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Abstract

Unravelling the genetic basis of functional diversification is fundamental for our under-
standing of vertebrate evolution and can also have significant implications for animal
and human health. Speciation leads to phenotypic diversity by producing new units of
evolution - species. In less than five million years, East African cichlids have radiated
into thousands of species that differ in craniofacial morphology, pigmentation, behaviour
and many other traits. In this thesis, I take advantage of recent advances in DNA
sequencing technologies to study the genetic basis of this exceptional diversity. First,
as a member of the Cichlid Genome Consortium (CGC), I identified and characterised
over 1,000 loci generating microRNAs, non-coding RNA genes that regulate expression
and may play a role in the evolution of cichlid traits. Next, at the Sanger Institute,
we obtained whole genome sequences of 271 individuals from over 70 species from
in and around Lake Malawi. I aligned the data to a reference genome generated
by CGC, and used the results to: 1) ascertain the overall levels of genetic variation
and allele sharing within and between species; 2) reconstruct relationships between
the species; 3) study in detail the genetic causes and consequences of early stages
of speciation in Lake Massoko, a small isolated crater lake in southern Tanzania. I
found that that the genetic distance between the most diverged Lake Malawi species
is surprisingly low, comparable to the distance between two strains of zebrafish, that
there are discrepancies between relationships inferred from molecular phylogeny and
from traditional taxonomy, and that measurable introgression between species occurs
but does not seem to be common. In Lake Massoko, I identified clearly demarcated
genomic regions of differentiation between incipient species in sympatry. Interestingly,
there are no fixed differences; instead I found a genome-wide pattern with dozens of
loci of moderate divergence. With collaborators, we found that alleles in the regions
are associated to mate preferences in the laboratory, and genes in the regions are
enriched for molecular functions consistent with morphological and sensory system
adaptation. To facilitate this work, I constructed whole genome alignments between
CGC genome assemblies, assigned ancestral alleles to genetic variants in Lake Malawi,

and built a genome browser that can be used to visualise datasets produced by us and



the CGC. The browser website has been visited over 650 times since March 2014. In
addition, I developed a new method for genome assembly to reduce problems caused
by heterozygosity, taking advantage of mother-father-offspring trio data. I applied
this method to obtain de novo genome assemblies of three cichlid species, and also
three highly heterozygous Heliconius butterfly species. These datasets, tools, and
findings make significant contributions to evolutionary genetics and will provide a
foundation for future research on processes underlying the evolution of phenotypic

diversity, especially in cichlids.
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