
Appendix A - iMotifs

Motivation

1 Short sequence motifs are an important class of models in molecular biology,

used most commonly for describing transcription factor binding site specificity

patterns. High-throughput methods have been recently developed for detecting

regulatory factor binding sites in vivo and in vitro and consequently high-quality

binding site motif data are becoming available for increasing number of organisms

and regulatory factors. Development of intuitive tools for the study of sequence

motifs is therefore important.

iMotifs is a graphical motif analysis environment that allows visualisation of

annotated sequence motifs and scored motif hits in sequences. It also offers motif

inference with the sensitive NestedMICA algorithm, as well as overrepresenta-

tion and pairwise motif matching capabilities. All of the analysis functionality

is provided without the need to convert between file formats or learn different

command line interfaces.

The application includes a bundled and graphically integrated version of the

NestedMICA motif inference suite that has no outside dependencies. Problems

associated with local deployment of software are therefore avoided.

1The following manuscript is published in Piipari et al. (2010b) and is a result of collab-
orative work between the author of this thesis (MP), Dr Thomas Down (TD) and my PhD
thesis supervisor Dr Tim Hubbard. The authors’ contributions are as follows: MP conceived
the work, wrote the software and the manuscript. TD and TH provided feedback. All authors
read the manuscript and provided feedback.
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Availability

iMotifs is licensed with the GNU Lesser General Public License v2.0 (LGPL

2.0). The software and its source is available at http://wiki.github.com/mz2/

imotifs and can be run on Mac OS X Leopard (Intel/PowerPC). I also provide

a cross-platform (Linux, OS X, Windows) LGPL 2.0 licensed library libxms for

the Perl, Ruby, R and Objective-C programming languages for input, output of

XMS formatted annotated sequence motif set files.

Introduction

Until recent years, studying sequence specificity of transcription factors systemat-

ically has been limited to a relatively small number of organisms and transcription

factors. High throughput protein-DNA interaction assays such as protein bind-

ing microarrays (Berger et al., 2006), bacterial one-hybrid screens (Meng et al.,

2005), large ChIP-chip studies and advances in motif inference algorithms and

tools has however caused an expansion of motif databases such as UNI-PROBE

(Newburger and Bulyk, 2009), TRANSFAC (Matys et al., 2006) and JASPAR

(Bryne et al., 2008).

Sequence motif analysis tools can be hard to deploy and use locally. Many

commonly used software packages have therefore been made available as web

applications (Mahony and Benos, 2007; Thomas-Chollier et al., 2008). Public

servers can however be limited in the CPU time given to users which can rule

out their use for large scale studies. Data exchange and usability can also be

a challenge. Therefore I have created an OS X based desktop software package

for sequence motif analysis that is easy to install and update. Compared to

previously published desktop based cis-regulatory sequence analysis tools such

as TOUCAN (Aerts et al., 2003) or Sockeye (Montgomery et al., 2004), iMotifs

is more focused on visualisation and computation of sequence motifs, although it

also supports visualising scored motif matches in sequences.
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Figure A1: iMotifs can present motif sets and alignments. It integrates with the
OS X desktop’s previewing functionality and includes a number of analysis tools
including an integrated NestedMICA motif inference tool.
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Features

iMotifs is designed for visualisation and analysis of cis-regulatory motifs and

sequences. It can be used to retrieve sequences (for example for a coregulated

group of genes), infer cis-regulatory motifs from them and score sequences with

motif models, visualise them and their scored matches, and compare them against

other motifs (Fig. 1 shows the core functionality). A tutorial is included on

the website for common tasks (see Availability). Motifs can be manipulated

and moved between sets by dragging and dropping, and filtered using keyword

searches. Summary statistics such as entropy, column count or distance from

closest pair can also be shown alongside. Free form key-value pair metadata such

as database identifiers, species or notes can be viewed and edited. PDF export

and printing is available. Import and export of TRANSFAC formatted motif files

is also possible.

iMotifs can be used to retrieve sequences from the Ensembl database (Hubbard

et al., 2009). The retrieved sequences can be aligned either to transcription start

sites (putative promoter sequence) or ends (e.g. for micro-RNA seed finding),

and they can be filtered by gene identifiers. The retrieval tool can fetch spe-

cific sequence regions using GFF formatted annotation files, and includes specific

support for ranking and retrieving regions of interest based on ChIP-seq ‘peaks’:

MACS (Zhang et al., 2008a), FindPeaks (Fejes et al., 2008) and SWEMBL for-

mats are supported. Sequences are optionally processed to mask repeats and

translated sequence.

iMotifs supports the quick previewing and thumbnailing service native to OS

X (QuickLook). Previewing is especially useful for browsing sequence motif sets

stored remotely (e.g. on a remote cluster) as no manual transfer or file opening

is needed. An automated software update mechanism is included.

Many common motif analysis tasks are supported. These include finding clos-

est matching and reciprocally matching motif pairs between two motif sets with

the distance metric and algorithm described in Down et al. (2007). Motif multiple

alignments can be visualised and computed with a greedy gapless motif multiple

alignment algorithm. Motif inference experiments can be run with the integrated

NestedMICA (Down and Hubbard, 2005) tool simply by dragging FASTA for-
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matted sequence files to iMotifs. Downstream analyses such as motif scanning,

overrepresentation analysis, and motif hit score cutoff assignment as described in

Down et al. (2007) is also possible. Analysis tasks are run in parallel without

blocking the user interacting with the application.

Interoperability

Although iMotifs itself works only on computers running Mac OS X, the analysis

tools developed for and included in iMotifs are cross-plaform (Java based) and

depend only on libraries included with the package. Most analysis functions are

implemented by stand-alone command-line programs. This makes it possible to

rapidly integrate unmodified tools into iMotifs. The included analysis tools can

also be run on any UNIX system without iMotifs.

I feel that the use of a standard format for exchanging sequence motif data is

beneficial for the research community, given the literally hundreds of motif infer-

ence tools and databases that are available (reviewed in Das and Dai (2007)). To

encourage the take up of a standard file format for motifs, I provide a program-

ming interface for the input and output of the annotated motif file format XMS

for the Perl, Ruby, R and Objective-C languages. The Perl and R libraries can

also be used to visualise sequence logos.

Conclusions

I have created an integrated desktop application for short sequence motif anal-

ysis. It incorporates visualisation, inference, alignment and comparison tools.

The application widens the user base of sequence motif analysis tools and can

improve the productivity of researchers working with sequence motif data. I aim

to integrate with more sequence motif analysis tools and web services and to de-

velop further the already included basic protein motif visualisation and inference

support.

I also encourage the introduction of a standard format for exchange of se-

quence motif data by providing conversion utilities and an API for input and

186



output of XMS motif set files for a number of common bioinformatics program-

ming languages.
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Appendix B - The motif

inference tutorial

Introduction

1The tutorial below is aimed to introduce a researcher new to regulatory genomics

to taking use of the NestedMICA and NMICA-extra motif inferecene tools to

identify and analyze sequence motifs from noncoding genomic sequence. We

demonstrate uses of the NMICA-extra package with a short sequence analysis

project where NestedMICA is first used to recreate the STAT1 transcription

factor binding motif from Robertson et al. (2007).

The first step is retrieving input genomic sequences corresponding to the

ChIP-seq peak regions. To ease the retrieval and importantly preprocessing of

input sequence (repeat masking and exclusion of translated sequences), Nested-

MICA has been enhanced with a number of tools for retrieving sequence from

the Ensembl database (Flicek et al. 2008): nmensemblseq, nmensemblfeat and

nmensemblpeakseq.

1. nmensemblseq: retrieves sequences around transcription start sites or 3

UTRs or introns.

1The following manuscript is a result of collaboration between the author of this thesis
(MP), Dr. Thomas Down (TD), and MP’s thesis supervisor Dr. Tim Hubbard (TH). The
work is published in (Piipari et al., 2011). Authors’ contributions are as follows: MP wrote the
manuscript, all authors read it and provided feedback.
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2. nmensemblfeat: retrieves specific sequence regions using GFF formatted

annotation files as input.

3. nmensemblpeakseq: retrieves sequence regions close to ChIP-seq peaks

• MACS (Zhang et al., 2008b)

• FindPeaks (Fejes et al., 2008)

• SWEMBL ( http://www.ebi.ac.uk/~swilder/SWEMBL/ )

Two more generic sequence feature formats are also supported:

1. BED (https://cgwb.nci.nih.gov/goldenPath/help/customTrack.html)

2. GFF (http://www.sanger.ac.uk/resources/software/gff/spec.html)

We will use nmensemblpeakseq to retrieve sequence windows corresponding to

50 base long sequence windows around ranked ChIP-sequencing peak maximum

positions of the 500 top-ranking peaks.

nmensemblpeakseq −database homo sap iens core 52 36n \
−host ensembldb . ensembl . org \
−user anonymous −port 5306 \
−inputFormat peaks \
−peaks STAT1 IFNGstim hg18 xset200 dupsN ht10 . sub . peaks \
−maxCount 500 \
−aroundPeak 50 \
−minLength 50 \
−minNonN 80 \
−repeatMask \
−exc ludeTrans l a t i on s \
−chunkLength 100 > s tat1−st imulated−50bp−around−max . f a s t a

The regions included in the dataset have been mapped to the NCBI36 human

genome assembly (Ensembl release 52). We therefore request sequences relative

to the same release of the Ensembl database (homo_sapiens_core_52_36n). The

reason for choosing the database, hostname and port combination above is that

at the time of writing the publicly available Ensembl instance that serves the

Ensembl release 52 is the port 5306 on ensembldb.ensembl.org.
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Sequence background model estimation

Before motif inference from the retrieved sequences, it is advisable to estimate a

NestedMICA sequence background model as a separate step. This can be done

with the command nmmakebg, which requires two input parameters: Markov chain

order and the number of mosaic classes. The Markov chain parameter is usually

set to 1st order because some of the DNA motif specific downstream analysis tools

require this. The class count parameter that yields best performance tends to

be 4 (Down and Hubbard, 2005), but it is best to evaluate different mosaic class

parameters before the potentially long-running motif inference analysis. Back-

ground models can be evaluated using the command nmevaluatebg

nmevaluatebg −order 1 \
−minClasses 1 −maxClasses 8 \
−s eqs stat1−st imulated −500bp−around−max . f a s t a \
−t e s t S e q s stat1−s t imulated . f a s t a \
> min1c lasses−max8classes−eval−bg . eva l

The output of nmevaluatebg can be used to find the mosaic order parameters

at which the background model performance, as measured by sequence likelihood

given the background model, shows little increase or drops. These parameter

values are then taken as the optimal ones. The easiest way to interpret the

results is to plot them using R with the nmica R package (http://github.com/

mz2/r-utilities).

> l i b r a r y ( nmica )

>eva l . r e s u l t s <−
read . nmevaluatebg (

m i n 1 c l a s s e s−max8classes−eval−bg . e v a l )

>p lo t ( eva l . r e s u l t s $ c l a s s e s ˜ eva l . r e s u l t s $ l i k e l i h o o d )

This evaluation (Figure A2) suggest a suitable order parameter as 4. We can

now commence with the background model estimation:

nmmakebg −c l a s s e s 4 −order 1 \
−s eqs stat1−st imulated −500bp−around−max . f a s t a \
−out seqs−4c l a s s e s −1s t o r d e r . bg
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Figure A2: Output of the nmevaluatebg command plotted in R.
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Motif inference

After retrieving the input sequences and determining class and order parame-

ters with nmmakebg, we can now run the NestedMICA motif inference with the

command nminfer.

nminfer −s eqs stat1−s t imulated . f a s t a \
−numMotifs 1 \
−backgroundModel s tat1−st imulated−4c l a s s e s . bg \
−minLength 6 −maxLength 14 \
−minSeqLength 50 \
−maxCycles 1000000 \
−revComp \
−expectedUsageFract ion 0 .70 \
−checkpoint stat1−st imulated−checkpoint \
−sampleFi l e stat1−st imulated−sample \
−sample Inte rva l 10000 \
−c h e c k p o i n t I n t e r v a l 10000 \
− l o g I n t e r v a l 100 \
−d i s t r i b u t e d −port 5001 −threads 4 \
−out mot i f s . xms > nminfer . l og 2> nminfer . e r r

Note that the above command line instructs periodic output of checkpoint

files that can be used to restart the computation, as well as sample motif set files

(preliminary motif set solutions that can visualised whilst the computation is still

running). The above nminfer command line also demonstrates distributed com-

puting with NestedMICA: the -distributed and -port 5001 instruct nminfer

to act as a server that responds at port 5001 to distribute its work load to sepa-

rate worker nodes (each of which would typically correspond to one computer in

a computational cluster). Worker nodes that connect to a server can be created

with the command nmworker.

nmworker −s e r v e r nmica server hostname −port 5001 −threads 4

The actual host name given above depends on the host name of the computer

where nminfer was set to run.
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Motif overrepresentation

When interpreting the output of NestedMICA, it is important to note that the

algorithm does not rank its output motifs relative to each other or predict hit

positions for them. A common way of assessing computationally inferred motifs

is through a motif overrepresentation analysis. By overrepresentation analysis we

mean a statistical exercise where sequences with the motif (the positive set) are

discriminated from those assumed to be devoid of it (the negative set). The ap-

proach taken in NMICA-extra for computing the degree of overrepresentation in

a set of sequences is the ROC-AUC (Receiver-Operator Characteristic Area Un-

der the Curve) statistic, computed with the tool nmrocauc. In short, sequences

are labelled as positive or negative and the maximum motif bit score is used

to predict if any given sequence is part of the positive or the negative sequence

set – the maximum motif hit score is used to classify the sequences. The AUC

statistic that is reported by this analysis is a measure of how often a randomly

chosen positive sequence is ranked above a randomly chosen negative sequence.

It therefore provides a measure of separation of maximum motif hit score dis-

tribution of the positive examples from the negative examples. To estimate the

null distribution of scores with the length distribution and sequence composition

used, the negative sequences are shuffled and the randomly generated sequences

are then scored according to the same criterion. The shuffling conducted as part

of this method accounts for the fact that the maximum hit score distributions of

sequences can vary based on nucleotide composition.

#Retr i eve 1000 random core promoter sequences :

#900bp upstream of TSS and up to 100bp downstream

#Exclude any repea t s and t r a n s l a t e d sequence

nmensemblseq \
−sampleRandomGenes 1000 \
−fivePrimeUTR 900 100 \
−prote inCoding \
−repeatMask \
−exc ludeTrans l a t i on s \
−database homo sap iens core 52 36n \
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−host ensembldb . ensembl . org \
−port 5306 \
−user anonymous > \
1000−random−human−promoters 900bp−upstream−100bp5utr . f a s t a

#Sample 1000 random sequences o f l ength 50

#The sequence window length

#i s the same as that o f the peak sequence windows

nmrandomseq \
−count 500 \
−l ength 50 \
−s eqs 500−random−human−promoters 900bp−upstream−100bp5utr . f a s t a > \
100bp−windows−from−random−human−promoters . f a s t a

nmrocauc \
−p o s i t i v e S e q s s t a t 1 c h i p p e a k s . f a s t a \
−negat iveSeqs \
50bp−windows−from−random−human−promoters . f a s t a \
−mot i f s stat1 human . xms

#Output :

#moti f2 0 .992880 0.00000

The above analysis shows that the discovered motif is strongly over-represented

in the ChIP-sequencing peaks when compared to random noncoding sequence re-

gions of the same genome (the empirical p-value, which is the second value in the

nmrocauc output, is below 10−5.

The STAT transcription factors are a well studied family of transcription

factors and DNA binding motif have therefore been deposited to publicly available

databases such as TRANSFAC (Matys et al., 2006). This makes it possible

to validate the sequence motif we have inferred from the ChIP-seq data with

NestedMICA by searching it against motif databases with the reciprocal matching

procedure described above. Reciprocal matching of motifs is implemented in the

tool nmshuffle that is distributed as part of NestedMICA.
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nmshuf f l e −boot s t raps 100000 \
t r a n s f a c 1 2 . 2 . xms stat1−human . xms

#Output :

#moti f0 STAT5A [ M00457 ] 0 .531520 0 0.00000

A statistically significant match is identified for the NestedMICA STAT1 motif

in the TRANSFAC database (the empirical p-value which is the last column in

the nmshuffle output above, is below 10−5). An inspection of the closest matching

motifs makes it clear that NestedMICA infers a very similar binding specificity

pattern for STAT1 as has been previously reported for members of the STAT

family transcription factors (Figure A3).

Figure A3: The predicted motif alongside known STAT motifs from the TRANS-
FAC database.
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Appendix C - Motif inference

algorithm assessment parameters

The parameters given for each of the motif inference methods tested in Chapter 5

are given below.

NestedMICA

The NestedMICA algorithm was run with the following parameters:

nminfer −numMotifs 200 \
−minLength 6 −maxLength 14 \
−expectedUsageFract ion 0 .2 \
−backgroundModel s c 4 c l a s s e s 1 o r d e r . bg \
−s eqs or tho logs−sc −1000. f a

Sequence background model parameters were evaluated with nmevaluatebg

using a randomly chosen half of the input sequence for model learning (-trainSeqs)

and the remaining half for model evaluation (-testSeqs). As suggested in the

NestedMICA manual, the Markov chain order was kept constant at 1 (-order 1)

and the mosaic class parameter was varied between 1 and 8 (-minClasses 1

-maxClasses 8). The sequence likelihood values achieved with each of these

parameter settings are shown in Figure A4.

Mosaic class count 4 was chosen based on the above evaluation because it

presents an acceptable compromise between a descriptiveness and complexity of
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Figure A4: Evaluation of sequence background model class counts at Markov
chain order 1.

the model; Increasing the class count beyond 4 results in diminishing gains in the

sequence likelihood. The runtime of the application also increases.

Weeder

The weeder algorithm (Pavesi et al., 2001) was run with the weederlauncher.out

driver script distributed with the program. The ‘large’ settings were used to

search for motifs between 6 and 12 nucleotides long, and motifs were allowed to

be present on either strand:

weeder launcher . out or tho logs−sc −1000. f a SC l a r g e S M T200

For all downstream analyses, the motif output by the program were trimmed

to the top 200 reported motifs.

197



AlignACE

The parameters used for running AlignACE (Roth et al., 1998) are described

below:

AlignACE −numCols 10 −gcback 0 .38 − i o r tho logs−sc −1000. f a

The sequence background model used by AlignACE is a 0th order Markov

chain, simply parameterised by the overall GC content of the yeast genome (Gof-

feau et al., 1996). The motif length (number of columns) was set to 10. Length

of 10 was chosen because it is the median motif length in the JASPAR motif

database which the predicted motifs are primarily compared with.

MEME

MEME version 4.3.0 (Bailey et al., 2006) was run with the following parameters:

meme . bin or tho logs−sc −1000. f a \
−dna −mod anr \
−nmot i f s 100 −minw 6 −maxw 14 \
−b f i l e ˜/meme 4 . 3 . 0 / t e s t s /common/ yeast . nc . 6 . f r e q

The motifs were constrained to lengths between 6 and 14, similarly as done

with NestedMICA. The background model used was the 6th order Markov chain

background model trained from S. cerevisiae intergenic sequences which is sup-

plied with MEME 4.3.0 (motif finding with a 3rd order background was also

attempted). The sequence-motif model used was the “any number of repeats”

model (-mod anr). Number of motifs was set to 100 – it was the largest number

of motifs that MEME allows.

MotifSampler

MotifSampler (Thijs et al., 2001) was run with the following parameters:

MotifSampler −f o r tho logs−sc −1000. f a \
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−b or tho logs−sc −1000. moti fsamplerbg \
−r 50 −s 1 −M 1 −n 50 −w 10 \
−o or tho logs−sc −1000. mot i f samplerout \
−m ortho logs−sc −1000. mot i f s

The motif count parameter 50 (-n 50) was used because the program did not

report motifs when large numbers of motifs were requested. The motif width 10

was chosen as it was the maximum allowed by the program, and the median motif

length in the JASPAR database. Before the motif inference program was run,

a 2nd order background model was trained from the input sequences using the

CreateBackgroundModel tool supplied with MotifSampler, with the following

parameters:

CreateBackgroundModel \
−f . . / o r tho logs−sc −1000. f a \
−b or tho logs−sc −1000. moti fsamplerbg \
−o 2 −n SC

YMF

YMF (Sinha and Tompa, 2003b) was run with the following parameters::

. / s t a t s s t a t s . c o n f i g 200 8 \
ymftables / yeast −s o r t o r tho logs−sc −1000. f a

Two hundred 8-mers were inferred, using the yeast background nucleotide fre-

quencies from the table supplied with the program (../ymftables/yeast). The

output of YMF was post-processed another program, FindExplanators (Blanchette

and Sinha, 2001), which removes redundancy amongst the consensus strings, out-

putting supposedly independent motifs.

f i n d e x p l a n a t o r s \
ymftables / yeas t powersGenera l i z ed . 3 . bin \
or tho logs−sc −1000. f a s t a t s / r e s u l t s 5
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FindExplanators reported a single motif AAARNRAAA regardless of the final

explanator motif count parameter, which was varied. An inspection of the YMF

results, which were given to FindExplanators as input, shows that the YMF out-

put indeed only contains consensus strings that closely fit either AAARNRAAA

or its reverse complement TTTYNYTTT. An excerpt with the first ten motifs

from the set of 200 are given below.

2 AAARNRAAA 1529 48 .93 345.6754 584.8017

3 TTTYNTTTY 1582 48 .37 365.7588 632.3148

4 AAAANRAAA 1223 48 .17 242.6953 414.1873

5 AAAANAAAA 994 47 .53 167.9777 302.0721

6 AAARNAAAA 1202 47 .46 239.8017 411.0152

7 ARAANRAAA 1478 47 .30 354.0071 564.6885

8 TTTTNTTTY 1258 47 .03 253.1523 456.4886

9 TTYTNTTTY 1514 47 .00 360.8600 602.0605

10 AAAANRRAA 1493 46 .94 351.1163 591.8228

As one can see, motifs output by YMF with these parameters are a largely

redundant set. I chose to still analyse these motifs alongside the other predictions

further, to see how a highly redundant motif set would perform in my assessment.

SOMBRERO

SOMBRERO (Mahony et al., 2005b) was run with the following parameters:

SOMBRERO −t o r tho logs−sc −1000. f a \
−b / n f s / u s e r s / nfs m /mp4/sombrero/ yeas t . back \
−lm 6 14 \
−time 200 \
−out r e s u l t s . sombrero

The 2nd order sequence background model of the yeast genome was down-

loaded from http://bioinf.nuigalway.ie/sombrero/binaries/backgrounds.zip. The

training iteration count was set to 1000 (ten times larger value than the default,

to reflect the large nature of the problem). The minimum and maximum motif
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lengths were set to 6 and 14 respectively. The program output was cut to 200

motifs by ranking motifs by the z-score which SOMBRERO reports.

Oligoanalysis

Oligo-analysis (Thomas-Chollier et al., 2008) was run with the web form included

in the RSA Tools web server at http://rsat.ulb.ac.be/rsat/oligo-analysis_

form.cgi, with the parameters shown in Figure A5, to discover a total of 50 over-

represented sequence words.

Figure A5: Parameter choices used with Oligo-analysis.
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