
Chapter 6

Conclusions

The work in this thesis has concentrated on modelling regulatory motif families,

and inferring motifs on a genome scale. Firstly, in Chapter 2 I present a novel

motif family model, the metamotif. In Chapter 3 I then describe a metamotif

based informative motif prior, and show its use in the NestedMICA motif discov-

ery algorithm. The prior function substantially improves the sensitivity to detect

motifs from genomic sequence.

In Chapter 4 I present another application for the metamotif: a motif classi-

fication method based on metamotif density features. I show that the metamotif

based motif classifier compares favourably to previously published methods. Its

performance with two novel experimental TFBS motif datasets is also found to

be high, and consistent with expected error estimates. Motif classification in-

volves learning models from highly imbalanced training datasets, simply because

DNA specificity of some highly expanded TF domains has been sampled more

than others. In the future, this problem will be partly addressed by increased

availability of experimental motif data. In addition to expansion of the available

training data, one could also take use of extensions to the random forest classifi-

cation algorithm designed for learning from imbalanced training data Chen et al.

(2004).

I introduced a visual representation for the metamotif akin to the sequence

logo, with the addition of confidence intervals for symbol weights. The metamo-

tif inference and visualisation tools have all been made openly available as part

of the NestedMICA motif inference suite (Piipari et al., 2010a), the interactive
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motif inference analysis environment iMotifs (Piipari et al., 2010b), as well as a

metamatti motif classification R package and web server (manuscript in prepa-

ration). I envisage that the metamotif will have further machine learning related

uses in addition to the Bayesian prior and motif family classification method I

have presented. Large scale computational motif inference frameworks especially

could benefit from metamotif driven semi-supervised methods to either estimate

complete motif sets from novel sequence sets, or on the contrary discriminatively

infer motifs not closely matching a previously described sequence motif.

As well as developing methods for motif family modelling, I conducted a large

motif inference study of the Saccharomyces cerevisiae genome (Chapter 5), using

several existing de novo motif inference methods. The primary motivation of this

work was realistic benchmarking of de novo motif inference algorithms, using

the S. cerevisiae genome as a benchmarking resource. I believe that challenging

motif inference methods with large genomic sequence sets provides an objective

and readily interpretable test of their abilities. Previous dedicated motif inference

performance measurements (Pevzner and Sze, 2000; Tompa et al., 2005) have suf-

fered from a self professed difficulty to define metrics to judge the algorithms with,

largely caused by our lack of understanding of the principles of TF binding and

properties of regulatory sequence, which hinders also creating synthetic promoter

sequences. As the processes which create and constrain regulatory sequences are

not well understood, the present study attempts to avoid these problems by not

treating individual genomic motif hits as a primary item of interest. Instead, I

judge motifs primarily based on the properties of the overall pattern, the PWM

(similarly as also done in Chapter 3, and by (Down and Hubbard, 2005; Piipari

et al., 2010a; Tang et al., 2008)).

Algorithms are challenged to find a collection from a single, large, real se-

quence dataset whose ‘motif content’ is not known accurately. Tompa et al.

(2005) test the ability of algorithms to find instances of a single motif from a

series of small, mostly synthetic sequence sets (each with tens to hundreds of

sequences), where at least one instance of the sought after motif is present in all

sequences with a motif. Furthermore, the performance measures made here are

made primarily on the motif level, rather than the binding site or nucleotide level.

This study addresses directly some of the problems associated with the (Tompa
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et al., 2005) assessment, which is the most comprehensive motif inference method

assessment to date (see Section 5.1.3).

The most important distinction of this work to previous motif inference bench-

marks is that the present study allows clear conclusions to be made regarding ap-

plicability of motif inference methods – with my parameter choices – to genome

scale motif inference problems. Out of the eight methods successfully tested, es-

pecially NestedMICA but also SOMBRERO and MEME appear to perform ad-

equately, with NestedMICA discovering statistically significant matches to 30%

of the motifs in the JASPAR database.

The consistently high performance observed with the NestedMICA algorithm,

when compared to the other tested algorithms, is most likely attributable to a

combination of factors; A state of the art Monte Carlo sampling strategy, that

is robust to local maxima, is used. The sequence–motif mixture model which al-

lows concurrent inference of a large number of motifs is also likely to be of benefit

in large scale problems. Interestingly SOMBRERO, whose self-organising map

based inference strategy is also clearly aimed at concurrent, ‘non-greedy’ motif

inference problems, performs well in the problem. The NestedMICA sequence

background model which accounts for nucleotide content variation observed in

genomic DNA is also a likely contributing factor to high sensitivity from large set

of promoters. Importantly, the assessment also suggests certain improvements to

how the algorithms should be run; NestedMICA for instance predicts systemat-

ically shorter motifs than the matching JASPAR motifs, and therefore for large

scale studies it’s minumum motif length parameter should be increased from 6

(which was used in this study).

I also conducted experiments with the inferred motifs involving scanning with

a significance cutoff, mostly as a data exploration exercise. This was done in

cases where a non-parametric alternative was not apparent (e.g. positional bias).

The scanning based analyses highlight the difficulties involved in determining

a meaningful significance cutoff for motifs output by a number of algorithms,

with different lengths and information content profiles. Problems encountered

with genomic motif match based analyses, with the MEME algorithm (Bailey

et al., 2006) in particular, demonstrate the need for parameter free performance

assessment of motif inference methods.
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6.1 Future work

Much of the work that I did during my project relied on a gene regulatory motif

inference strategy whereby regulatory sequence motifs are sought from promoter

sequence by looking for overrepresented sequence signals. This strategy has been

successfully applied to many problems in regulatory genomics, as has been dis-

cussed in the previous chapters, but it clearly has its limitations.

1. Higher eukaryotes that have large genomes and a multitude of gene regu-

latory mechanisms, including several thousands of TFs. As my work from

Chapter 5 suggests, finding complete higher eukaryotic regulatory motif

dictionaries with a purely reference genome based strategy is not realistic,

given that current algorithms struggle already with the yeast genome of

approximately 200 TFs.

2. Overrepresentation of a motif in genomic sequence does not necessarily

imply action in gene regulation. Solely sequence based methods do not

distinguish motifs acting in transcriptional regulation from other possible

recurring signals.

3. Expression patterns of eukaryotic cells are not regulated by independent

factors, but by multiple factors that bind in complexes. Complex combina-

torial regulatory programs consisting of specific TF complexes are known

to be responsible for instance for tissue (Ravasi et al., 2010) or development

stage (Levine and Davidson, 2005) specificity of gene regulation. When in-

formation is available of potential combinatorial regulation of genes by a

group of TFs, it should be possible to input this information for a motif

inference algorithm.

Towards the end of my project I became interested of developing methods

which address the above limitations by allowing use of gene expression patterns

as an evidence source in a probabilistic motif inference algorithm capable of large

scale inference. In particular I wanted to test if the NestedMICA algorithm could

be modified to include a prior probability function over the motif-to-gene mix-

ing matrices (see Section 1.3.3 for a discussion of the NestedMICA algorithm),
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which would encode information derived from a gene expression correlation pat-

tern. More specifically, I consider that mixing matrix states where the correlation

of occupancy (presence or absence) of motifs in promoter sequences mimics the

correlation of the gene expression states should be more likely states than those

where the mixing state correlations differ significantly from the gene expression

correlations. I began an effort in developing and optimising a variant of the al-

gorithm for this purpose, and although I did not complete this work, I did solve

some sub-problems. I will discuss my proposed method here because its defini-

tion could be helpful for others aiming to implement a related stochastic motif

inference strategy that acts on regulatory sequence with correlated combinations

of motif instances.

The particular prior probability function P(M|G, p) which I developed is

noted in Equation 6.1. The probability is over the space of motif-to-gene oc-

cupancy matrices M, given the gene expression matrix G and an adjustable pre-

cision parameter p. The root mean square deviation (RMSD) of a gene expres-

sion correlation matrix, and the correlation of the occupancy matrix M follows

a Gaussian distribution with precision p (an adjustable parameter). Dimensions

of an occupancy matrix M is m× g, where m is the number of motifs and g the

number of genes. The gene expression matrix G has the dimensionality g× n (n

measurements).

P(M|G, p) = Gauss(RMSD(corr(G), corr(M)), p) (6.1)

I implemented a Metropolis-Hastings algorithm (Hastings, 1970) to draw sam-

ples from P(M|G, p). A naive implementation of the occupancy prior sampling

by MH proved prohibitively costly in computational time due to the order of n2

time complexity of the RMSD computation required during each iteration of the

long burn-in phase required by the MH algorithm. Therefore I optimised the

algorithm to only update contributions of the changed elements in the mixture

matrix. Several important steps were also made to decrease the runtime memory

use of the algorihm. The end result of my work is an algorithm which performs

with sufficiently low CPU and runtime memory requirements to be applied in

the NestedMICA algorithm comfortably with several thousands of sequences and
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10–100 motifs. Figure 6.1 shows three different Markov chains of the P(M|G, p)

sampling algorithm which I developed, with different values of the precision (p)

parameter.

Figure 6.1: Three Markov chains aiming to draw a sample from P(M|G, p), each
with a different p parameter.

Figure 6.2 shows an example of the mixture matrix sampling. The end result

of sampling is shown in Figure 6.2D, and its correlation matrix is in 6.2C. Figure

6.3 shows an example mixing matrix created by the sampler as being closely

related in its correlation pattern to the target correlation pattern given as input

to it.

I believe that development of motif inference methods which are capable of

integrating several sources of experimental evidence with a well performing prob-

abilistic de novo motif inference method have a lot to offer in regulatory motif

inference problems, as more and more genome-wide regulatory data becomes

available. The metamotif prior function can be considered one such source of

experimental evidence. Other sources could be for instance epigenetic marks, or

gene expression data as discussed above. Whether a variant of the NestedMICA

178



Figure 6.2: Mixing matrices and their correlations. The correlation matrices
(panels A and C) of the start and end state of one of the 5000 step long MC
chains from Figure 6.1. Panels B and D show the mixing matrices at the start
(A) and end (D) of the sampling. Black states in panels B and D are mixing
matrix elements with value 0 and green states those with value 1.
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Figure 6.3: The sampling algorithm produces mixing matrices that are closely
related in correlation pattern to the target (gene expression) correlation matrix.
Gene expression correlations are shown on the right, and the mixture matrix cor-
relations in the left. Whereas there are hardly any correlated states in the mixture
matrix at step 1 of the algorithm, after the burn-in (at step 5000) the correlation
pattern of the mixture state closely corresponds to the target correlation.
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algorithm with a ‘target correlation aware’ mixing matrix prior function turns

out to perform well with real genomic sequence remains to be seen. Other po-

tentially more natural formulations could also be used to ‘inject’ gene expression

information into a Bayesian motif inference method such as NestedMICA. For

instance the mutual information between gene expression patterns and motif oc-

currences could be used, as done with a greedy motif estimation algorithm in

Elemento et al. (2007). Alternatively, the independent component analysis like

formulation in NestedMICA could be extended to learn, simultaneously, patterns

of gene expression and motifs associated with these patterns. Further work in the

direction of data integration in computational motif inference has great potential

in improving our understanding of the regulation of genomes.
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