
Chapter 4

De novo genome assembly

4.1 Introduction

All existing DNA sequencing technologies are are limited by short read lengths, orders
of magnitude shorter than whole chromosomes (see e.g. [147]). All the DNA sequence
data generated during this PhD is in the form of 100 or 125bp long reads (section 3.2.1).
The goal of de novo genome assembly is to reconstruct the underlying genome sequence
from the reads by finding and following overlaps between sequences. It is often helpful
to visualise and conceptualise this process by drawing an ‘assembly graph’, where each
vertex corresponds to a sequence and edges between vertices correspond to overlaps
between reads, as in Figure 4.1. If error-free reads could be obtained from a single
underlying genome sequence with randomly generated bases, the assembly task would
be a trivial problem given 100bp read length. A 50bp overlap between two reads
would then effectively guarantee that the two DNA sequences indeed originated from
overlapping loci in the underlying genome sequence (with a negligible error rate of
7.8×10−31). In the real world, however, genome assembly is a difficult problem. This
is due to a combination of three factors: 1) DNA sequencing errors; 2) heterozygosity;
3) the highly repetitive nature of vertebrate genome sequences (see section 1.1.2).

When sequencing DNA from a diploid organism (this includes humans and the
majority of animals), most DNA sequence is found in two copies, one contributed by
the mother and the other by the father. Heterozygous sites, the differences between
the maternally and paternally contributed sequences (chromosomes), are usually
represented within the assembly graph topology as ‘bubbles’ (Figure 4.1).

Genome assembly typically involves three major stages: error correction, assembly,
and scaffolding. First, the correction process attempts to eliminate the majority of
sequencing errors. Second, sequence overlaps are found and sequences merged into

58 De novo genome assembly

A

C

Reads:

Genome:

Assembly
graph:

G

C

Fig. 4.1 An example of genome assembly graph with two bubbles due to
heterozygous sites.

contiguous segments (contigs). During assembly, the assembly algorithms attempt to
to resolve repeats and remove additional sequencing errors and heterozygous variants
by examining the structure of the assembly graph. The contig ends if the underlying
genome sequence cannot be resolved due to ambiguity (caused by repeats alone, or
by any combination of repeats, errors, and heterozygous variants), or if there is not
any read/sequence with sufficient overlap to add to the end of the contig. Third,
genome assemblers use the long range information provided by paired-end or mate-pair
reads whose inserts (see section 3.2.1) span unresolvable sequences. Thus, assemblers
generate scaffolds - multiple contigs linked together and separated by gaps. Unresolvable
sequence between the contigs is denoted by runs of the symbol ‘N’ and insert sizes
are used to determine approximate lengths of the unresolvable sequences.

The quality of a genome assembly is often evaluated based the distribution of
lengths of assembled sequences (contigs and scaffolds). A commonly used summary
statistic for assessment of contiguity of a genome assembly is N50. N50 is the length of
the longest sequence s where half the length of the genome is assembled in sequences
greater than or equal in length to s [148] (Figure 4.2).

When the true length of the genome is known (e.g. has been estimated by flow
cytometry), it is also possible to assess the assembly by comparing the total length
of the assembled fragments with the expected length of the genome. Finally, the
options for assessing the accuracy for a de novo assembly are limited by the fact that
in most cases the true answer is not known. Internal consistency of the assembly can
be evaluated for example by assessing the consistency of alignment of paired-end reads
to the completed assembly [148].

4.1 Introduction 59

Total length
50% 70% 90%30%

Length-sorted
assembled
sequences

N50 = 4,200bp

Fig. 4.2 An illustration of the N50 measure of assembly contiguity. Analogous
measures can be defined to assess the length of assembled sequences covering a given
proportion of the genome, e.g. N30 at 30%, or N70 at 70%.

I have completed all assemblies presented in this thesis using the sga v0.10.13

genome assembler [149], and using my own extension ‘trio-sga’ which takes
advantage of mother-father-offspring trio sequence data to reduce problems associated
with heterozygosity. The majority of sga’s algorithms are based on efficient queries
over an FM-index, a compressed index of a set of reads [150, 151]. Specifically, the
FM-index data structure facilitates finding all occurrences of a sequence of length k
(a k-mer; k must be shorter than the read length) in a set of reads in time that is
independent of how many reads are searched.

Formally, let ℜ be a set of |ℜ| DNA reads, ℜ = {R0, R1,, R|ℜ|−1}. Reads are
indexed by i = {0, 1, 2,, |ℜ| − 1}, and the length of each read is denoted by |Ri|.
Then let Q be a query sequence of length |Q|, where ∃i such that |Q| ≤ |Ri|. Finding
all occurrences of Q within ℜ by exhaustive search requires

|ℜ|−1∑
i=0

(|Ri| − |Q|+ 1)

string comparisons. For example, searching for a 30-mer (k-mer of size 30bp) in
the Andinoacara coeruleopunctatus dataset would require approximately 38billion
comparisons. The FM-index based ’Backward Search’ algorithm [150] counts all
occurrences of a 30-mer within ℜ in 30 steps, regardless of the size of ℜ. The number
of CPU cycles in each step is comparable to the number of CPU cycles required for a
single string comparison.

60 De novo genome assembly

4.2 trio-sga - Trio-aware genome assembly

4.2.1 Overview

The majority of available genome assembly algorithms have been developed for or-
ganisms that are inbred, homozygous, or have low levels of heterozygosity and many
genome projects reduced or even completely eliminated heterozygosity, by using inbred
laboratory strains (e.g. the C. elegans genome project [152] and D. melanogaster
genome project [153]), or by obtaining a homozygous form of the organism by other
laboratory techniques (e.g. the potato genome [154]). However, in some cases such
approaches are not feasible, for example if the organism in question is resistant to
inbreeding due to strong inbreeding depression [155], or if the generation time is too long
or the organism unsuitable for inbreeding in the laboratory. High heterozygosity can
make genome assembly very challenging [156]. Algorithms specifically designed for or-
ganisms with moderate-to-high levels of heterozygosity have been developed [157, 158],
but the methods still the lag in performance compared with assemblies of homozygous
strains - simply due to the fundamental difficulty of assembling highly heterozygous
genomes.

Communities of scientists have recently come together with the aims to de novo
assemble the genomes of 10,000 vertebrate species [159], 5,000 arthropod species [160],
and 7,000 (mainly marine) invertebrates [161]. Many species, especially in the latter
two groups, will have high levels of heterozygosity.

Therefore, I have developed trio-sga - a set of three algorithms designed to
facilitate better quality genome assembly for organisms with moderate-to-high levels of
heterozygosity. trio-sga algorithms extend the sga genome assembler [149]. Two
of the algorithms use haplotype phase information in mother-father-offspring trios
to eliminate the majority of heterozygous sites even before the assembly itself (i.e.
search for sequence overlaps) commences. The third algorithm is designed to reduce
sequencing costs by enabling the use of parents’ reads in the assembly of the genome of
the offspring. In this section, I briefly describe trio-sga. In Section 4.3, I illustrate
its performance by assembling highly heterozygous Heliconius butterfly genomes. Then,
in Section 4.4, I demonstrate that the algorithms can improve assembly contiguity even
at the lower levels of heterozygosity found in cichlids.

trio-sga software is available at https://github.com/millanek/trio-sga. It
is written in C++, and can run multithreaded on UNIX-like systems. The core code im-
plementing the logic of Algorithms 1 and 2 is in the file TrioCorrectProcess.cpp
and the code for Algorithm 3 is in FilterParentProcess.cpp.

https://github.com/millanek/trio-sga

4.2 trio-sga - Trio-aware genome assembly 61

4.2.2 Algorithms

The input into trio-sga are three separate sets of DNA reads: reads from the mother,
reads from the father, and reads from their offspring. trio-sga assembles the reads
from the offspring, taking advantage of information present in the parents’ reads with
the aim to generate two separate assemblies of the offspring’s genome: maternal (i.e.
the haplotype inherited from the mother) and paternal (i.e. the haplotype inherited
from the father).

The basic building block of all three trio-sga algorithms is a query over an FM-
index about the number of occurrences of a given k-mer and of its reverse complement
in a read set. For each trio we build three FM-indices (separately for the reads from
the mother, father, and the offspring). K -mer occurrences in reads from the mother’s
DNA are denoted CM (k), occurrences in reads from the father are denoted CF (k), and
from the offspring CO(k). The three trio-sga algorithms are described below.

62 De novo genome assembly

1. Pre-filtering the set of reads sequenced from the offspring in order to reduce
heterozygosity. Two, usually overlapping, sets of reads are generated with the goal
of eventually assembling the paternally and maternally contributed chromosomes
separately. A conceptual overview of this algorithm, assuming error-free reads is
in Algorithm 1 and Figure 4.3A.

Algorithm 1: Filtering the set of reads sequenced from the offspring in order to
reduce heterozygosity (assuming error-free reads)

Data: FM-indices of mother and father reads; reads from the offspring
Result: Two partially overlapping sets of offspring reads for paternal and maternal haplotype

assembly
1 foreach (read R from the offspring) do
2 foreach (k-mer k in R) do
3 if (CF (k) > 0 and CM (k) == 0) then
4 assign R to paternal assembly read set; assigned = TRUE;
5 end
6 if (CF (k) == 0 and CM (k) > 0) then
7 assign R to maternal assembly read set; assigned = TRUE;
8 end

9 end
10 end
11 if assigned = FALSE then
12 assign R to both read sets
13 end

2. Improving error correction. Error correction used by sga and most other genome
assemblers (e.g. ref [162]) is based on k-mer frequencies. It relies on the fact
that the number of occurrences in the read set of error-containing k-mers is in
general lower than the number of occurrences of k-mers that do not contain
errors, i.e. the frequency distributions of correct and error-containing k-mers
differ (Figure 4.3B and Figure 4.3C). In practice, an occurrence threshold is set to
distinguish between correct and error-containing k-mers. However, in most data
sets (depending on the error rate) there is a ‘grey zone’ where the two distributions
overlap (Figure 4.3C), with low k-mer occurrences of correct sequence due to
low coverage and/or non-random sampling and high k-mer occurrences of error-
containing k-mers for example due to repeated (or systematic) errors. Using
data from the parents helps to distinguish between error-containing and correct
sequences within the grey zone and to prevent under-correcting (accepting as
correct reads that contain errors) and over-correcting (‘fixing’ reads that are in
fact correct). For example, if a k-mer fails the threshold in the offspring, but is
present above threshold in one of the parents, it is unlikely to be an error and

4.2 trio-sga - Trio-aware genome assembly 63

correction is not attempted. Algorithm 2 outlines how parents’ data are used in
the decision on whether or not to attempt correction on a k-mer in the offspring.

Algorithm 2: Trio-aware error correction: deciding whether to attempt correcting
a k-mer

Data: FM-indices of mother, father, offspring reads; reads from the offspring
Result: Corrected offspring reads

1 // Initialise occurrence thresholds for k -mers in offspring, mother, and
father FM-Indices

Init: set thresholds tO, tM , tF ;
2 // Initialise indicator variables for ensuring haplotype phase consistency of

corrected reads
Init: set mc=FALSE; set fc=FALSE;

3 foreach (read R from the offspring) do
4 foreach (k-mer k in R) do
5 if (CF (k) < tF and CM (k) < tM) then increase tO;
6 // Test the offspring threshold
7 if (CO(k) > tO) then next;
8 else
9 // This k -mer failed offspring threshold - test it in the parents

10 if ((mc == fc) or (mc==TRUE and fc==FALSE)) then
11 if (CM (k) > tM) then set mc.temp=TRUE;
12 end
13 if ((mc== fc) or (mc==FALSE and fc==TRUE)) then
14 if (CF (k) > tF) then set fc.temp=TRUE;
15 end
16 if (mc.temp==TRUE or fc.temp==TRUE) then
17 // Passed k -mer count threshold in the parental reads
18 set mc = mc.temp; set fc = fc.temp; next;
19 end
20 end
21 // Call the correction algorithm (not shown)
22 correction(R,k);

23 end
24 end

Line 5: if a k-mer found in the offspring does not occur (above threshold) in either parent, it is

likely to be an error (or a de-novo mutation, but these are exceedingly rare compared with errors).

Therefore, I increase the offspring k-mer occurrence threshold for this k-mer.

Lines 16-19: It is necessary to ensure haplotype phase consistency in error-correction; for example,

if a k-mer is not corrected thanks to passing the threshold in the mother (but not the father), I

assume that the read comes from the maternal haplotype. I keep track of this information (i.e. set

mc=TRUE) and only take the mother’s reads into account when assessing k-mers from the remainder

of the read.

64 De novo genome assembly

Fig. 4.3 Trio aware read filtering and error correction. (A) An example region
of the genome with four segregating sites. The offspring inherited a haplotype with
four derived alleles (denoted as 1) from the father and ancestral alleles from the mother.
Read (or read pairs) from DNA containing the first or the second segregating site
and the derived allele (as shown) can be phased and confidently assigned for paternal
haplotype assembly. Similarly, reads from DNA containing the second or the third
segregating site and the ancestral allele can be phased and confidently assigned for
maternal haplotype assembly. (B) The distribution of 31-mer counts in simulated
100bp error-free reads with 30X genome coverage. (C) The distribution of 31-mer
counts in simulated 100bp reads with uniform 1% error rate. There are now many
more k-mers with low k-mer occurrences (<3); these are mainly errors, but there is
a ‘grey zone’ (arrow), with kmers occurring 2-4 times being a mixture of correct and
error-containing sequences. Figures (B) and (C) by Jared Simpson.

4.3 Heliconius butterfly genome assemblies 65

3. An algorithm to ‘fill’ regions of low coverage in the offspring by bringing in reads
sequenced from the parents’ DNA, thus using the parents’ datasets to ‘assemble
through’ these regions. Sequencing costs grow almost linearly with sequencing
depth and in the trio assembly setting, three genomes need to be sequenced.
This algorithm helps to keep the costs down. Reads from the father’s DNA are
checked for consistency with the offspring’s paternal chromosome assembly and
used to fill coverage gaps, and reads from the mother are used in the same way
for the maternal chromosome assembly.

Algorithm 3: Check for consistency between error-corrected reads from the
mother and error-corrected reads from the offspring’s maternal haplotype or reads
from the father and the paternal haplotype.

Data: FM-indices of error-corrected reads from one parent and the corresponding haplotype in
the offspring

Result: Reads from the parent that are consistent with the offspring read set and can be used
to bridge coverage gaps

1 foreach (read R from the parent) do
2 consistent=TRUE;
3 foreach (k-mer k in R) do
4 if (CO(k) == 0) then
5 consistent=FALSE; break;
6 end
7 end
8 if (consistent) then mark R as consistent with the offspring;
9 end

4.3 Heliconius butterfly genome assemblies
I applied trio-sga to the deep coverage cichlid samples (Table 3.2 - Panel B), and
will describe this work in section 4.4 below. However, the heterozygosity in these cichlid
samples was not high enough for the trio approach to have a very large effect. To
illustrate more dramatically the benefits of trio-sga, I will detour from cichlids to
describe its application to Heliconius butterflies from South America, in collaboration
with John Davey and Chris Jiggins from the Department of Zoology at Cambridge
University.

With 43 species and a multitude of colour races that have radiated across the
tropics of the South and Central America, Heliconius butterflies, like cichlids, provide
outstanding opportunities to study a wide variety of evolutionary phenomena, including
adaptation and speciation [163]. In common with other insects, such as D. melanogaster,
Heliconius butterflies tend to have very large Ne and, therefore, very heterozygous

66 De novo genome assembly

genomes [164, 165]. Sequencing libraries for three Heliconius mother-father-offspring
trios were prepared and sequenced by the Sanger Institute sequencing core, obtaining
125bp paired-end reads with 300-500bp insert sizes.

The samples include:
1. A Heliconius melpomene trio
2. A Heliconius cydno trio
3. A cross between two Heliconius species: H. cydno mother, H. melpomene father,

hybrid offspring

I obtained estimates of genome size and of heterozygosity using sga preqc, a recent
extension of sga for estimating characteristics of a genome based on metrics derived
from a random subset of reads [166]. The results (Figure 4.4) revealed that both
Heliconius species species have genome sizes of ~280Mb, consistent with 292Mb flow
cytometry estimate for H. melpomene [167]. The sga preqc genome size estimate
for the hybrid offspring of the cross is ~560Mb, twice the true genome size. The
erroneous estimate stems from the very high level of heterozygosity in the hybrid. On
average, one in every 33bp is heterozygous in the hybrid. Heterozygosity in H. cydno is
estimated to be ~ 1

50bp and in H. melpomene ~ 1
70bp. For comparison, heterozygosity in

the cichlid L. lethrinus is estimated to be approximately an order of magnitude lower
at ~ 1

450bp.

L. lethrinus (cichlid) : 889.6

Heliconius cross - offspring : 561.7

Heliconius cross - mother : 286.5

Heliconius cross - father : 285.4

H. cydno - offspring : 283.0

H. cydno - mother : 275.7

H. cydno - father : 286.1

H. melpomene - offspring : 283.4

H. melpomene - mother : 277.8

H. melpomene - father : 281.1

Fig. 4.4 Estimates of genome sizes and heterozygosity for Heliconius
genomes. The cichlid species L. lethrinus has been included for comparison.

All read pairs with undetermined bases (N characters) were removed with the sga
preprocess command. Then the FM-Indices were built and the trio-sga read
filtering (phasing) and error-correction algorithms were called as follows:
sga correct-trio --paired --phase -x 3 -k 41 --mother-kmer-threshold=3

4.3 Heliconius butterfly genome assemblies 67

--father-kmer-threshold=3 offspring.fastq.gz mother.fastq.gz father.fastq.gz

The trio-sga read filtering (phasing) algorithm reduces heterozygosity in He-
liconius data by approximately two orders of magnitude. Estimates by sga preqc

show that the filtered datasets for H. melpomene and H. cydno have one heterozygous
site approximately every 1700bp. Average heterozygosity in the hybrid was reduced
even further to ~ 1

3300bp (Figure 4.5).

20 30 40 50 60 70 80

k

10-5

10-4

10-3

10-2

10-1

Fr
e
q
u
e
n
cy

o
f
v
a
ri
a
n
t
b
ra
n
ch
e
s

variant branches in k-de Bruijn graph

H. melpomene - offspring
H. cydno - offspring
Heliconius cross - offspring
H. melpomene - reads for paternal assembly

L. lethrinus (cichlid)
S. cerevisiae (yeast - haploid)

0 20 40 60 80

51-mer count

0.00

0.02

0.08

0.10

0.12

0.14

0.16

0.18

P
ro
p
o
rt
io
n

51-mer count distribution

1.0

H. cydno - reads for paternal assembly
Heliconius cross - reads for paternal assembly

Fig. 4.5 Read phasing reduces heterozygosity in Heliconius data. Heterozy-
gosities for the offspring samples (grey) and the cichlid L. lethrinus estimated from the
same data as in Figure 4.4. The phased datasets (green; only paternal haplotype shown)
have heterozygosity estimates up to two order of magnitude lower. Heterozygosity
values for the haploid yeast species represent a misclassification rate (<10−4) observed
in sga preqc estimates [166].

Reads from the father consistent with the paternal haplotype were obtained by first
error-correcting the father reads independently with sga and then using the following
trio-sga command:
sga filter-parents --do-not-correct --paired -k 41 father_corrected.fastq.gz

offspring_paternal.fastq.gz

The reads were merged with the paternal haplotype reads, and then assembled into
contigs using sga. This will be referred to as trio assembly in the rest of this section.
I also assembled the offspring reads without using the parent’s data. This will be
referred to as normal assembly. In all cases, the -r 10 parameter was used for the
sga assemble subprogram, and assemblies were attempted with minimum overlap
required between reads set to 70, 80, 90, 95, 100, 105, and 110bp. Then, I choose the
assembly with the highest contig N50 statistic.

68 De novo genome assembly

Table 4.1 Heliconius contig assembly statistics. Contigs of less than 500bp
excluded.

Species Assembly Best minimum Total Contiguity stats (bp)
overlap (bp) length (Mb) N30 N50 N70 N90

H. melpomene normal 80 367 1,908 1,258 879 618
H. melpomene trio 95 269 12,185 7,626 4,181 1,225
H. cydno normal 80 369 1,456 1,030 773 586
H. cydno trio 90 263 13,516 8,675 4,951 1,467
Heliconius cross normal 70 432 1,678 1,175 848 611
Heliconius cross trio 90 259 17,297 11,259 6,844 2,731

Assembly statistics in Table 4.1 demonstrate that normal assemblies of the highly
heterozygous Heliconius genomes are very challenging for sga. Contig N50 statistics
are barely above 1kb and the total length of the assemblies is greater than the genome
size estimate, suggesting that in many cases two copies of a single genomic region have
been retained. In contrast, trio assemblies have contig N50 between 7.5 and 11.2kb
and assembly lengths correspond to genome sizes.

Given that the normal assemblies were clearly very poor, I generated scaffolds only
for the trio assemblies. The paired-end reads used for the trio assembly were aligned to
the contigs (excluding contigs of less than 200bp) using bwa mem v0.7.10 [132], and
alignments processed by samtools v1.1 [135] to generate sorted bam files as follows:
bwa mem -p -M contigs.fa reads.fa.gz | samtools fixmate -O sam - - | samtools

view -b -h -F 256 - > alignment.bam

samtools sort -@ 4 -T temp -O bam -o alignment_sorted.bam alignment.bam

and scaffolds then generated with the requirement for evidence from at least five pairs
of reads before joining two contigs:
sga-bam2de.pl --prefix n5 -n 5 -m 200 alignment_sorted.bam

sga-astat.py -m 200 alignment_sorted.bam > alignment_sorted.astat

sga scaffold -m 200 -a alignment_sorted.astat --pe n5.de -o n5_scaffolds contigs.fa

sga scaffold2fasta --write-unplaced -m 200 -o n5_scaffolds.fa --use-overlap

-a contigs-graph.asqg.gz n5_scaffolds

sga gapfill -o n5_scaffolds_gapfilled.fa --prefix=reads n5_scaffolds.fa

Scaffold assembly statistics are shown in Table 4.2. Again, all the results are for paternal
haplotypes. The paternal haplotype in the cross comes from the H. melpomene father.

Table 4.2 Heliconius scaffold assembly statistics. Scaffolds of less than 500bp
excluded.

Species Assembly Total Scaffold Gaps Contiguity stats (bp)
length (Mb) number N30 N50 N70 N90

H. melpomene trio 273 44,740 14,944 31,535 19,406 10,276 2,408
H. cydno trio 267 35,196 13,286 37,454 23,575 12,900 3,472
Heliconius cross trio 260 22,284 10,331 45,640 29,456 17,738 6,802

4.3 Heliconius butterfly genome assemblies 69

It is interesting that in both contig and scaffold assemblies, the best (most contigu-
ous) trio assembly is for the cross, followed by H. cydno and then H. melpomene. This
pattern suggests that the more heterozygous the individual/species, the better trio
assembly can be achieved.

The first set of Heliconius data was sequenced in February 2015, with average
genome coverage ~40-50X per individual (~120-150X per trio). The coverage of the
offspring reads drops when the trio-sga read phasing algorithm divides reads into
two sets, with the magnitude of the drop depending on how many reads can be phased
(the drop was 47% for the cross, 39% for H. cydno, and 34% for H. mepomene). Coverage
is later recovered when reads from the father consistent with the paternal haplotype
and reads from the mother consistent with the maternal haplotype are brought in.
Nevertheless, I was concerned that the drop in coverage caused by trio-sga read
phasing algorithm could lead to breaks in the assembly caused by insufficient coverage.
Therefore, we sequenced more Heliconius DNA from the same samples in May 2015,
doubling the coverage per individual to ~80-100X.

After doubling the coverage, I obtained trio assemblies in the same way as described
above. Table 4.3 - Panel A lists statistics for the contig assemblies. The increase in
coverage enabled me to increase minimum required overlap between reads from 90-95bp
to 105-110bp. However, improvements in contig lengths have been small. The N50
of the paternal contigs increased from 8.7 to 9.3kb (~7%) for H. cydno and from to
11.3 to 12.7kb (~12.4%) for the cross. The H. melpomene paternal contigs could not
be compared because of technical problems with this assembly. So far, two scaffold
assemblies with high coverage data have been finished (Table 4.3 - Panel B). The N50
of the paternal scaffolds of the cross increased from 29.4 to 33.4kb, an increase of
~13.6%.

Table 4.3 Heliconius assembly statistics - high coverage data. Only trio assem-
blies were generated.

Panel A: Contig assemblies; contigs of less than 500bp excluded.

Species Haplotype Best minimum Total Contiguity stats (bp)
overlap (bp) length (Mb) N30 N50 N70 N90

H. melpomene maternal 110 263 12,909 7,842 4,170 1,161
H. cydno maternal 105 253 14,667 9,501 5,586 1,813
H. cydno paternal 110 268 14,577 9,344 5,306 1,535
Heliconius cross maternal 105 263 19,278 12,457 7,454 2,744
Heliconius cross paternal 105 263 19,460 12,674 7,614 2,905

Panel B: Scaffold assemblies; scaffolds of less than 500bp excluded.

Species Haplotype Total Scaffold Gaps Contiguity stats (bp)
length (Mb) number N30 N50 N70 N90

H. cydno maternal 258 32,547 16,069 42,515 27,047 15,281 3,898
Heliconius cross paternal 265 22,370 11,513 51,986 33,374 19,980 7,343

70 De novo genome assembly

4.4 Cichlid trio genome assemblies
As shown previously in Figure 4.4 and discussed in more detail in chapter 5, the levels
of heterozygosity in cichlids are approximately an order of magnitude lower than in
Heliconius butterflies. Therefore, it was interesting to see if reducing heterozygosity
using trio-sga can deliver improvements in cichlid genome assemblies. Deep coverage
cichlid samples (Table 3.2) were assembled using both the normal and trio methods as
described above for Heliconius. Because the read-length was 100bp, minimum overlap
required between reads was set to 65, 70, 75, and 80bp.

Cichlid contig assembly statistics are shown in Table 4.4. Compared with normal
sga assemblies, using trio data with trio-sga algorithms increases contig N50 by
35% to 45% in all three cichlid species.

Table 4.4 Cichlid contig assembly statistics. Contigs of less than 500bp excluded.

Species Assembly Haplotype Best min. Length Contiguity stats (bp)
overlap (Mb) N30 N50 N70 N90

A. calliptera normal --- 70bp 654 4,532 2,980 1,867 930
A. calliptera trio maternal 80bp 681 6,361 4,118 2,540 1,159
A. calliptera trio paternal 80bp 681 6,381 4,153 2,564 1,167
A. stuartgranti normal --- 70bp 656 4,842 3,125 1,935 949
A. stuartgranti trio maternal 75bp 677 6,579 4,222 2,571 1,164
A. stuartgranti trio paternal 75bp 679 6,644 4,253 2,588 1,167
L. lethrinus normal --- 65bp 640 4,054 2,691 1,723 890
L. lethrinus trio maternal 75bp 673 5,873 3,852 2,407 1,126
L. lethrinus trio paternal 75bp 673 5,888 3,861 2,410 1,130

Scaffold assemblies with paired-end reads were obtained in the same way as described
above for Heliconius. Paired-end scaffold assembly statistics are shown in Panel A
of Table 4.5. The statistics reveal that the most of trio-sga N50 improvements at
the contig level are carried forward to the paired-end scaffolds, with increases of 25%
to 35%. At this stage, with N50 of ~9-12kb, the cichlid assemblies are much more
fragmented than the corresponding Heliconius assemblies which have N50 of ~20-33kb.
This may be partly due to lower genome coverage and shorter read lengths, but also
probably due to more complex repeat structure of cichlid genomes.

For scaffolding with mate-pair reads, I aligned them to the paired-end scaffolds
using bwa mem v0.7.10 [132], processed the alignments by samtools v1.1 [135]
to generate sorted bam files as follows:
bwa mem -p -M paired-end-scaffolds.fa mate-reads.fa.gz | samtools fixmate -O

sam - - | samtools view -b -h -F 256 - > mate-alignment.bam

samtools sort -@ 4 -T temp -O bam -o mate-alignment_sorted.bam mate-alignment.bam

and then generated mate-pair scaffolds with the requirement for evidence from at least
three mate-pairs before joining two paired-end scaffolds:
sga-bam2de.pl --prefix n3-mate -n 3 -m 200 mate-alignment_sorted.bam

4.4 Cichlid trio genome assemblies 71

sga-astat.py -m 200 mate-alignment_sorted.bam > mate-alignment_sorted.astat

sga scaffold -m 200 -a mate-alignment_sorted.astat --mate n3-mate.de

-o n3_mate-scaffolds n5_scaffolds_gapfilled.fa

sga scaffold2fasta --write-unplaced -m 200 -o n3_mate-scaffolds.fa

-f n5_scaffolds_gapfilled.fa n3_mate-scaffolds

sga gapfill -o n3_mate-scaffolds_gapfilled.fa --prefix=reads n3_mate-scaffolds.fa

0
20

00
40

00
60

00
80

00

Mate−pair insert size

F
re

qu
en

cy

0 2000 4000 6000

A. stuartgranti
A. calliptera
L. lethrinus

Fig. 4.6 The distributions of cichlid
mate-pair insert sizes

The effect of repeat structure in cich-
lid genomes of assembly contiguity be-
comes apparent when mate-pair reads
with larger insert sizes are used for gen-
erating scaffolds. The contiguity of mate-
pair scaffolds of the trio assemblies (Ta-
ble 4.5 - Panel B), as measured by N50,
is approximately 5-fold better than when
scaffolding with paired-end reads alone.
Cichlid mate-pair insert sizes are gener-
ally around 1-2kb; full distributions are
shown in Figure 4.6. It is therefore clear
that the long range information present
in mate-pair reads was enabled the assem-
blies to span over a large number of repeat
sequences in this size range. It is also in-
teresting to note that A. stuartgranti, the
species with the longest mate-pair inserts, has the best mate-pair scaffold N50.

Table 4.5 Cichlid scaffold assembly statistics. Scaffolds/contigs < 500bp excluded.

Panel A: Scaffolds assembled with paired-end reads (300-500bp insert size).
A. calliptera normal --- Not assembled
A. calliptera trio maternal 690 19,720 12,155 6,811 2,432
A. calliptera trio paternal 689 20,075 12,310 6,876 2,428
A. stuartgranti normal --- 671 13,679 8,485 4,855 1,835
A. stuartgranti trio maternal 686 17,579 10,838 6,136 2,251
A. stuartgranti trio paternal 687 17,781 10,879 6,115 2,233
L. lethrinus normal --- 655 11,039 6,980 4,089 1,601
L. lethrinus trio maternal 679 15,034 9,364 5,355 2,006
L. lethrinus trio paternal 679 15,034 9,391 5,374 2,008

Panel B: Scaffolds after adding mate-pair reads (~1-2kb insert size).
A. calliptera trio maternal 720 97,843 54,823 26,262 5,366
A. calliptera trio paternal 719 98,689 55,879 26,524 5,366
A. stuartgranti trio maternal 732 104,746 59,945 29,520 5,985
A. stuartgranti trio paternal 733 102,317 59,588 29,285 5,801
L. lethrinus trio maternal 722 90,820 51,728 25,624 5,020
L. lethrinus trio paternal 722 90,316 51,956 25,647 5,038

72 De novo genome assembly

4.5 Andinoacara coeruleopunctatus genome assem-
bly

The genome of the Central American cichlid Andinoacara coeruleopunctatus was
assembled using normal sga pipeline as described in Section 4.3. Assembly statistics
are shown in Table 4.6. The total length of the assembly is similar to East African
cichlids, while assembly contiguity is better, likely due to higher coverage (~60X vs.
~40X) and longer read lengths (125bp vs 100bp).

Table 4.6 A. coeruleopunctatus assembly statistics. Scaffolds/contigs < 500bp
excluded.

Panel A: Contig assemblies.

Species Best minimum Total Contiguity stats (bp)
overlap (bp) length (Mb) N30 N50 N70 N90

A. coeruleopunctatus 90 687 7,780 5,123 3,219 1,487

Panel B: Paired-end scaffold assemblies.

Species Total Contiguity stats (bp)
overlap (bp) N30 N50 N70 N90

A. coeruleopunctatus 699 26,236 16,890 10,174 4,132

Figure fig:PanamaScaffoldDist shows the full distribution of scaffold lengths in the
A. coeruleopunctatus assembly.

Fig. 4.7 Distribution of scaffold lengths in A. coeruleopunctatus assembly.

