As I described in the Introduction in section 1.1.6.1, attempts at detecting statistical epistasis
require additional QC considerations unique to interaction test analyses. These considerations
include haplotype effect induced statistical epistasis (Wood et al., 2014), and thresholding
artefacts that affect traits where the measurements do not cover the true underlying range of
the phenotype (Fish et al., 2016; Wei et al., 2014b).

I examined the QQ-plots of my initial interaction tests (Fig 3.3) and I observed that only
the height SNP/protein burden score tests and the asthma SNP tests appeared to deviate from
the null. I decided to examine these two phenotypes in more detail to assess the potential for
the aforementioned two factors to have induced false positives into the results.

The height analysis relied on a much denser set of markers (7,547 SNPs and 991 protein
scores) than any of the other phenotypes; thus, it may have been particularly vulnerable
to haplotype effects. Therefore, I further restricted my tests to reduce the potential for
false positives by eliminating one of any two predictors that were either within the same
recombination block (within the boundaries of one cM) or closer than 500kb. I determined
the 500kb limit empirically, as after the application of the one cM filter there were still a
few interactions in close proximity with p-values outside of the 95% CI. Closer inspection
revealed that these variant/gene pairs were near the cM borders. I measured the furthest
distance between them to be ~260Kb in the height GWAS SNP analysis. As the boundaries of
the recombination blocks that I used were approximate (Burren et al., 2014), also considering
the poor track record of replication of epistatic associations (Wood et al., 2014), I chose to be
conservative and excluded one of each pair of variants that were less than 500Kb apart. I
also applied the same filtering strategy to all of the remaining UKBB datasets.

The described LD filtering strategy reduced the number of SNPs to 955, 1,732, 1,671,
451, for FIS, height, BMI and asthma, respectively. For the protein score analyses this left
99, 781, 317 and 38 predictors for FIS, height, BMI and asthma, respectively. Finally, for
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(a) Height - SNP (b) Height - Protein burden scores

(c) Asthma - SNP

Fig. 3.3 QQ-plots visualising the p-values of the two-way interaction term for the height
SNP and protein burden score domain and asthma SNP domain. Grey area represents
95% confidence intervals.

the asthma phenotype, the same filtering process left 215, 187 and 204 TWAS gene-level
predictors for monocytes, neutrophils and T-cells, respectively.

3.3.2 Interaction test results

Tables 3.3 and 3.4 summarise the final post-QC results for the two-way interaction test
analyses. The QQ-plots for all experiments are presented in Figs 3.4, 3.5 and 3.6.

Visual inspection indicated that the interaction p-values do not show a trend that system-
atically deviates from the null in any of the QQ-plots, which is consistent with the notion
that the deviations I observed for height and asthma before the post-association QC were
caused by the aforementioned haplotype effects. Considering individual pairs of interactions,
aside from asthma, none of the analyses generated an interaction test result that had an FDR
< 0.05.
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There was a single pair of SNPs (rs117290331 and rs115122203) for the asthma pheno-
type that had an FDR < 0.05 (FDR=0.015). The details of this association are provided in
Table 3.5. Given that this association involved relatively rare variants, a MAF of 0.016 and
0.007 for rs117290331 and rs115122203, respectively, there was also a potential concern
that this association may have been a false positive induced by an imputation error.

phenotype SNP Protein scores
minimum FDR number of tests minimum FDR number of tests

FIS 0.411 455,535 0.989 4,852
Height 0.099 749,501 0.632 304,591
BMI 0.896 697,501 0.748 50,087

Asthma 0.015 101,475 0.178 703
Table 3.3 Summary of post-QC results for the two-way interaction tests for all four
UKBB phenotypes for both SNP and protein scores. The ’minimum FDR’ column rep-
resents the lowest FDR observed in a given experiment, and the ’number of tests’ column
displays the total number of tests performed.

Tissue TWAS
minimum FDR number of tests

monocytes 0.734 34,716
neutrophils 0.422 23,653

T-cells 0.764 31,878
Table 3.4 Summary of post-QC results for the three TWAS tissues for the asthma
phenotype The ’minimum FDR’ column represents the lowest FDR observed in a given
experiment and the ’number of tests’ column displays the total number of tests performed.

.

term p-value beta MAF
rs117290331 5.92∗10−4 0.011 0.016
rs115122203 3.58∗10−3 0.014 0.007
interaction 1.53∗10−7 0.136 N/A

Table 3.5 Summary of the model terms of the linear regression between SNPs
rs117290331 and rs115122203 for the asthma phenotype. Values in the ’beta’ column
represent the regression coefficient.
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(a) FIS - SNP (b) Height - SNP

(c) BMI - SNP (d) Asthma - SNP

Fig. 3.4 QQ-plots visualising the p-values of the two-way interaction term for the post-
QC analyses for the four UKBB traits in the SNP domain. Grey area represents 95%
confidence intervals.

There is an additional interaction detection method that tests if significant deviations
exist from the expected allele frequencies in a contingency table conditioned on case status
(Vittinghoff and Bauer, 2006). If the epistatic effect is real, then cases carrying the interacting
alleles at both loci should be over-represented, relative to what would be expected from the
alleles’ additive effects. I applied this method to this putative interaction via Fisher’s exact
test for count data. The SNP pair remained significant with a p-value of 1.23∗10−4.

As nearby markers’ interaction association signal is expected to decay in proportion to
their r4 with the index pair (Wei et al., 2014b), I performed the same interaction test with
proxies for the aforementioned index variants. As rs115122203 was imputed, to evaluate
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(a) FIS - protein score (b) Height - Protein burden scores

(c) BMI - protein score (d) Asthma - protein score

Fig. 3.5 QQ-plots visualising the p-values of the two-way interaction term for the post-
QC analyses for the four UKBB traits in the protein score domain. Grey area represents
95% confidence intervals

if the imputation process had affected the signal, I searched for a proxy for that SNP that
was on the original genotype panel. I identified the best available proxies for both index
variants, rs117893879 and rs61364965, which had an r2 of 0.95 and 0.66 with rs117290331
and rs115122203, respectively. I repeated the interaction association test for this pair and
obtained a p-value of 2.19∗10−4. Then, I also performed the same interaction association
test in the Test Set for both the index and the proxy pairs. I found that that neither of the
Test Set tests were significant with p-values of 0.737 and 0.664 for the index and proxy tests,
respectively. While the proxy pair’s signal decay remained plausible, given that the best
tagging proxy for rs115122203 had an r2 of only 0.66 with the index, neither of the index
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(a) Asthma - monocytes (b) Asthma - neutrophils (c) Asthma - t-cells

Fig. 3.6 QQ-plots visualising the p-values of the two-way interaction term for the post-
QC analyses for the asthma phenotype in the TWAS domain. Grey area represents 95%
confidence intervals

Cases

rs
11

72
90

33
1 rs115122203

0 1 2
0 32,097 (0.948) 523 (0.015) 5 (0.0)
1 1,166 (0.034) 43 (0.001) 0 (0.0)
2 8 (0.0) 0 (0.0) 0 (0.0)

Controls

rs
11

72
90

33
1 rs115122203

0 1 2
0 252,634 (0.954) 3,639 (0.0137) 16 (0.0)
1 8,242 (0.031) 106 (0.0) 1 (0.0)
2 63 (0.0) 1 (0.0) 0 (0.0)

Table 3.6 Genotype count tables for the asthma phenotype for cases and controls. The
values in parentheses are proportions.

nor the proxy pairs replicated in the Test Set; thus, I concluded that this association is a false
positive.
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3.4 Cross-domain interaction tests

As I previously described in section 3.2.1, one of the benefits of aggregating SNPs on the
gene-level is this may increase power to find novel signal that was not detectable in the source
SNP data. The same phenomenon could also occur for interactions between the derived
gene-level predictors and SNPs, which would conceptually represent statistical epistasis
between individual variants and genes. To investigate if these types of interactions were
present in my datasets, I performed interaction tests between SNPs and gene-level predictors.

3.4.1 Cross-domain filtering

As the signal for the gene-level predictors is a product of external data and the original SNP
association signal, potential interactions between these domains could only offer unique
insight if the gene-level predictors represent non-overlapping associations with their source
GWAS signal. Therefore, I performed cross-domain filtering to eliminate all predictors that
represented overlapping signal between the GWAS data and the derived gene-level predictors.

3.4.1.1 Gene filter for asthma TWAS and protein burden scores

I used the LD filtered subset of genes that also had an additive association FDR < 0.05 for
the asthma phenotype to perform cross-filtering between the three TWAS tissue types to only
keep the gene with the lower p-value. I applied the same filtering steps between the surviving
TWAS predictors and the protein burden scores. This filtering process left 304, 236 and 283
TWAS gene-level predictors for monocytes, neutrophils and t-cells, respectively, together
with 32 protein burden scores.

3.4.1.2 SNP-Gene cross-filtering

To ensure that only those SNP-gene interaction pairs are evaluated where the gene-score
association signal was not driven by an underlying GWAS SNP that was also in the model,
I employed the following filtering strategy. For each gene, I noted its additive association
p-value (pgene). Then, I located the gene’s constituent SNPs, which were the variants that
were weighted and aggregated into the gene-score. Among these, I identified the SNP with
the lowest GWAS p-value (pGWAS_indexSNP). This SNP was either one of the constituent
SNPs that was used to produce the gene-score, or the index SNP of an LD-clump, if it
happened to belong to an LD-clump. Finally, I compared the strength of the signals between
the GWAS and the gene-score to determine which one to keep by the following logic. If
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pgene > pGWAS_indexSNP , then I excluded the gene, otherwise I excluded all the SNPs that
were used to build the gene-score instead.

As the new set of predictors were only filtered on recombination blocks individually
before I integrated them, merging the datasets may have created new opportunities for the
haplotype effect problem to arise again. Therefore, I once again applied a filter to remove
variants or genes that were less than one cM apart in the integrated datasets. Table 3.7
summarises the end result of this filtering process.

phenotype number of SNP number of protein scores number of TWAS scores
FIS 946 20 not used for TWAS

Height 1,613 192 not used for TWAS
BMI 1,622 73 not used for TWAS

Asthma 418 9 152
Table 3.7 Summary of the cross-domain filtering process.

3.4.2 Cross-domain interaction results

To search for interactions across domains, I performed the same test as described in section
3.3, along with the same post-association QC steps I detailed in section 3.3.1. My results
are presented in Table 3.8 and Fig 3.7. I note that all the top associations occurred between
SNPs, and aside from BMI, these were all identical to the SNP-only interaction tests I shown
in 3.3. For the BMI experiment this differed only because the top SNPs were removed in the
cross-filtering process.

Phenotype Cross-domain tests
minimum FDR number of tests

FIS 0.423 466,095
Height 0.419 1,628,110
BMI 0.762 1,435,665
Asthma 0.305 167,332

Table 3.8 The results of the cross-domain two-way interaction tests for all four UKBB
phenotypes. The ’minimum FDR’ column shows the lowest FDR observed in a given
experiment, and the ’number of tests’ column displays the total number of tests performed.
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(a) FIS - cross-domain (b) Height - cross-domain

(c) BMI - cross-domain (d) Asthma - cross-domain

Fig. 3.7 QQ-plots visualising the p-values of the two-way interaction term for the four
UKBB trait cross-domain analyses. Grey area represents 95% confidence intervals.

3.4.3 Summary of the UKBB interaction test experiments

I performed experiments to test for the presence of statistical epistasis using two different
strategies. I evaluated the evidence in each of the genomic domains individually, and I
also integrated these different views to perform cross-domain interaction tests between
non-overlapping additive signals. After the application of filters to reduce the potential for
false positives, all of my experimental results were consistent with the null hypothesis of
no evidence for statistical interactions modulating phenotypic variance in any of the UKBB
traits.
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I realise that my QC filtering approach was highly conservative. Local (within recombina-
tion block) interactions may be biologically more plausible than those at least a recombination
block apart (Wei et al., 2014a). Thus, I discarded information that may have contained gen-
uine signal together with false positives. However, as there is no reliable way to distinguish
loci that are only in physical linkage from those that also involved in biological function,
my preference was to obtain fewer or no results of what may be considered as genuine
epistasis. I define epistasis as ’genuine’ that arises from the way information is stored in
the genome, rather than what is generated by the physical properties of the DNA molecule.
An alternative strategy would have been to instead of removing one variant in each pair
that were within the same block to only remove interaction tests of pairs that were within
the same block, and to allow variants to interact with others outside of their recombination
blocks. However, given that the overall objective of my work was to compare standard
methods against neural-network based models on the same datasets, I could not do this as
such a per-interaction filtering is not feasible within the neural-network framework. Finally,
neural-networks perform better with fewer predictors and a larger number of samples; thus,
keeping a larger number of predictors would not have been feasible for this reason either.

There are several other possible explanations for the lack of positive results. Despite the
large sample size of the UKBB, I may still not have had adequate statistical power to detect
epistasis. It is also possible that my power would have been sufficient; however, the SNPs
involved in the interactions were either not imputed or were filtered out by my initial QC
steps. Finally, it is also possible that statistical epistasis does not contribute to phenotypic
variance in any of the four UKBB traits.

3.5 Interaction tests in the IBD datasets

As the IBD datasets were an order of magnitude smaller than the UKBB, I believed that an
exhaustive search, even after pre-filtering on additive effects, was not a feasible approach.
Therefore, I decided to pursue a hypothesis-driven approach that utilised a biological prior to
reduce the search-space for epistasis. As this prior assumed haplotype-specific interactions,
before describing my analysis, I will also provide the necessary background on haplotype
phasing in the following sections.

My overall analysis involves fitting regression based models on phased SNP data, to infer
the existence of haplotype-specific interactions between variants. I will describe in detail
each stage of my analyses for interaction detection in the subsequent sections; however, I
will first outline my overall strategy here, so that each individual component’s role may be
better understood in the overall scheme. My analysis consists of the following three steps:
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1. Collate association summary statistics to identify plausible missense and eQTL signals
(section 3.5.3.1).

2. Phase haplotypes to obtain information on the missense and eQTL variants’ chromoso-
mal arrangement (section 3.5.3.2).

3. Evaluate two statistical models that have the ability to detect haplotype-specific statis-
tical epistasis (section 3.5.4).

3.5.1 Biological insight to reduce search-space

A recent study by Castel et al. (2018) indicated that interactions may be more easily detected
where a cis-eQTL allele modulates the expression of a gene which has a nearby missense
allele on the same chromosome. Fig 3.8 illustrates this hypothesis graphically. They
successfully deployed this strategy to infer epistasis both indirectly in the population, by
observing that deleterious haplotypes were removed by purifying selection, and also in cancer
and autism patients where they found an enrichment of deleterious haplotypes. Inspired by
their results, I thought that a similar approach may be a viable strategy to identify statistical
interactions that increase susceptibility to IBD.

3.5.2 Statistical haplotype phasing

3.5.2.1 The definition and the utility of haplotype phase

Obtaining the chromosomal arrangement of alleles by separating the nucleotide content of
an individual’s maternally and paternally derived chromosomes is known as phasing. The
information obtained by phasing, termed the haplotype, has utilities for imputation, calling
of genotypes, detecting genotyping errors, inferring demography, studying recombination
events and the detection of signatures of selection (Browning and Browning, 2011).

3.5.2.2 Overview of phasing methods

Currently used methods to obtain phase may be broadly organised into two categories. The
first group consists of specialised experimental methods that assemble haplotype contigs
(series of overlapping DNA sequences) from sequence reads. The second category contains
computational approaches that aim to infer the underlying haplotypes that generated the
observed genotypes by using a phased reference population. Given that all of my experiments
relied solely on in-silico analyses, I will only cover approaches that belong to this latter
category.
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Fig. 3.8 Missense-eQTL schematic diagram Top: Illustration of the haplotype-specific
interaction effect between a missense variant and a cis-regulatory SNP. In the deleterious
haplotype configuration, the missense and the eQTL upregulatory alleles are on the same
chromosome which results in an increase of the faulty gene product. Bottom: a benign
haplotype configuration, where the hypothetical individual carries the same alleles, but not
on the same chromosome, which would result in a greater abundance of the normal gene
product.

3.5.2.3 Statistical Methods

Due to their relative speed and low cost, most large-scale phasing efforts currently rely on
computational methods. As most current techniques produce allele dosage estimates, these
statistical methods work by estimating the true underlying haplotype configurations that
generated the observed genotypes. These methods will be described in the next two sections.

3.5.2.4 Trio and pedigree based phasing

In the simplest case, where parental genotype information is available, and the only interest
is to obtain phase information for the child, then short range haplotype information may be
derived by performing genetic analysis (Marchini et al., 2006). Genetic analysis involves
tracing all alleles’ origins, relying on Mendel’s law of segregation that states that each gamete
receives only one allele. This analysis assumes no recombinations, and that at least one
individual is homozygous for the target markers. To obtain phase information on parents
and for whole chromosomes, more complex methods and larger families (with at least
four children or multiple generations) are needed (Roach et al., 2011). The practicalities
of recruiting such individuals into studies limits the utility of pedigree based phasing;
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therefore, most studies rely on population-based phasing of unrelated individuals that utilise
the framework of hidden markov models.

3.5.2.5 Hidden markov model based phasing

The realisation that haplotype distributions are more realistically represented by basing them
on approximate coalescent models (Li and Stephens, 2003), gave rise to Hidden Markov
Model (HMM) based phasing methods. These models capture the fact that new haplotypes
are derived from old haplotypes by the processes of mutation and recombination. As such
events are rare, over short distances a given individual’s haplotype may be estimated from
genetically similar individuals’ haplotypes (Stephens et al., 2001).

HMMs assume that a markov process generates a sequence of underlying hidden states
that emit observations. A key property of this model is that it is memoryless, only the current
state and current observation affect transition probabilities between states. In the context of
haplotype phase inference, these hidden states represent the underlying true haplotypes, and
the observations represent the genotypes of an individual. Therefore, HMMs seek to find the
most likely haplotype configuration that generated the observed genotype as

G = h1 +h2, (3.4)

where G denotes the observed genotype, and h1 and h2 denote the first and second haplotypes,
respectively. Due to recombination events, observed genotypes are modelled as an imperfect
mosaic of ’template haplotypes’, which are a subset of sampled haplotypes from a reference
dataset. Therefore, the probability for the phase of S set of markers is given by (Delaneau
et al., 2012):

S = p(D|G′,H). (3.5)

In words, phase is the probability of the haplotype pair, the diplotype (D), conditioned on a
pool of haplotypes (H), which are also consistent with the observed genotypes of the to-be
phased population (G’).

SHAPEIT, the currently most widely used phasing method for large scale data (Bycroft
et al., 2017), achieves further performance gains by several algorithmic tweaks. Like its
predecessor, PHASE (Stephens et al., 2001), it breaks the genotypes into disjoint segments
of 5-8 SNPs. The most probable haplotype for each of these segments is then determined,
and then ligated together to produce a complete haplotype. The key innovation of SHAPEIT
lies in how these compatible haplotypes are considered. Instead of maintaining a full list of
all possible complete haplotypes, the same information is represented in a haplotype binary
tree. Here, each node is a haplotype segment that consists of a heterozygous SNP and all the
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homozygous markers before the next heterozygous SNP. These nodes have two children that
represent the two possible switch orientations with the next segment. In this representation,
complete haplotypes are captured by valid paths from the tree’s root to a leaf node. Such
a tree would still grow exponentially with the number of heterozygous SNPs; therefore, to
further reduce the complexity of the algorithm, SHAPEIT applies a pre-specified threshold
to prune highly unlikely branches to build an incomplete haplotype tree instead (Delaneau
et al., 2008). As this graphical model still represents most possible haplotypes, the HMM
only needs to estimate the hidden states for the segments, not individuals markers (Delaneau
et al., 2012).

3.5.2.6 Phasing summary

Phasing methods are used to identify alleles that are co-located on the same chromosome.
Currently, the preferred way to obtain phase at scale, is through the application of statistical
methods that utilise large-scale haplotype reference panels such as the HRC (Zheng et al.,
2016). A key limitation of current population-based computational approaches is that they
are not able to phase rare variants that were not present in the reference panel.

3.5.3 Genotype and summary data

I obtained the summary statistics of the fine mapped IBD associations that my experiments
relied on from the Huang et al. (2017) and de Lange et al. (2017) studies. The eQTL summary
data that I used to find relevant SNPs that had an eQTL result with the IBD genes (defined in
section 3.5.3.1) were sourced from the same BLUEPRINT data that I described in section
3.2.1.2 (Chen et al., 2016), together with two other sources, which were the CEDAR database
(Momozawa et al., 2018) and the eQTLGen database (Võsa et al., 2018). The cell-count QTL
summary data that I used to cross-check my eQTL variants against known cell-count QTLs
was sourced from the database by Astle et al. (2016).

I performed these analyses earlier during my PhD than the data QC work I described
in Chapter 2; therefore, I relied on a different version of the same genotype datasets that I
described in section 2.2.3. Specifically, I was given access to the same data that was used to
publish the study by de Lange et al. (2017). As I wanted to stay close to the workflow that
led to the published results, I adopted the same model fit strategy as the authors of that study.
An important difference in our workflows was that they treated the disease status as binary
phenotypes in a logistic regression model, as opposed to regressing out covariates ahead of
the main analysis, like I did in Chapter 2.
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3.5.3.1 Collating summary statistics for IBD

I began by identifying all IBD-associated missense variants with a posterior probability of
causality greater than 0.5. The criterion that the variants must be fine mapped was important,
as the hypothesis that I was interested in relied on the assumption that a missense variant
yielded a faulty-protein product that increased risk of IBD; hence, I needed to be reasonably
certain that these SNPs were indeed increasing IBD risk by affecting protein coding genes. I
identified 13 such missense variants. Then, I selected eQTL SNPs with the lowest association
p-value for the 13 genes matched to these 13 missense variants via the eQTL databases I
described in section 3.5.3. There were 37 such SNPs, which meant that there were more
eQTL variants than missense SNPs. Their median and maximum eQTL p-values were
4.07∗10−17 and 2.93∗10−5, respectively, and the average number of eQTLs per missense
SNP was 2.84 with a standard deviation of 1.57. The most common tissue types were T-cell
(14) and whole blood (13), and the least common tissue type was monocyte (3).

One important consideration for an analysis where the hypothesis pursued relies on the
effect of cis-eQTL SNPs, is a potential confounding mechanism where the alternative allele
would modulate expression levels not by regulating transcription levels in individual cells,
but rather indirectly, by regulating the total number of cells. To reduce the possibility for this
confounder, I cross-checked each of the 37 eQTL SNPs in the summary statistics provided
by Astle et al. (2016) against confirmed cell-QTL associations. I found that none of the 37
eQTLs had evidence of also being cell-count QTLs.

3.5.3.2 Obtaining haplotype configurations

To infer if deleterious haplotype configurations increased risk for IBD, I needed to phase the
variants involved. To begin, I first had to exclude missense and eQTL SNP pairs that had a
D′ > 0.95, as variants failing this criterion would have made haplotype-specific regression
models problematic due to (near) collinearity (a D′ = 1 would have indicated that only three
of the four possible haplotype configurations exist (Slatkin, 2008)). There were 21 SNP
pairs that passed this criterion. Next, to increase the number of variants that the phasing
algorithm may use to infer the correct configuration of my targets, I added an extra 500 SNP
support window on each side around the missense and eQTL variants. Thus, the final segment
included an additional 500 SNPs on each side, plus all variants between the missense and
the eQTL pair. Finally, I phased these extracts using SHAPEIT3 (Delaneau et al., 2012) to
obtain phase information on my target pairs.
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3.5.4 Two statistical models to evaluate haplotype-specific interaction
effects

In the next two sections, I will describe the two regression based methods that I used to test
the hypothesis that IBD risk is increased by the presence of a deleterious haplotype that
consisted of an eQTL upregulating allele and a missense allele.

3.5.4.1 ’#Bad haplo’ model

This model extends the same interaction model that I described in section 3.3 with an extra
term that captures the haplotype-specific interaction effect:

logit(Y ) = βmGmissense +βeGeQT L +βmeGmissense ∗GeQT L +βBB+ e, (3.6)

where Y , Gmissense, GeQT L and e denote the phenotype column vector, the missense SNP,
the eQTL SNP and a random noise term, respectively, and the β s are their corresponding
coefficients. The new B term captures the number of deleterious haplotypes. I determined this
value for each pair of SNPs for each individual, from the phase I obtained in section 3.5.3.2
by counting the number of times an individual had a missense allele and an eQTL-increasing
allele on the same chromosome. Thus, the number of possible values for the B term were
{0,1,2}.

Fig 3.9 shows a hypothetical example of the phenotype column vector and the design
matrix for the ’#bad haplo’ model, which may be useful to illustrate a few additional
properties of this model. Only the double heterozygotes contribute new information relative
to the reduced model that would only include the standard genotype interaction term (eq 3.3
), as the B term can be obtained from the combination of the Gmissense and GeQT L terms for
individuals homozygous at either locus.

Y Gmissense GeQT L Gmissense ∗GeQT L B




Indi1 0 1 2 2 1
Indi2 1 2 2 4 2

...
...

...
...

...
...

Indin 0 1 1 1 0

Fig. 3.9 Hypothetical example for a phenotype column vector and design matrix for the
’#bad haplo’ model for n individuals. Intercept omitted for clarity but was present in the
model fit.
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3.5.4.2 ’haplo regression’ model

An alternative regression model where individuals were split into two observations (one for
each of their homologous chromosomes) was also evaluated. Here, I fit the same model
described by eq 3.3, with the only difference that the predictors were now haplotypes instead
of genotypes:

logit(Y ) = βmhmissense +βeheQT L +βmehmissense ∗heQT L + e. (3.7)

where Y , hmissense, heQT L and e denote a phenotype column vector, the missense haplotype,
the eQTL haplotype and a random noise term, respectively, and the β s are their corresponding
coefficients. The advantage of this model is that it only requires three terms, as the third
term captures the haplotype-specific interaction effect directly. To illustrate the details of this
model further, consider the hypothetical example of a phenotype column vector and a design
matrix shown in Fig 3.10.

Y hmissense heQT L hmissense ∗heQT L




Indi1 0 1 1 1
Indi1 0 0 1 0

...
...

...
...

...
Indin 1 1 0 0
Indin 1 0 1 0

Fig. 3.10 Hypothetical example for a phenotype column vector and design matrix for
the haplotype regression model for n individuals. Intercept omitted for clarity but was
present in the model fit.

A disadvantage of this model is that as humans are diploids, there is only one unique
phenotype for both chromosomes. Therefore, both haplotypes have to share the same
outcome, which creates a situation where all the individuals form two-observation clusters
from their own two chromosomes. Such an artefact could cause an artificial deflation of
variance estimates in a regression based model. To account for this artefact, I applied a
Huber-White cluster variance correction procedure (Williams, 2000) as a post-processing
step via the ’rms’ R package (Harrell Jr, 2019), which considered each individual as a cluster
of two.

3.5.4.3 Results for the haplotype-specific interaction tests

I applied both the ’#bad haplo’ and the ’haplo regression’ models to each of my IBD datasets.
I also considered the same covariates as the de Lange et al. (2017) study did, which were sex
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and the first ten PCs. Then, I used the R package ’meta’ (Balduzzi et al., 2019) to perform
generic inverse variance fixed-effects meta-analysis to aggregate evidence from all of my
IBD datasets. The results from this analysis are presented in Table 3.9.

SNP pair ’haplo regression’ ’#bad haplo’
gene missense eQTL p coef p coef

SLAMF8 rs34687326 rs75087057 0.299 0.212 0.144 0.391
SLAMF8 rs34687326 rs2501342 0.726 0.027 0.899 0.015
PLCG2 rs11548656 rs8059316 0.128 0.186 0.185 0.234
PLCG2 rs11548656 rs145841372 0.950 -0.016 0.610 -0.147
IL23R rs41313262 rs2064689 2.69∗10−6 -1.355 0.048 0.779

PTPN22 rs2476601 rs17464525 0.776 -0.036 0.680 0.062
SMAD3 rs35874463 rs10152593 0.955 0.006 0.258 -0.171
SMAD3 rs35874463 rs8023420 0.230 0.113 0.432 0.113
SMAD3 rs35874463 rs6494626 0.672 -0.036 0.514 -0.079
SMAD3 rs35874463 rs10163040 0.166 -0.163 0.570 -0.092
NOD2 rs2066844 rs1420685 0.701 0.060 0.449 -0.132
NOD2 rs2066844 rs1981760 0.315 -0.192 0.885 -0.029
NOD2 rs2066844 rs4785448 0.412 0.143 0.817 -0.044
NOD2 rs2066845 rs1420685 0.514 0.150 0.823 -0.066
NOD2 rs2066845 rs1981760 0.548 -0.143 0.905 0.036
NOD2 rs2066845 rs4785448 0.689 -0.094 0.192 -0.394
NOD2 rs5743271 rs1981760 0.135 -0.632 0.420 -0.402
NOD2 rs5743271 rs4785448 1.24∗10−3 1.345 0.641 0.242
PLCG2 rs11548656 rs56704282 0.158 0.173 0.664 0.074
SNAPC4 rs3812565 rs531538571 0.038 -0.223 0.464 -0.109
SNAPC4 rs3812565 rs76179734 0.430 -0.033 0.559 -0.033

Table 3.9 Results for the two-way interaction tests between the missense and eQTL
SNPs for both the ’haplo regression’ and ’#bad haplo’ models. Values in the ’p’ column
show association p-values for the haplotype-specific interaction term and values in the ’coef’
column show their corresponding coefficient estimates.

3.5.4.4 Post-association QC and discussion of haplotype-specific interaction tests

There were two significant associations in the ’haplo regression’ model, and none in the
’#bad haplo’ model. As the former model requires one less parameter to estimate, in theory,
it is possible that it captured associations that the other model could not. However, as it
also required a post-processing step to adjust its variance estimates, it may also have been
susceptible to artefacts that arose from this procedure. Therefore, I decided to examine the
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two pairs of associations (rs5743271, rs4785448) and (rs41313262, rs2064689) in greater
detail. I recovered the original, unadjusted p-values of these two interactions, and I found
that they were far from significant at 0.8137 and 0.8134, respectively. This already suggested
an artefact, as the p-values usually only change towards the other direction, increase slightly
due to larger estimated error variances, as a result of the Huber-White adjustment. Next, I
examined the haplotype counts for both pairs, and I found that the interaction effect (hmissense∗
heQT L) had very low counts for both associations. The case/control haplotype counts were
0/1 and 0/6 for (rs5743271, rs4785448) and (rs41313262, rs2064689), respectively. As the
Huber-White method relies on asymptotic assumptions to adjust variance estimates, such a
low number of observations were consistent with an artefact that could induce false positives.
After eliminating these two associations, I concluded that no interaction tests were found to
be significant after post-association QC. I also have to note that all of the pairs were within
the same recombination block; therefore, even if these pairs were found to be not due to
technical errors, without fine mapping the regulatory variant the effect may still have been
caused by the haplotype-effect artefact described by Wood et al. (2014).

There are several possible explanations for the null results of my analyses. It is possible
that I did not have enough power in my datasets to detect statistical interactions between
missense and eQTL variants. It is also possible that the power would have been sufficient
to detect such interactions, but the combination of SNPs were not available in the panel of
SNPs I had access to. Additionally, I may not have considered eQTLs from the relevant cell-
types or tissues. Finally, I also have to acknowledge the possibility that haplotype-specific
interactions between coding and regulatory variants may not contribute to susceptibility to
IBD.

3.6 Concluding remarks

In this chapter I searched for two-way interactions using standard statistical methods involving
both hypothesis-free approaches, and analyses that employed a biological prior. I was unable
to find evidence in any of my experiments of credible statistical interactions that also survived
my QC steps that eliminated variants where the interaction could also have been induced by
haplotype effects. As I already covered in their respective sections, the reasons for this could
have been a lack of power, or that interacting markers were not in the model, and finally,
that statistical interactions do not contribute to phenotypic variance in any of the traits that I
examined.

Detecting epistasis in a robust, consistent manner remains an enduring challenge in the
field of human genetics. This is in contrast with GWAS, where after the initial protocol was
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established over ten years ago (Anderson et al., 2010), the number of confirmed associations
has been growing exponentially during the last decade (Visscher et al., 2017). On the other
hand, progress in epistasis detection during the same period has been very limited. Confirmed
findings of statistical epistasis have been few and far in between, and results have been marred
by false positives (Wood et al., 2014) and retractions (Rhinn et al., 2015). Genuine findings
appear to be more the exception rather than the rule in the endeavour of epistasis detection.
Thus, now I see the Castel et al. (2018) study as one of the isolated successes, rather than the
identification of a general principle to could help epistasis detection more broadly. Indeed,
I have not seen any other studies that applied their strategy successfully to other traits. As
evidence for a substantial contribution of non-linear genetic effects to phenotypic variance
has been scarce at best, I see my own negative findings in this chapter as congruent with the
broader field.

I did achieve my main objectives however, which was to prepare datasets with an appro-
priately low dimensionality, and also to perform standard statistical tests that may serve as a
frame of reference for my neural-network based approaches in the next chapter. A sufficiently
low dimensionality was an important objective, as neural-networks do not cope well with a
high number of input features, nor do they provide the same level of control over individual
predictors for QC (for example, it is not feasible to selectively exclude tests for variant pairs
in the neural-network framework).

As for the future of epistasis detection using standard methods I make the following
remarks. As one of the most important factors of statistical epistasis detection is power
(Wei et al., 2014b), one potential future trend that may offer hope is the expected increase
in sample size offered by upcoming large population cohorts. These cohorts include the 5
million genomes project (GEL, 2020) in the UK and the ’All of Us’ biobank project in the
USA (The All of Us Research Program Investigators, 2019). With the order of magnitude
of increase in sample sizes that these cohorts will bring, it is possible that we may see a
similar increase in positive findings that accompanied the increase of GWAS sample sizes
from individuals in the low thousands to the ~100K scale.




