
Chapter 1

Introduction

The genetic information stored in our DNA is transcribed into RNA by large

molecular holoenzymes called RNA polymerases. In eukaryotic organisms there

are three types of RNA polymerases, out of which RNA polymerase II (Pol II)

is the one responsible for transcribing protein-coding genes and many noncoding

RNAs such as micro-RNAs (Megraw et al., 2009; Saltzman and Weinmann, 1989).

Pol II activity is highly regulated at the level of the individual transcript, and

this regulation is essential for both cellular homeostasis and development of mul-

ticellular organisms (Fuda et al., 2009). The most central and best understood

mechanisms of gene regulation is mediated by the interaction of sequence specific

transcription factors (TFs) with DNA target sequences, each other and with other

members of the Pol II complex (Mitchell and Tjian, 1989). Transcription factors

orchestrate the transcription cycle because their activities are in turn controlled

by cellular signals, for instance on the level of post-transcriptional modifications

and protein-protein interactions. Each factor has a preference towards a specific

set of DNA words which dictates the positions at which it is recruited to the

genome. As this mechanism of DNA site recognition acts in part to choose the

target genes of the transcription factors, the DNA patterns are commonly known

as ‘regulatory motifs’.

In this introduction I firstly outline the known regulatory mechanisms acting

on the level of transcription to highlight the importance of and challenges in the

study of transcriptional regulatory mechanisms (Section 1.1). I then briefly review

the previous literature on computational regulatory motif inference (Section 1.2),
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before introducing the specific computational methodology used in the project

(Section 1.3). I then discuss the biological resources which were applied in this

work (Section 1.4), and finally introduce the specific contributions in this work

to the inference and classification of regulatory motifs (Section 1.5).

1.1 Gene regulation by control of transcription

Transcription factors act by promoting or inhibiting the recruitment of Pol II

to the gene’s promoter, to initiate RNA transcription at the transcription start

site (TSS) of the gene, eventually leading to the generation of a full-length RNA

transcript. This classical understanding of eukaryotic transcriptional regulation

– involving only proximally located transcription factor binding sites (TFBS) –

has had to give way to a more complex view of regulatory interactions. Firstly,

factors which interact with Pol II not only act to recruit it to the complex, but

can also affect its post-initiation clearance from the promoter, elongation of the

transcript, and its termination, all of which are found to be rate-limiting and

therefore highly likely regulated steps in the case of some genes (Venters and

Pugh, 2008). Secondly, regulatory regions are found not only proximal to the

TSS, but also kilobases further upstream, or even downstream, of their target

genes in an orientation independent manner (Banerji et al., 1981).

The more distal regulatory regions are known as “enhancer” regions when they

have an activatory role, and “silencer” regions when they inhibit recruitment of

the transcriptional machinery (Visel et al., 2009). Several large studies have been

conducted and are currently underway to systematically discover and catalogue

tissue specific enhancers acting in mammalian and fish genomes (Ellingsen et al.,

2005; Pennacchio et al., 2006; Visel et al., 2008). Enhancer- and silencer-like

regions, as well as insulators which set the ‘borders’ of the chromatin domains

regulated by enhancers and silencers, have also been described in yeasts (Bi and

Broach, 2001; Buchman et al., 1988). The chromatin packaging of the genome

sets limits to the regions that are available for transcription factor binding, and

regulatory interactions that control this process can both activate and repress

expression (Li et al., 2007; Steinfeld et al., 2007; Venters and Pugh, 2008). Figure

1.1A depicts these various factors and interactions involved in transcriptional
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regulation.

General transcription factors (GTFs) bind to specific target sequences close to

the transcription start site (TSS) at defined locations (Venters and Pugh, 2008),

as shown in Figure 1.1A. Names and approximate positions are shown for the

GTF target sequences. Regulatory transcription factors bind either to activate

or repress the transcription of the target gene by binding to their target DNA

sequences either near the core promoter or more distally (enhancers). Interactions

between the TFs, GTFs and the Pol II are also important for regulation. Co-

regulators which do not themselves bind DNA in a sequence-specific manner also

interact with GTFs, TFs and nucleosomes (via modified histone tails). Both

activation and repression can occur via each of these interactions.

Trans-acting enhancer regions are thought to contribute to eukaryotic gene

regulation by looping DNA to promote the recruitment of the transcription ma-

chinery at a TSS (Figure 1.1B). Many genes are known to achieve their observed

expression patterns through the combination of weak promoters and enhancer re-

gions, which supplement them. In this example the expression pattern of a gene

is modulated by both a promoter, as well as brain and limb specific enhancer

elements. Silencer elements, which were not depicted here, can also act from a

large distance to the TSS.

Enhancers and silencers rely on the organisation of genes into chromosomal

domains that can in part be co-regulated. However, it has also been suggested

that TF target genes are organised non-randomly for the majority of TFs, even

in S. cerevisiae with its compact non-coding genome (Janga et al., 2008), short

promoter sequences and relatively few examples of long-distance enhancer or si-

lencers. The organisation of targets of a TF along chromosomes, possibly through

their association in shared three-dimensional ‘chromosomal territories’ (Cremer

and Cremer, 2001; Gasser, 2002; Lieberman-Aiden et al., 2009), could pose yet

another largely uncharacterised level of regulatory information. The effect of

neighbouring genes sharing similar promoter motifs has also been shown in D.

melanogaster (Zhu and Halfon, 2009).

Another mechanism of transcriptional regulation not depicted above is the

tissue or time specific use of alternative TSSs. The majority of human and mouse

Pol II promoters have clusters of close TSSs instead of a single one (Frith et al.,
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Figure 1.1: Key regulatory interactions which modulate transcription initiation.
A) A promoter centric view on transcriptional regulation. Transcription factors
interact with DNA and other regulatory factors to modulate the action of the
RNA polymerase. B) An enhancer centric view on transcriptional regulation.
Figure adapted from Visel et al. (2009) and Fuda et al. (2009).
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2008). Larger scale TSS usage variation also occurs. Alternative promoter usage

can in fact act as a mechanism for creating variant isoforms of gene products

(Carninci et al., 2006), and changes in alternative TSS use are found associated

to tissue and developmental stage specific dynamics of transcription (Consortium

et al., 2009; Valen et al., 2008).

The identification and study of gene regulatory sequence is more difficult than

protein-coding sequence because of several factors. Perhaps most importantly, the

conservation pattern of regulatory sequence does not resemble that of protein cod-

ing sequence. Purifying selective constraint in regulatory sequences is often seen

between closely related species (Hardison, 2000; Loots et al., 2000; Ludwig, 2002),

but genomic TF binding studies suggest that turnover of regulatory elements oc-

curs at remarkably high rate even when expression pattern (i.e. the connectivity

of the TF network) shows little change (Schmidt et al., 2010). Indeed, changes in

regulatory interactions have been hypothesised to be a cause of species divergence

both in fungi (Borneman et al., 2007) and in animals (Carroll et al., 2000; Galant

and Carroll, 2002). Furthermore, regulatory elements are often not constrained

in the ordering, orientation or number of functional sites (Ludwig, 2002; Mark-

stein and Levine, 2002). Consequently, alignment based comparative methods,

which have been largely developed for the study of protein coding DNA, suffer

from misalignments. For instance only 59% agreement is found between methods

in the case of the 12 whole-genome Drosophila genomes aligned in the study by

Stark et al. (2007). Detecting selective constraint acting on short blocks – often

less than 20bp long (Bergman and Kreitman, 2001) – is not easy. Indeed, align-

ment based comparative analyses can only identify a small fraction of functional

elements (Siggia, 2005). Alignment free cis-regulatory motif discovery methods

which can consider recurring signals between related species to be conserved re-

gardless of alignment or orientation are only beginning to appear (Gordan et al.,

2010; Kim et al., 2010; Xie et al., 2009).

TF binding sites frequently occur in clusters – homotypic or heterotypic

(Gotea et al., 2010). Site proximity of different TFs can modulate both co-

operative and repressive interactions between different TFs (Kulkarni and Arnosti,

2005; Lebrecht et al., 2005), and competition of TFs for overlapping TFBSs is

known to contribute for instance to Drosophila embryo segmentation (Walter
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et al., 1994). Repetitive (homotypic) clustering of sites for the same TF is also

well documented and can act to ensure stable binding (Cunningham and Cooper,

1993) or modulate a graded transcriptional response (Donahue et al., 1983). In-

terestingly, it has been suggested that even proximal or overlapping spacing of

sites might be produced by selection mechanisms acting to maintain the overall

composition of TFBSs in cis-regulatory elements instead of a constraint acting

to maintain binding site position or orientation (Lusk and Eisen, 2010).

1.1.1 Sequence specific transcription factors

Understanding properties of cis-regulatory sequences is an ongoing challenge

faced by the field of regulatory genomics. Another challenge which similarly

continues to require extensive experimental and computational work is the an-

notation of transcription factors in genomes. High coverage annotations of TF

genes are available for some well studied organisms in manually curated databases,

ranging from RegulonDB for Escherichia coli (Huerta et al., 1998; Salgado et al.,

2006), DBTBS for Bacillus subtilis (Ishii et al., 2001; Sierro et al., 2008), FlyBase

(Wilson et al., 2008b) and FlyTF (Adryan and Teichmann, 2006; Pfreundt et al.,

2010) for Drosophila, TFdb (Kanamori et al., 2004) and TFCat (Fulton et al.,

2009) for human and mouse.

Advanced comparative sequence analysis techniques based on the use of pro-

tein domain profile Hidden Markov models have been helpful in systematically

predicting large numbers of transcription factors for many sequenced genomes,

both eukaryotic and prokaryotic (Kummerfeld and Teichmann, 2006; Wilson

et al., 2008a). To illustrate the insight that TF annotation gives about transcrip-

tion regulation, a comparison is shown below between the number of predicted

sequence specific transcription factor genes out of the total number of protein

coding genes for four eukaryotic species, as well as the E. coli (K12). The data

presented is from the DBD database (Wilson et al., 2008a) (Release 2.0, down-

loaded 12/6/2010) which predicts TFs based on statistically significant matches

to protein domain models from either the PFAM (Finn et al., 2010; Sonnhammer

et al., 1997) or the SUPERFAMILY (Gough et al., 2001; Wilson et al., 2009)

databases.
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Figure 1.2: TF counts versus gene counts. The data presented is from the DBD
database (Wilson et al., 2008a).

The TF number comparison shown in Figure 1.2 highlights several properties

of transcriptional regulation. Firstly, the number, and more interestingly the

proportion of TFs, increases for large genomes. For example in the case of the

human genome, 13% of its approximately 23,000 genes are predicted to be TFs,

whereas only 2.6% out of the 6,700 Saccharomyces cerevisiae genes are annotated

as TFs. The increase in fraction of regulatory factors from the total number of

genes amongst eukaryotes is thought to be a manifestation of the increased need

to specifically regulate genes in larger, more complex organisms.

Single-cellular eukaryotic genomes contain a smaller fraction of TFs from total

gene number when compared to bacteria (S. cerevisiae at 2.6%, E. coli at 6.4%).

This is a well documented observation and thought to be a result of tissue and

condition specific combinatorial regulation of genes in eukaryotes (van Nimwegen,

2003), epigenetic regulation (Choi and Kim, 2008), as well as the additional post-

transcriptional control mechanisms such as microRNAs that are abundant in

higher eukaryotes but absent in some fungi such as S. cerevisiae (Grimson et al.,

2008). A power-law relationship has been described between the genome size

and the number of TFs present in a genome, both in eukaryotes and prokaryotic

organisms, with a lower exponent in eukaryotes (van Nimwegen, 2003).
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Known binding site motifs of eukaryotic TFs tend to be less constrained than

bacterial motifs (Wunderlich and Mirny, 2009). This together with the much

larger genome sizes of eukaryotes also points at the requirement for additional

levels of regulation. To put it simply, the DNA motif of a eukaryotic TF does

not contain enough information to help it distinguish its cognate sites from non-

functional sites that could occur as often as every 103 – 104 nucleotides (assuming

a simple genomic background model parameterised by average GC content). This

view is supported by in vivo ChIP-seq binding studies of genomic binding sites

of several eukaryotic TFs: assumably non-functional binding far from genes is

found to be abundant in several studies (Robertson et al., 2007; yong Li et al.,

2008). Abundant non-functional binding of TFs was in fact observed already in

a much more laborious UV-crosslinking and Southern blot study by Walter et al.

(1994).

Clustering of TFBSs can provide additional regulatory information by allow-

ing combinatorial binding of TFs (Georges et al., 2010; Makeev et al., 2003;

Papatsenko, 2009). More recently, a large scale analysis of human and mouse TF

protein-protein interactions and expression measurements of the factors strongly

suggests the combined action of sequence specific TF complexes, most impor-

tantly homeobox factors, in cell fate specific regulation of target genes (Ravasi

et al., 2010). Homeobox factors are interesting in this context because they are

especially common in mammals (Wilson et al., 2008a), they have short five or

six nucleotide long motifs (Affolter et al., 2008) and they often bind with an ad-

ditional, specific co-factor in a manner specific to cell-type (Ravasi et al., 2010).

In conclusion, in higher eukaryotes it is important to consider gene regulation

as a combination of multiple mechanisms including for instance increased com-

binatorial interactions of TFs, multiple classes of noncoding RNAs (Jacquier,

2009), epigenetic mechanisms (Jaenisch and Bird, 2003) and alternative tran-

scripts (Carninci et al., 2006).

When the TFs of each organism are grouped by the content of their DNA

binding families (Figure 1.3), it becomes apparent that TFs of all the organisms

shown here fall into a much smaller number of DNA binding domains (e.g. 155

domains in 2886 human TFs, or 46 domains in 177 S. cerevisiae TFs). The low

overlap between TF domain content of different genomes highlights that many of
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the TF families have expanded within specific lineages (Babu et al., 2004). For

example, the overlap between domains annotated in H. sapiens and E. coli is only

four domains (HTH3, HTH11, CSD and PAS domains) whereas the mammals

H. sapiens and M. musculus share 151 domains. The reader is referred to Wilson

et al. (2008a) for a more thorough discussion of the kingdom specific expansion

of DNA binding domains.
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1.1.2 Binding specificity of transcription factors

Determining the genomic binding sites and modelling sequence specificity pat-

terns of TFs has proven a formidable task. Currently the only eukaryotic organ-

ism for which binding specificity of the large majority of its transcription factors

has been determined based on DNA–protein interaction assays is Saccharomyces

cerevisiae, which has a small genome by eukaryotic standards (12 Mbases with

6,532 protein coding genes according to the Ensembl release 58.1j (Hubbard et al.,

2009)). I will take special interest here in discussing S. cerevisiae because what

is already known of its transcriptional regulation is the closest that we currently

have to a ‘regulatory code’ of any eukaryotic genome, and because computational

genome scale regulatory motif inference in S. cerevisiae is the focus of the work

described in Chapter 5.

The first large scale effort towards the in vivo profiling of TF binding on a

genome scale was the study by Harbison et al. (2004), where ChIP-chip assays

were conducted with 203 sequence specific TFs, each factor’s binding profile being

measured in one or more of 12 different growth conditions. The original analysis of

the paper detailed a high confidence motif for 63 of the 203 TFs studied. MacIsaac

et al. (2006) then provided a re-analysis of the large dataset with two phylogenetic

foot printing based inference algorithms. PhyloCon (Wang and Stormo, 2003)

and Converge (MacIsaac et al., 2006) yield motifs for an additional 36 TFs. The

resolution of the ChIP-chip assay however does not reach beyond 500nt due to

the limitations set by the use of randomly sheared genomic DNA fragments and

tiling arrays (Sikder and Kodadek, 2005). ChIP-chip in other words is not ideal for

determining accurate binding site profiles for TFs. ChIP followed by sequencing

(ChIP-seq) offers a partial solution to the resolution problem, and allows more

accurate and quantifiable in vivo study of protein-DNA binding. ChIP-seq assays

with TFs have been to date conducted with TFs of larger, higher eukaryote

genomes 1, with the exception of Lefrançois et al. (2009) who assayed a series of

budding yeast TFs as a proof of concept of a multiplexed ChIP-seq experiments

(a single sequencing experiment contains samples for multiple TFs). In vitro

1Large scale efforts to profile sequence specific TF specificity in human and several model
organisms in vivo with ChIP-seq have begun as part of the ENCODE and modENCODE
projects. See http://www.genome.gov/10005107 for more information.
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measurements of TF DNA specificity however already provide a close-to-complete,

high resolution dataset for the S. cerevisiae: a protein binding microarray (PBM)

Mukherjee et al. (2004) based study by Zhu et al. (2009), and a study by Badis

et al. (2008) using a combination of PBMs, cognate site identifier microarrays

(Warren et al., 2006), and DIP-chip (Liu et al., 2005).

Our knowledge of sequence specific protein–DNA interactions is far less com-

plete in the case of larger eukaryotic genomes than it is in the budding yeast.

The JASPAR database (Portales-Casamar et al., 2010), which contains a high

quality non-redundant resource of TFBS motifs for different kingdoms of life,

contains only 75 TFBS motifs for the 2886 TFs in human. For mouse there are

only 40 TFs present in JASPAR (out of 2548 TFs). Furthermore, most high

throughput studies to date have concentrated on a small number of highly ex-

panded TF domain families, such as homeodomains (Noyes et al., 2008a) and

basic helix-loop-helix factors (Grove et al., 2009; Maerkl and Quake, 2009), with

the exception of Badis et al. (2009) whose 104 TFBS motifs cover 22 different

families of TFs. New high-throughput methods for studying DNA–protein in-

teractions are becoming available in addition to universal PBMs which currently

provide majority of the publicly available high-throughput TF–DNA specificity

data. These new promising methodologies include ChIP-seq (Robertson et al.,

2007), bacterial one-hybrids (Meng and Wolfe, 2006; Noyes et al., 2008a,b), multi-

plexed massively parallel SELEX (Jolma et al., 2010) and a microfluidic molecular

interaction assay platform by Maerkl and Quake (2007a).

Although new protein–DNA interaction probing technologies have the poten-

tial to transform our knowledge of eukaryotic transcriptional regulation, it is also

clear that efficient computational methods for motif inference and classification

continue to be of key importance. My aim in Chapter 2 is to present a new

class of motif family models that can be learned using experimentally determined

PWM motifs, such as those derived from new HT technologies. In Chapters 3

and 4 I present applications of motif family models for sensitively inferring mo-

tifs from genomic sequence, and for classifying computationally inferred motifs

by their DNA binding domain type, respectively. In both of these lines of work

use experimentally determined motif data to provide a comparison for evaluating

computational predictions. Experimentally determined regulatory motifs are also
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central to the S. cerevisiae motif inference performance benchmark in Chapter 5,

where de novo predictions are compared to experimental motifs.

1.2 Computational inference of transcription fac-

tor binding site motifs

Computational inference of TFBSs by applying short motif inference algorithms

to pieces of genomic DNA sequence is a long-standing research problem. It has

motivated computational biologists to propose literally hundreds of algorithms

over the course of more than 30 years. Many of these algorithms are introduced

in previous reviews (Das and Dai, 2007; MacIsaac and Fraenkel, 2006; Nguyen

and Androulakis, 2009; Sandve and Drabløs, 2006), and therefore only essentials

of different approaches are covered here.

The first motif inference algorithm was published in the landmark paper by

Korn et al. (1977) where pairwise comparisons of aligned sequence immediately

close to prokaryotic transcription start sites (TSS) and terminator sequences were

used to infer recurring motifs. The Korn et al. (1977) approach, which simply

lists recurring sequence words found by pairwise comparisons of noncoding DNA

sequence, is the earliest precursor to oligonucleotide word enumeration based

motif inference algorithms. Such algorithms aim to exhaustively list possible k-

mers that satisfy an objective function such as a conservation or significance score,

commonly allowing a certain maximum number of mismatches. This approach

is still taken in several recently published algorithms, ranging from reporting

ranked k-mers of a specified length (Helden et al., 1998; van Dongen et al., 2008)

to IUPAC consensus strings that allow for describing degeneracy in positions

(Marschall and Rahmann, 2009; Xie et al., 2005, 2007). In fact the Tompa et al.

(2005) ab initio motif inference method benchmark showed the word-enumeration

based Weeder (Pavesi et al., 2001) as one of the best performing inference method

of the 13 methods that were tested. The Tompa et al. (2005) benchmark is

discussed in more detail in Section 5.1.2. Enumeration based methods can be

made computationally very fast through the use of modern computers with access

to a large volume of runtime memory together with highly optimised look-up data
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structures, such as suffix trees which were originally introduced in computational

biology detection of repeat elements (Sagot, 1998).

Word enumeration methods however have certain inherent limitations. Firstly,

the reliance on lookup based data structures make them incapable of modelling

very long TFBS patterns – 8-mers or 10-mers are typically studied – which are

known to be present amongst eukaryotic TFBS motifs of many TF families.

Cys2His2 zinc finger motifs for instance can be as long as 15 or 20 nucleotides

due to the common architecture of their protein–DNA interaction which involves

several zinc finger domains binding in tandem (LeClerc et al., 1991; Wolfe et al.,

2000). Motifs with a large number of weakly constrained positions are also prob-

lematic for word enumeration methods which generally require sequence word

clustering based on edit distance to group individual related sequence words to

motif models to describe degeneracy. The great majority of TFs do not bind to

a unique DNA ‘word’, but instead they show a distribution of binding affinity

across a number of possible sites (known as ‘degeneracy’). Degenerate positions

are well known to occur in TFBS motifs (examples with degenerate motifs are

shown in Figure 1.4), and the information content of a position has been shown

to correlate with its conservation (Moses et al., 2003) and the number of contacts

the base makes with amino acid residues (Gelfand and Mirny, 2002). Genome

scale in vivo profiling of transcriptional control is rapidly forming an image of

transcriptional control where not only is a large spectrum of possible binding

sequences observed (Badis et al., 2009), but also that even weak binding sites

can exert a regulatory response (Gertz et al., 2009) and therefore are biologically

meaningful. Therefore, models of sequence motifs should ideally represent the

sequence specificity distribution as completely as possible, whilst being able to

weight strongly binding sequences above weakly binding sequences, neither of

which is possible with k-mer enumeration based models.

The above-mentioned limitations of word enumeration methods in describing

transcription regulatory motifs resulted in development of probabilistic motif in-

ference methods, which most commonly use the position weight matrix (PWM)

as the motif model. The PWM is described in more detail in Section 1.2.1, and

examples of PWMs are shown in Figure 1.4 as sequence logos (Schneider and

Stephens, 1990).
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Figure 1.4: Strongly constrained PWM motif, and one with degenerate positions
in the middle.

Some motif inference algorithms consider other data in addition to genomic

sequence to support the inference task. Especially gene expression data has been

made use of in various approaches. The earliest method for this is gene expression

clustering based division of genes to sets followed by motif inference from the indi-

vidual sets (Roth et al., 1998). More sophisticated methods have been developed

for gene expression, beginning from the pioneering multivariate regression based

word enumeration framework REDUCE by Bussemaker et al. (2001) that sparked

publication of several related methods; c-REDUCE considers conservation as well

as gene expression evidence (Kechris and Li, 2008), and MatrixREDUCE (Foat

et al., 2005) models binding sites as position-specific affinity matrices (essentially

PWMs where nucleotide weights correspond to the binding affinity of the nu-

cleotide relative to the nucleotide with the optimal affinity). Other multivariate

regression based approaches for using expression data in motif inference have also

been published (Conlon et al., 2003; Keleş et al., 2002).

Ranking or weighting sequences based on position specific properties such as

TF or nucleosome binding (based on ChIP-chip) has also been applied in motif

discovery (Conlon et al., 2003; Liu et al., 2002). This approach has been expanded

in the PRIORITY algorithm (Narlikar et al., 2006) to a general nucleotide po-

sition specific prior function suited for instance for specifying information about

the sought after TF domain family specificities (Narlikar et al., 2006), nucleosome

positioning (Narlikar et al., 2007), DNA duplex stability (Gordân and Hartemink,

2008), or sequence conservation information (Gordan et al., 2010).

Phylogenetic foot printing methods that apply sequence conservation, align-

ment of orthologous sequences and phylogenetic models of regulatory regions to
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improve sensitivity to detect regulatory motif and cis-regulatory modules have

also been developed (Siddharthan, 2008; Sinha et al., 2004; Wang and Stormo,

2003).

In conclusion, a multitude of different approaches have been applied to reg-

ulatory motif inference. Finding a suitable algorithm for a biological problem

at hand can be a daunting task for a researcher, and indeed one might expect

that standard benchmarking methods would have surfaced in the literature of

motif inference algorithms. However, the great majority of the above mentioned

publications describing motif inference algorithms are either:

1. applied to a specific biological problem without an explicit performance

assessment with other algorithms.

2. compared with a publication specific biological dataset with one, two or a

handful of different common tools such as MEME (Bailey and Elkan, 1995).

3. compared with a synthetic sequence set with one, two or a handful of dif-

ferent common tools.

Performance comparison of motif inference tools is itself a non-trivial problem.

Very few comprehensive attempts have been made to date to systematically assess

different tools (Li and Tompa, 2006; Pevzner and Sze, 2000; Sinha and Tompa,

2003a; Tompa et al., 2005). The assessment by Tompa et al. (2005) is perhaps

the most comprehensive to date, covering 13 different algorithms. In Chapter 5

I discuss the challenges of measuring motif inference performance with synthetic

and real promoter sequence (Section 5.1.3), and describe a new, large scale motif

inference benchmark challenge (Section 5.3.2).

1.2.1 The position weight matrix

The PWM, also known as a position specific scoring matrix (PSSM) or a gapless

profile, is a commonly used probabilistic model used in motif inference algorithms.

It has been found to preserve more of the information of individual motif positions

(columns) than consensus string motifs, and to systematically perform better in
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describing regulatory binding site patterns (Osada et al., 2004). It is also the

motif model of choice in my work.

PWMs are probabilistic sequence motif models that can be scanned along

sequence to assign a score for a sequence window to contain a motif match.

Commonly a threshold is determined for the sequence window scores, such that

windows where the threshold is exceeded are called motif matches (potential bind-

ing sites). A large part of my work has revolved around analysing properties of

inferred PWM motifs and their connection to previously known motifs (Chapters

2, 3, 4) with the use of motif family models. In addition, in Chapter 5 I present

an assessment of the prediction performance of several de novo motif discovery

algorithms. A formal definition of the PWM is therefore in place, and provided

below (adapted from Rahmann et al. (2003)).

Let A be a finite alphabet with cardinality |A| (|A| = 4 for DNA and RNA).

If Ak represents the space of all string of k symbols from A, a PWM M is a prob-

ability distribution over all of the sequence positions i of Ak. More specifically,

M is an |A| × k matrix where each column vector Mi represents the weights mi,j

(nucleotide j at sequence position i) for a multinomial distribution, i.e. Mi,j are

nonnegative such that (ΣieAAi = 1).

M is thought of as a generative model for sequences from Ak such that symbol

s at each position i is generated independently according to the multinomial

distribution parametrised by Mi. The probability PM(S) of a sequence S from

Ak being generated by M is PM(S) =
∏k

i=1Mi,Si . M is in other words a product

multinomial distribution over Ak. The probability PM(S) score is often used as

the match score. The NestedMICA suite motif scanning algorithm which I have

used, provided in the program nmscan (Down and Hubbard, 2005), transforms

the scores to bit scores and transforms them such that maximum score reported

is 0 (Function 1.1).

W (S, p) =

|W |∏
i=1

Wi(Sp+i−1) (1.1)

In brief, the PWM is a model for gapless position-specific probability distri-

butions of nucleotides which assumes independence of nucleotide positions (Rah-

mann et al., 2003). Departures of the position independence assumption have
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been reported in the form of variable length linkers, interdependencies between

nucleotides at different binding site positions (Badis et al., 2009; Benos et al.,

2002a; Bulyk et al., 2002), and compensatory mutations that maintain the bind-

ing energy and function of binding sites (Mustonen et al., 2008). More complex

probabilistic motif models based on for instance Bayesian (Barash et al., 2003;

Ben-Gal et al., 2005) and Markov networks (Sharon et al., 2008) have been de-

veloped to fit these observations. With the exception of the newest DNA–protein

interaction assays which provide direct binding energy measurements of a protein

with a large spectrum of different DNA binding sites (Berger et al., 2006; Maerkl

and Quake, 2007b), parameter estimation of motif models more complex than

the PWM is hard with often scarce biological data. The PWM therefore remains

the model of choice for most large scale motif inference tools; it is intuitive to

interpret as a sequence logo (Schneider and Stephens, 1990) and retains more

of the information contained in binding site patterns than sequence word based

models (Osada et al., 2004).

1.3 Computational methodology

Several lines of the work I describe in the later chapters builds on previously

described computational frameworks, the most important of which I will sum-

marise below. Firstly, Hidden Markov models are used for modelling sequential

data (described in Section 1.3.1, applied in Chapter 2 for inferring motif family

models). Secondly, the nested sampling Monte Carlo method used for drawing

samples from complex probability distributions that are not analytically tractable

(described in Section 1.3.2, applied in Chapters 2 and 3). Thirdly, random forest

classification is applied in Chapters 4 and 5 for the supervised machine learning

task of predicting TF domain labels for regulatory motifs (Section 1.3.4).

1.3.1 Hidden Markov Models in motif inference

A Hidden Markov Model (HMM) is a model for sequential signals. It is a stochas-

tic finite automaton consisting of finite number of states. Each state has an asso-

ciated probability distribution, and the distribution is typically multidimensional
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(Dogruel, 2008). The HMM was originally developed and described in a series

of papers by Baum et al. (Baum, 1972; Baum and Petrie, 1966; Baum et al.,

1970; Baum and Eagon, 1967; Baum and Sell, 1968), and it quickly developed

into a popular model in speech recognition (Baker, 1975). Applications to biolog-

ical pattern recognition problems from data such as protein and DNA sequence

arrived much later, sparked by several widely circulated papers from Haussler

and others (Brown et al., 1993; Krogh et al., 1994). In these papers HMMs were

described as a superset of the profile multiple alignment methods which were al-

ready commonly used in modelling protein sequence. Indeed, HMM profile based

protein domain families computed with tools such as HMMER (Eddy, 1998) and

stored in databases such as Pfam (Finn et al., 2010; Sonnhammer et al., 1997) and

SUPERFAMILY (Wilson et al., 2009) are perhaps the most ubiquitous biological

application of HMMs in computational biology, in addition to other common uses

such as gene finding (Stanke and Waack, 2003). The HMM is also a commonly

used formalism in regulatory motif inference problems. Firstly however let us

arrive at a formal definition of an HMM and some of the common terminology

used in connection to them.

For an observable sequence O = O1O2 . . . OT emitted by HMM λ, each of

its observables (symbols) is said to be emitted by a sequence of T hidden states

from a finite set of N hidden states S = S1, S2, . . . , SN . As described by Rabiner

(1989), the model is parameterised by three types of parameters:

1) The transition probability distribution Aij (Equation 1.2)

aij = P [qt+1 = Sj|qt = Si], 1 ≤ i, j ≤ N (1.2)

HMMs are often depicted as a diagram with directed, weighted edges showing

transitions aij between nodes representing states. The missing edges between

states correspond to transitions with probability 0 (see Figures 1.5 and 1.6).

2) The observable emission probability distribution B = bj(k) (Equation 1.3)

bj(k) = P [vk at t|qt = Sj]1 ≤ j ≤ N ∩ 1 ≤ k ≤M. (1.3)
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3) The initial state distribution π = πi (Equation 1.4)

πi = P [q1 = Si], 1 ≤ j ≤ Nand1 ≤ k ≤M. (1.4)

A HMM can be used to solve several types of problems in relation to the

observable sequence and the hidden state path, the three most common of which

are:

1. Given a sequence of observations O = O1O2 . . . OT and a HMM λ =

(A,B, π), compute the probability of the observation sequence, given the

model λ, that is, P (O|λ). Computing P (O|λ) involves integrating the pos-

sible state paths through the model with their likelihood (also known as the

forward algorithm).

2. Given a sequence of observations O = O1O2 . . . OT and λ, how do we find

the most likely hidden state path Q = q1q2 . . . qT (the ‘Viterbi path’) that

generates (‘explains’) a sequence of observables. The algorithm that solves

this problem is known as Viterbi decoding.

3. Adjusting λ parameters (A,B, π) such as to maximise P (O|λ).

My work with the motif family model estimation problem has involved working

on the first of the three above problems: defining a likelihood function over the

sequence of nucleotide sequence motif columns and expressing it as an HMM

forward algorithm. This work is described in more detail in Chapter 2, and its

applications into motif inference and motif classification are described in Chapters

3 and 4.

Motif inference algorithms are also often expressed with an HMM model.

The most common such sequence model, used for example in MEME (Bailey

and Elkan, 1994), is the zero-or-one occurrences per sequence model, or ZOOPS

(Figure 1.5). The common feature of the sequence models used in probabilistic

motif inference algorithms is that they express biological sequence (e.g. DNA) as

a string of symbols emitted by a series of emissions from a background model and

a sequence motif. The background state generates the ‘un-interesting’ symbols
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in the analysed sequence (the non-motif containing positions, which in most pro-

moter analysis problems constitute the bulk of the sequence). The ‘interesting’

states are the overrepresented motifs, which are parameterised most commonly

as a position weight matrix (PWMs described in Section 1.2.1).

start end

background background

1 2 3 4

motif 1

Figure 1.5: The zero-or-one occurrences per sequence–motif model (ZOOPS).

The sequence HMM used in the NestedMICA motif inference algorithm (Down

and Hubbard, 2005) which I have also expanded as part of my project is slightly

more complex, allowing multiple motifs to be modelled simultaneously. An ex-

ample of these ‘multiple-uncounted sequence-motif mixture models’ (MUSMM)

are shown in Figure 1.6.

The important improvement of the MUSMM model over the ZOOPS model

is that it allows simultaneous motif learning from sequence data. In other words

parameter estimation of each of the motifs is not done in iterations of learning

a motif, masking its putative hit positions from the sequence, before repeating
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motif 1

1 2 3 4

1 2 3

background

start

end

motif 2

Figure 1.6: The multiple-uncounted sequence-motif mixture model (MUSMM).
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the parameter estimation for the next, less strong motif. A greedy motif learning

that requires repeated masking of sequence will incur an unpredictable sensitivity

drop when multiple motifs are inferred: less and less sequence which is masked

based on previously predicted is available for subsequent iterations. As I will

show in Chapter 2, the metamotif inference framework I have developed also uses

an analogous design to the NestedMICA algorithm to allow multiple metamotifs

to be inferred simultaneously, with what I call the multiple-uncounted motif–

metamotif mixture model, or MUMMM.

1.3.2 Nested sampling

Inference of parameters for Bayesian probabilistic models is often difficult, par-

ticularly for high dimensional models that are common in biology. Analytical

solutions are almost always intractable. Most commonly approximate solutions

are estimated using different Monte Carlo (MC) sampling techniques. I will below

describe a state-of-the-art MC method, called nested sampling. Nested sampling

is an MC technique originally introduced by Skilling (2004), and it is used in the

metamotif inference algorithm I discuss in Chapter 2, as well as the NestedMICA

motif inference algorithm which I expand in Chapter 3, and use for a large motif

inference problem in Chapter 5.

As described by Dogruel et al. (2008), nested sampling is a MC method applied

to an ensemble of e solutions (e typically ranges in hundreds to thousands). A

nested sampler is firstly initialised with samples drawn from the prior distribution

of states. After sampling, states are sorted by their likelihood and the member

with lowest likelihood is removed from ensemble and replaced with a new sample,

with the constraint that the new state has a higher likelihood than the removed

state (Figure 1.7).

Samples are drawn from the prior distribution subject to the constraint that

the likelihood of the new state must exceed that of the discarded state. This is

done initially with rejection sampling (von Neumann, 1951), but after a certain

number of iterations (the number of which is decided dynamically by measur-

ing the rejection rate of the proposals), new samples begin to be generated with

MCMC moves from other members of the ensemble because simple rejection sam-
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Figure 1.7: The likelihood contour. Lowest likelihood state is removed and a new
state sampled on every iteration.
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pling from prior with this increasing constraint becomes progressively ‘harder’ as

the minimum likelihood threshold increases. As the sampling progresses through

repeated iterations (typically in the range in tens to hundreds of thousands of

iterations), more and more prior mass is excluded and the sampler reaches higher

likelihood regions of the space. This is in a way analogous to simulated annealing,

except progress occurs automatically without applying a temperature gradient to

‘heat’ or ‘cool’ the process (assuming that there are no complete plateaus in the

space). Notably, nested sampling has demonstrated good performance in avoiding

strictly local optima (Mukherjee and Parkinson, 2006; Shaw et al., 2007; Vegetti

and Koopmans, 2009), unlike for instance Gibbs sampling which is a common

MC strategy in motif inference. The fraction of prior mass removed from consid-

eration at step t tends towards Wt (Equation 1.5).

Wt =
1

e
(

e

e+ 1
)t (1.5)

A particular strength of the nested sampling technique is that it allows direct

estimation of the Bayesian evidence of the model, something which Monte Carlo

methods do not traditionally do. Assuming that the likelihood of states removed

at step t is approximately equal at Lt, the Bayesian evidence Z of the model can

be estimated as described in Equation 1.6.

Z = Σ∞t=1WtLt (1.6)

The estimate of Z becomes progressively more accurate as sampling pro-

gresses, and indeed Z can be used for comparing models (motif set models derived

with different input parameters for instance can be assessed by their Bayesian ev-

idence). Furthermore, change in the evidence estimate Zt (evidence at step t) is

the criterion used for terminating the sampling (Equation 1.7). This same crite-

rion is used with the DNA, protein and metamotif samplers in the NestedMICA

suite (Dogruel et al., 2008; Down and Hubbard, 2005; Piipari et al., 2010a).

1

Zt
Lt(

e

e+ 1
)t < 0.01 (1.7)
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1.3.3 The NestedMICA algorithm

NestedMICA applies nested sampling to motif inference, using an independent

component analysis (Comon, 1994) like formulation of the motif inference prob-

lem: input sequences are modelled as a mixture of a number of independent motif

signals and random noise (the background model). As described by Down and

Hubbard (2005), in linear ICA, a matrix of observations X is approximated as a

linear mixture A of some sources s and a noise matrix ν:

x = As+ ν (1.8)

The noise matrix ν represents errors in the linear approximation. A commonly

described example application of ICA is the “cocktail party problem”: a set of M

microphones record different mixtures of the voices of N speakers. Given samples

from these microphones at t time points, ICA methods attempt to factorize the

M×t observation matrix into an N×t source matrix and an M×N mixing matrix.

One can map the motif inference problem to an independent component analysis

like formulation where the observations are a series of nucleotide strings, the

sources are short sequence motifs, and a sequence background model represents

the random noise. The mixing operation in motif ICA however is not simply a

matrix multiplication.

The simplest mixing operation, and the one used by default, is simply a

binary weighting: a motif has either a zero or ‘full’ weight in contributing to

the likelihood of a sequence. That means that the mixing matrix (depicted in

Figure 1.8) informs for each motif and sequence pair if a motif is expected to be

a match in the sequence, according to a MUSMM-like sequence mixture model

(Figure 1.6, where there are two motifs in the sequence with a nonzero weight).

More complex mixing matrices, such as logistic function based weighting, are also

included in the NestedMICA suite.

The model parameters – the motifs and the mixing matrix which describes

pairing of motifs to sequences – are estimated with the nested sampling strategy

(Section 1.3.2). Nested sampling allows inference to be made without heuristics

to provide local starting points for motif search. Similarly, repeated runs of the

algorithm are unnecessary, unlike with the commonly used Gibbs sampling Smith
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(1987) based motif inference algorithms pioneered by Lawrence et al. (1993), or

greedy expectation maximization (Dempster et al., 1977) based algorithms such

as MEME (Bailey and Elkan, 1995; Bailey et al., 2006). A schematic of the motif

ICA and nested sampling, is provided in Figure 1.8.
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Figure 1.8: The NestedMICA model components: the motif set and the mixing
matrix. An ensemble of three states is shown (states labelled 1,2,3).

A realistic model of the genomic sequence is also a key consideration with

motif inference algorithms. The sequence background model in these algorithms

is commonly modelled with a stationary Markov chain, and therefore depending

on the order of the Markov chain it is parameterised simply by the nucleotide,

dinucleotide, . . . frequencies of the sequence. Real promoter sequence however is

not uniform, and instead contains, for instance, discrete regions of GC-richness

and AT-richness. NestedMICA uses a sequence background model that allows

for compositionally distinct regions, for example the variation in GC content

that is known to occur on multiple scales (FitzGerald et al., 2006; Thompson and

Rouchka, 2003). In addition to simply varying GC content, dinucleotide content

can also be used to subdivide promoters according to their CpG content to two

groups: those with exceptionally high frequency of CpG dinucleotide content,
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and those with average genomic CpG content (Saxonov et al., 2006). Other re-

gional biases in di-, tri- and tetranucleotides have also been described (Burge

et al., 1992). The NestedMICA background model is referred to as mosaic to

highlight its capability to describe sequence as a mixture of multiple generative

processes (Markov chains). Use of multiple Markov chains, or ‘classes’, that are

weighted per sequence position, improves the capacity of the background to de-

scribe compositional biases and is a considerably less complex model than higher

order Markov chain backgrounds which are commonly used in motif inference

algorithms.

A recently published motif inference algorithm BayesMD, which similarly as

NestedMICA applies a Monte Carlo sampling method that is resilient to lo-

cal maxima (parallel tempering, Gregory (2005)), and a sequence background

model related to NestedMICA but trained from a larger selection of noncod-

ing sequences, improves sensitivity over MEME, Align-ACE, MDScan, and also

against NestedMICA in most benchmarks (Tang et al., 2008).

NestedMICA has been implemented in the Java programming language in

a modular fashion where the definition of the model and the nested sampling

framework are separate. As I will show in Chapter 2, this has made it possible

to replace the NestedMICA motif model (the PWM) with a different space of

models, and to therefore allow applying the nested sampling algorithm in the

space of motif family models I have termed ‘metamotifs’. Furthermore, using

existing nested sampling framework has also had the benefit of high runtime per-

formance and scalability: the original NestedMICA algorithm and my variants of

it make use of multiple CPUs when available, and the computational load can be

distributed over multiple computers, scaling to up to 40 CPU cores (unpublished

data).

1.3.4 Random forest classification

Supervised machine learning techniques aim to build a function based on input

training data to predict the state of a response variable (the output). The re-

sponse can be either continuous, at which case the procedure is called regression,

or discrete, at which case the procedure is called classification. The function
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should fit the training closely, but it should also generalise to other unseen data

(Bhaskar et al., 2006). A compromise therefore needs to be made between a

function which memorises the feature value combinations from training data but

is incapable of generalising it to new input (an effect often referred to as ‘over-

fitting’), and one which generalises but is not necessarily able to fit all the train-

ing examples (training error). In Chapter 4 I use a supervised machine learning

technique called random forest classification to learn the mapping from a motif

(PWM) to the likely DNA binding domain which binds it.

A random forest is an ensemble machine learning technique, meaning that

the classification function itself is a function of a number of independent classifier

functions. The technique can be applied to either regression or classification, but

we will concentrate on random forest classification, as regression techniques were

not used in this work. According to Breiman (2001b), random forests follow in

the line of three types of ensemble classification techniques noted below, all acting

on ensembles of classification trees. Any of the three methods noted below are

also sometimes confusingly referred to as a type of random forest.

1. “Random subspace” methods, where randomness is applied to subsets of

features to use to grow trees (Ho, 1998).

2. Bagging methods, where randomness is applied to the choice of training

data examples used to grow classification trees (Breiman, 1996).

3. A method where the splits made at tree nodes are made randomly according

to voting (Dietterich, 1998).

The common factor between all of the above methods is that for the kth

classification tree, a random vector θk is generated independent of past vectors

θ1, . . . , θk−1 but with the same distribution (i.i.d.); A tree is grown using the

training set (or its subset) and θk, resulting in a classifier h(x, θk) where x is

an input vector. The nature of θ varies between the different tree construction

methods. For instance, in bagging it can thought to be generated as the counts

in N boxes resulting from N darts thrown at random at the boxes, where N is

number of examples in the training set.
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In Breiman’s random forest, each θk is trained from random selection of fea-

tures from a subset xk of bootstrapped examples in x (Equation 1.9) (Breiman,

2001b). Each xk are taken from roughly two thirds of the examples, and the rest

are used for the so-called out-of-bag error estimates (see below).

{h(x, θk), k = 1, ...} (1.9)

The set of i.i.d. random vectors noted above are noted as θk. In a classifica-

tion problem, a random forest is a collection of decision tree predictors, and the

response value is simply chosen by popular vote for the most popular label from

the ensemble of k trees (the ensemble is referred to as a ‘forest’). The relative

frequency at which the winning vote was made in the ensemble gives a confidence

estimate for the decision. In regression the response value is the average of the

response values in the forest.

A random forest classification has a number of attractive properties as a

generic supervised machine learning framework:

1. An unbiased generalisation error estimate is made without the need for

separate cross validation. This is achieved by leaving approximately one

third of the training data x out from the bootstrapped examples xk and

they are labelled with the kth classification tree. The error rate of this

classification is the out-of-bag (oob) prediction error rate.

2. Its generalisation error tends to perform comparably to SVMs (Meyer et al.,

2003) and favourably to related ensemble methods such as Adaboost (Fre-

und and Schapire, 1996) or bagging.

3. It is naturally suited for multiclass problems (such as the motif domain

labelling problem in Chapter 4), and provides a confidence estimate for the

classification decisions regardless of the dimensionality of the class variable.

4. It is simple to understand, and provides insight into the importance of dif-

ferent classifier features (several kinds of proximity measures of training

examples can also be computed). This is in contrast with kernel methods

whereby variable importances are not straightforward to derive or inter-

pret when one needs to resort to nonlinear kernel functions (usually for
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improved classification performance), or multiclass classification. The vari-

able importance measure in Breiman’s randomForest package (Liaw and

Wiener, 2002) which I use in my project is based on permutation testing:

for each tree, all values of themth predictor variable are permuted, classifica-

tion is made, and internal error rate computed as normally. The difference

between correct (unpermuted) and incorrect (permuted) classifications is

then computed and averaged over all trees, and normalised by the standard

error. The margin is defined as the proportion of votes for true class minus

maximum proportion of each of the other classes.

5. Although several adjustable input parameters are made available, only one

is generally adjusted (mtry, which denotes the number of variables randomly

sampled as candidates at each split), values of which the classification is

also often robust to (Breiman, 2001a; Liaw and Wiener, 2002). This is in

contrast with kernel method based classification, where a grid search of

kernel function parameters is always necessary.

1.4 Biological datasets and resources

The most important biological datasets and resources which I have made use of

during the course of my project are introduced below. Additional resources used

in individual analyses are described in later chapters.

1.4.1 Ensembl

Ensembl is an open access database which provides access to eukaryotic genome

sequence and annotation (Birney et al., 2004; Hubbard et al., 2009). Originally

developed for analysis of the human genome, the current release 58 now contains

49 annotated eukaryotic genomes. The genome annotations provided by Ensembl

are a key resource for large scale regulatory motif inference studies. For instance,

all promoter sequences used for predicting motifs in my project have been cho-

sen dependant on the transcription start site predictions provided by Ensembl.

The resulting promoter regions are therefore a result of a combination of com-

putational predictions and manual curation. Similarly, masking protein coding
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sequences and sequence repeats is made possible by annotations retrieved from

Ensembl.

In addition to the web site at http://www.ensembl.org, Ensembl offers pro-

grammatic access with a publicly supported Perl API (Stabenau et al., 2004).

Several other language specific APIs unsupported by the Ensembl project have

also surfaced, including Ensembl Core for Ruby 1 and biojava-ensembl 2. Both

of the above unsupported libraries proved useful in my work, and in the course

of my project I in fact developed simple Ensembl database backed tools on top

of biojava-ensembl for regulatory motif inference oriented tasks, which in turn

were used in all of the peer-reviewed, published work which I have taken part in

(Lewis et al., 2009; Piipari et al., 2011, 2010a,b), and Murray et al. (in press).

See Section 5.2.1 and Appendices A, B for more detail.

1.4.2 Regulatory motif databases

Experimentally determined regulatory motifs have been another key resource in

my work, both with motif family classification (Chapter 4) and validation of de

novo inferred motifs (Chapter 5). The different TFBS motif databases I have

resorted to in my work, and the rationale for choosing the individual datasets for

analyses, are summarised below.

The regulatory genomics community suffers at the moment from the absence

of a single authoritative database, data format, or minimal publishable require-

ments for distributing experimentally validated regulatory motifs or associated

metadata (e.g. species information, experimental method). This is in notable

contrast to for instance sequence, protein structure, or gene expression microar-

ray data, each data type of which is generally required to be made available in a

public database upon publication in a peer reviewed journal. TFBS motif data is

scattered between individual publications, several databases in different partially

overlapping subsets, and the standard of data and curation quality varies.

1http://www.github.com/jandot/ensembl
2http://www.derkholm.net/svn/repos/biojava-ensembl
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1.4.2.1 TRANSFAC

Currently the largest single dataset of eukaryotic TFBS motifs is contained in

the TRANSFAC database, which is a commercial, curated database of eukary-

otic gene regulation maintained by BIOBASE Ltd (Matys et al., 2006; Wingender

et al., 2001). TRANSFAC contains a curated set of TFs, known TF–target gene

regulatory relationships, and TFBS motifs as position frequency matrices (PFM).

Most of the TFBS data stored in TRANSFAC originates from individual small-

scale studies, including electrophoretic mobility shift assays (Fried and Crothers,

1981b; Garner and Revzin, 1981), DNase I foot-printing (Brenowitz et al., 1986),

immunoprecipitation (Hecht and Grunstein, 1999) and some from higher through-

put approaches such as in vitro selection (SELEX) (Oliphant et al., 1989). The

more recently released TRANSFAC versions have begun expanding the database

with ChIP-seq and various other HT methodologies discussed in Section 1.1.2.

TRANSFAC also defines its own structural taxonomy for classifying TF mo-

tifs by the structural class and family of binding TF. The structural taxonomy

is largely similar on the level of TF domain families to the taxonomy used in the

JASPAR database (Section 1.4.2.2), but the coarser level of the hierarchy (‘su-

perfamilies’ in the TRANSFAC terminology, ‘structural classes’ in the JASPAR

terminology) differs both in the divisions of TF domains and the terminology

used.

The species covered by TRANSFAC are primarily vertebrates. Other animal

TFs, as well as some plant and fungal TFs are included but in smaller scale. For

instance, the database release 12.2, which my analysis in Chapter 4 is based on,

contains a mere 38 motifs annotated with the species S. cerevisiae, and the same

number of motifs for Arabidopsis thaliana, 68 for D. melanogaster, but 409 for

mouse and 455 annotated with H. sapiens.

Due to the license fee associated with TRANSFAC, and its closed nature,

an open access alternative to TRANSFAC could be beneficial for the research

community. Attempts have been made to create alternatives, the most interesting

being perhaps ORegAnno (Griffith et al., 2008), which is a community curation

based database of transcriptional regulation. The ORegAnno dataset however

has unfortunately not progressed to a form that is usable for most researchers.
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The JASPAR database (Section 1.4.2.2), which similarly to TRANSFAC relies

on a dedicated team of curators, has perhaps the best potential in providing an

alternative to TRANSFAC’s collection of TFBS motifs.

I made use of TRANSFAC motifs for the motif domain family classification

analysis conducted in Chapter 4 primarily because it allowed a direct comparison

to previous motif classification methods MotifPrototyper (Xing and Karp, 2004)

and SMLR (Narlikar and Hartemink, 2006), and because at the time it contained

a considerably larger training and cross-validation dataset than the open-access

alternative JASPAR: TRANSFAC 12.2 contained 848 structurally classified mo-

tifs (Wingender, 2008) versus a total of 138 in JASPAR 2008 (Bryne et al., 2008).

In Chapter 5 I however describe more recent work where I built a motif family

classifier based on the most recent JASPAR release, which has been expanded to

include for instance many of the high-throughput datasets noted in Section 1.1.2.

1.4.2.2 JASPAR

JASPAR is another commonly used database of TFBS motifs (Bryne et al., 2008;

Portales-Casamar et al., 2010; Sandelin et al., 2004). JASPAR distinguishes itself

from TRANSFAC in several important aspects:

1. The structural terminology of TF domains, which covers most of its motifs,

differs from that of TRANSFAC. JASPAR uses a two-level DNA binding

structural mode taxonomy introduced by Luscombe et al. (2000). This

classification terminology extends an earlier taxonomy created by Harrison

(1991) on a smaller number of crystal structures. The Luscombe et al.

(2000) taxonomy describes ‘classes’ and ‘families’ for TFs. Classes are de-

fined by a manual, visual comparison of structures and families by a com-

putational clustering of the domain structures with the SSAP secondary

structure alignment algorithm (Orengo and Taylor, 1996). The taxonomy

in TRANSFAC extends to more detailed levels, but past the class and

family-like levels appears to be defined on a rather ad hoc basis by the

TRANSFAC curators based on the terminology introduced in literature.

2. The data is open access, and its curation is of high quality. Key annota-

tions such as species, experimental method and primary publications which

34



describe the data in the database are included almost with no exceptions,

unlike TRANSFAC, where for instance only 490 of the 848 records contain

a reference to a peer reviewed publication.

3. JASPAR, unlike TRANSFAC, is a non-redundant database, and aims to

cover different kingdoms of life with separate non-redundant datasets (cur-

rently for mammals, insects, fungi and plants are covered). This is an

important effort because of the lineage specific expansion of TF domains

(Wilson et al., 2008a): TF domains utilised preferentially by different king-

doms of life differ substantially (discussed in 1.1.2).

4. JASPAR 2010 contains a near to complete non-redundant motif dataset

of 177 S. cerevisiae motifs, compared to only 38 S. cerevisiae motifs in

TRANSFAC 12.2 which emphasises vertebrate genomes.

I used the JASPAR database in Chapter 5 to train a motif family classifier

to assess computationally inferred S. cerevisiae motifs most importantly because

of the last two points above; for an accurate organism specific classifier it is

important to have a good coverage of the TF domains that are specific to the

lineage being studied. For instance, there are 47 known TFs with the fungal

specific zinc cluster domain (Macpherson et al., 2006) in the S. cerevisiae genome

out of the total 99 S. cerevisiae zinc finger motifs. TRANSFAC 12.2 includes

motifs for only 9 of them, whereas JASPAR 2010 contains 38.

1.4.2.3 UniPROBE

UniPROBE (Universal PBM Resource for Oligonucleotide Binding Evaluation) is,

as the name suggests, a database containing protein binding microarray derived

motifs. At the time of writing, the database included motifs for 391 proteins from

eight different studies, originating from affinity tagged TFs from human (Berger

et al., 2006; Scharer et al., 2009), mouse (Badis et al., 2009; Berger et al., 2008),

C. elegans (Grove et al., 2009), budding yeast (Zhu et al., 2009), the parasites

Malaria falciparum and Cryptosporidium parvum (Silva et al., 2008), as well as

the Gram-negative bacterium Vibrio harveyi (Pompeani et al., 2008). Its focus

is simply to provide a repository for downloading and searching raw PBM data,
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and PWM models derived from the data with the Seed-and-wobble algorithm

(Berger et al., 2006). It does not attempt to provide a rich annotated reference

database of TFBS motifs, like JASPAR or TRANSFAC. I have used two motif

datasets from the UniPROBE database:

1. The 168 mouse homeodomain TF motifs by Berger et al. (2008). This

dataset is one of the two high-throughput studies published in 2008 of the

developmentally important homeodomain TFs, in addition to the bacterial

one-hybrid dataset of D. melanogaster homeodomain TFs (Noyes et al.,

2008a). The Berger et al. (2008) dataset covers 65% of the 260 known

homeodomain proteins in the mouse genome. I apply both of the above

mentioned homeodomain datasets in Chapter 4 for evaluating the capacity

of the metamatti classifier in distinguishing homeodomain motifs from

members of five other common TF domain families.

2. The 89 S. cerevisiae TF motifs (Zhu et al., 2009). This study provides the

largest protein–DNA interaction dataset recovered with a single method-

ology, and it is therefore a convenient comparison dataset for comparing

ab initio predicted regulatory motifs with. The slightly larger study by

Berger et al. (2008) covers 112 yeast TFs, with a combination of different

high-throughput methods.
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1.5 Contributions of this thesis

My goal in this dissertation is to, firstly, present a new probabilistic model for

familial relationships between regulatory motifs (Chapter 2). I then apply this

familial motif model to sensitively infer motifs from novel sequence (Chapter

3), and to predict the DNA binding domain responsible for binding different

regulatory motifs (Chapter 4).

Finally, I conduct a de novo motif inference study of the budding yeast genome

to infer a large regulatory motif set from its promoters with a number of commonly

used motif inference tools (Chapter 5). This is done primarily to assess the ability

of the different motif inference tools to discover motifs that are consistent with

previously known motifs from this particularly well studied eukaryotic regulatory

genome.
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