
Chapter 5

Conclusion

5.1 Overview and limitations

The main motivation for the work in this thesis was to find evidence for how or if non-linear
encoding of genetic information contributes to phenotypic variance. After applying quality
control measures and establishing the additive association baselines in Chapter 2, I searched
for statistical epistasis using standard statistical methods and NN approaches in Chapter 3
and Chapter 4, respectively. Like the two parallel efforts that were comparable in scope to
my work (Bellot et al., 2018; Xu et al., 2020), neither the standard nor the NN approaches
produced evidence for contributions of statistical epistasis to phenotypic variance.

I believe that the greatest practical limitation of my work was that I restricted myself to
only perform recombination block level tests, which precluded the possibility of detecting
interactions within blocks. I thought that this was necessary due to the potential for a perfect
overlap between genuine statistical epistasis and haplotype effects to exist (Wood et al.,
2014). Such haplotype effects are a physical property of the DNA molecule, whereas I
was interested in non-linear effects that describe information encoding. However, taking
this highly conservative approach meant that I no longer had the ability to identify (the
biologically potentially more plausible ) local interactions, and this may have contributed to
the overall negative results of my analyses. In the future, once WGS data becomes standard,
large-scale fine mapping databases (such as the CausalDB (Wang et al., 2019)) and methods
that could handle multiple causal signals (Wang et al., 2020) become more widely used,
interaction tests that involve fine mapped causal loci may be performed without the danger to
be mistaken for pure haplotype effects.
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5.2 Reflections on non-linear genetic effects

Current estimates of the fraction of the human genome that is truly functional range from
8.2% to 80% (Dunham et al., 2012; Rands et al., 2014). All functional areas of the genome
would be expected to work in concert to produce a genome-wide phenotype, which would
then arise as an emergent property from the activity of all active parts of the base sequence.
From this perspective, non-linearity appears to be an inevitable property that arises from the
compression of information to produce complex biological systems.

When I began my work, I started with the very sensible, although now I what believe to
be erroneous, intuition that to achieve the aforementioned non-linear encoding of genetic
information, the process that generates or maintains trait variance should also be non-linear.
There were numerous supporters of this view who made plausible arguments based on either
simulations (Carter et al., 2005) and theoretical grounds (Mackay and Moore, 2014) or by
citing examples from model organisms (Hansen, 2013). However, after reflecting on my
findings, and revisiting some of the same literature that shaped my initial views, I have now
come to believe that my initial views were misguided.

After working with and developing methods for real biological data for several years,
I find simulations and theoretical arguments less convincing than before, as biology is a
science of what is, rather than what could be. Arguments based on how the apparent additive
profile of traits could also be explained by alternatively parameterised models that involve
epistasis, such as those made by Huang and Mackay (2016) that I covered in the Introduction
under section 1.1.5.1, now leave me unimpressed, as these theories cannot be proved or
disproved by current statistical frameworks or datasets. State-of-the-art evidence from a very
recent study by Hivert et al. (2020) that performed large-scale variance component analysis in
the UKBB across 70 complex traits, found no significant contribution to phenotypic variance
from epistatic effects.

I now believe that those who think that evidence from model organisms or artificial
populations imply that statistical epistasis may be relevant to humans may have made the
same conceptual mistake I did. This thinking ultimately stems from conflating functional
with statistical epistasis or alternatively phrased, the trait with the variance in a trait. To
clarify, I will illustrate this with a quote from Mackay and Moore (2014), where the authors
stated that "quantitative variation in phenotypes and disease risk must result in part from the
perturbation of highly dynamic, interconnected and non-linear networks [...] by multiple
genetic variants; thus, gene-gene interactions are likely." Here, they reasoned that because the
trait itself is a product of complex non-linear systems, trait variation would also require non-
linear effects, whereas these two do not necessarily imply each other. For another illustrative
example of this thinking, see the study by Kuzmin et al. (2018). Here, after finding that
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artificially introduced variation generated abundant higher-order interactions in yeast, the
authors suggested that epistasis may explain missing heritability in humans. However, I
now posit that this non-naturally segregating variation that they introduced via mutagenesis
merely exposed latent functional epistasis by generating artificial heterozygosity at normally
non-polymorphic loci. This in turn caused the disruption of the normal functionality of
the genome (such artificial variation is almost always deleterious), rather than provided
insights on normal trait variation. While such deleterious mutations may also occur in natural
populations, as they are deleterious, they would not persist or be present in great enough
numbers to affect population variance. Chance (rare) mutations, which selection have not had
time to eliminate yet, in the constrained part of the genome could also conceivably manifest
as statistical epistasis in humans; however, these would be either transient, or make up a
very small fraction of the total trait variance. On the other hand, (missing) heritability is a
property of normal trait variance due to naturally segregating variation in the base sequence.
Considering this alternative explanation, I now do not believe that the evidence presented by
the authors supports the conclusion that statistical interactions may be relevant to humans.

Finally, as for the few demonstrated cases of epistasis in humans (for example in rheuma-
toid arthritis (Dang et al., 2016; Génin et al., 2013; The Australo-Anglo-American Spondy-
loarthritis Consortium (TASC) et al., 2011)), these only support my current view that such
effects are scarce, and in the larger landscape of phenotypic variation they account for little
relative to additive associations. Indeed, the GWAS Catalog recorded an exponentially in-
creasing number of additive associations in the last 10 years (Buniello et al., 2019), whereas
there has been no comparable progress in epistasis detection.

The apparent lack of a direct contribution of non-linear genetic effects that would impact
trait variance may appear puzzling at first, especially given the almost unimaginably complex
encoding of information in the genome. However, this paradox may be resolved by Fisher’s
original explanation for this phenomena that I first described in the Introduction in section
1.1.5.2. Fisher proposed that non-linear information encoding may be achieved by one change
at a time through purely additive processes. Under this model the probability of a new allele’s
frequency rising or falling is conditioned on the (potentially) fixed parts of the genome. Fisher
remarked on this topic in his book The Genetical Theory of Natural Selection, where he wrote:

‘[...] the effects by which any gene-substitution is recognized depend on the results of
interactions with, possibly, all other ingredients of the germ plasm [...]’ (p52, 2nd ed.).

In conclusion, perhaps the strongest argument against the importance of epistasis to trait
variance is that it is simply not necessary. Given that nature tends to prefer parsimonious
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solutions where possible, if non-linear information encoding can occur from purely additive
processes, then there is no need to introduce or even to maintain non-linear population genetic
variance.

5.3 Outlook and future work

Even if non-linearity does not (substantially) directly contribute to phenotypic variance in
a population, the way information is stored is still a crucial attribute of the genome, and
decoding it will be essential to deepen our understanding of how genetic variation impacts
complex traits and disease risk. Thus, with the benefit of hindsight, I feel that I spent my
time looking for non-linearity in the wrong place, between polymorphic loci, rather than
where it resides in abundance, in the rest of the genome. Therefore, my research interests
now turn towards considering the non-linearity within fixed areas of the genome as a prior,
and finding ways to connect that back to phenotypic variance.

Relating fixed parts of the genome to phenotypic variance may seem like an impossibility
at first, as loci which do not vary in the population, by definition, cannot contribute to trait
variance; thus, their function may appear inscrutable. However, sequence analysis is about
relating the different parts of the genome against each other, loci which do not vary in the
population still vary with respect to other regions of the genome; thus, invariant sequence
context may be used to infer the effects of polymorphic loci. Therefore, examining the (local)
sequence context of causal loci may reveal information about what makes, say, a height SNP
a height SNP. If this information can be learned, then this may be used to predict a prior for
polymorphic loci elsewhere; thus, accomplishing the goal to relate non-linear genetic effects
in the fixed parts of the genome to phenotypic variance. Considering the wider field of how
the NN framework is applied in genomics, I see a trend converging towards this goal.

The prevailing trend in most successful NN projects so far was to link narrow molecular
phenotypes, such as TF binding, to local sequence context of ~1000bps. The scope of more
recent sequence analyses have been gradually expanded to encompass larger and larger areas
of the genome, which grew from 1000bp to ~131Kb, to consider more distal regulatory
features (Kelley et al., 2018), even up to ~1Mb to study genome folding (Fudenberg et al.,
2019). The complexity of the target phenotypes have also been increasing. Early efforts
aimed to predict basic molecular phenomena, such as the presence of regulatory features;
however, more recent studies have realised more ambitious goals, such as relating sequence
features to gene expression via the integration of many smaller models over 40Kbs (Zhou
et al., 2018). However, none have yet managed to explicitly tie non-linear genetic effects
directly to genome-wide phenotypes, such as complex traits and diseases. Thus, I expect
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that connecting non-linearity in sequence data to phenotypic variance may be the next major
challenge to be overcome in the coming years.

At this junction, it is also necessary to re-examine the ceiling of the maximum level
of functional inference possible from NN based sequence analysis. As I covered in the
Introduction in section 1.7, NNs perform best under a large data regime, where the outcome
depends on non-linear combinations of the input features. To explore this argument further,
I need to introduce a new concept which I will refer to as the ’self-containedness’ of the
problem being modeled. To clarify, this concept describes the observation that the class label
of an image only depends on the pixels in the image, or that for games like GO (Silver et al.,
2016) all the relevant information is included on the game board. For these types of prediction
tasks a NN based model may achieve near perfect accuracy in prediction, as all the elements
that contribute to the outcome are present in the training data. However, some may argue
that biology is different, as biological systems potentially depend on input from external
sources. Inference in this context would be equivalent to training from and then predicting
trait SNP coefficients, such as those obtained from a GWAS. The model from which the SNP
coefficients are obtained from include (covariates and) a noise term; thus in expectation, a
SNP coefficient is the pure genetic effect driven by the base sequence alone, and is therefore
predictable from the base sequence. Of course, the more complex the trait, the wider the
context that would need to be considered; however, as the ultimate source of causality is
still the base sequence, predicting SNP coefficients should also remain possible in theory.
The overall trait inference possible from the sequence alone is quantified by heritability,
which also represents a direct measurement of this aforementioned ’self-containedness’ of
the system. Recent heritability analyses revealed that for a great many traits the nucleotide
base sequence is the ultimate origin of causality for the majority of trait variance (Polderman
et al., 2015); thus in theory, the limits of trait inference from pure sequence data are also
correspondingly high. From this perspective, the phenotype may be viewed as a non-linear
transformation of the base sequence, up to level of broad-sense heritability. This view also
implies that all intermediate stages such as cell, tissue and organ differentiation, expression
levels, micro-biome (or at least the parts of these systems that are relevant to the traits), are
also in turn determined by the base sequence. Thus, at least in theory, there would have
to exist a direct non-linear map from the base sequence to the genetic component of the
phenotype which does not depend on any further information from biological samples or
environmental covariates. Given certain parallel developments in genomic studies described
below, this suggests that modelling non-linearity may become increasingly important in the
future.
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The size of GWAS cohorts have been steadily increasing. Back in the 2000s studies
typically numbered in the low thousands of individuals, whereas today meta-analyses have
reached the ~1 million watermark (Lee et al., 2018). This trend is going to continue in the
future, with biobank scale efforts in the UK alone set to reach ~5 million individuals with
the 5 million genomes project in 2023 (GEL, 2020). With other countries following suit, it
seems highly likely that within a decade meta-analyses will reach cohort sizes on the order
of tens of millions. This brings me to one of the rarely appreciated advantages of the GWAS
design, which is the way its resource costs scale relative to studies that rely on more intrusive
biological samples (such as specific cells or tissues). The biological data required for a
GWAS is minimal, a saliva sample is sufficient, which may be collected during routine visits
to one’s GP. As electronic health records are becoming common (which may serve the the
target phenotypes), GWAS may be considered as a mostly information based study that lends
itself to large-scale automation, which could encompass entire populations in the near future.

Let us now consider studies that require more involved biological samples, such as
biopsies of tissue samples, single-cell sequencing or microbiome data etc. These types of
studies scale linearly with the number of sample donors, as they rely on manual and often
labour intensive sample collection procedures. Also, the ceiling for cohort sizes would be
limited to the fraction of the population willing to undergo such invasive procedures. Thus,
it may be reasonably expected that while the costs of GWAS-like studies scale less than
linearly with sample size, so these will likely to reach tens or even hundreds of millions
of individuals, studies that require biological samples will grow in size at a far lower rate.
I believe that this difference in scaling up may also mean that the relative importance of
GWAS-like studies will grow disproportionately in the long term. This likely increase in the
importance and size of GWAS type studies may also create more opportunities for methods
that could provide mechanistic insights into the function of the genome based primarily on
sequence information. Much of statistical genetics today is about recovering a faint signal
from a very noisy source, whereas NNs excel in the task of modelling a highly complex
non-linear signal when sample size is no longer a limiting factor. As the volume and the
resolution of available genomic data increases, the field of genetics may start to resemble
more closely the domains where NNs traditionally excel; hence, I expect the areas where
NNs are applied in genomics to increase in the near future.

The current paradigm to infer mechanism relies on empirical evidence from the experi-
mental manipulation of the genome that may yield insights on functionality, which could then
be used to identify drug targets for example. While traditional GWAS is limited to identify
one-to-one associations between individual genetic variants and phenotypic outcomes, the
previously described trends, which will result in an orders of magnitude increase in genetic
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information, may open up opportunities for alternative approaches that could offer more
mechanistic insights via advanced computational approaches. Methods such as NNs and
their algorithmic descendants, which employ non-linear modelling of genetic effects, are
uniquely suited to extract functional insights purely from genetic information by the virtue of
the learned non-linearity. To illustrate why this is the case with a general example, consider
a (fine mapped) GWAS SNP. Because of the additive nature of the GWAS association, it
cannot reveal anything about its genomic context by itself. However, if associations would be
made via implicating SNPs together with their relevant sequence context (that may include
potentially non-polymorphic regulatory targets), then each association could also become
biologically informative. Therefore, despite my own negative results in this work, I am
cautiously optimistic about the future applicability of non-linear methods to genetic data, and
I see a potential future where large biobank-scale GWAS and NNs are applied in comple-
mentary roles, as the former would generate the data and additive associations, and the latter
could provide inference on mechanism of effect.




