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Abstract

The genetic basis of human evolutionary adaptation and the resulting
population diversification has been of great interest. A common approach has been
to scan genomes for population-genetic signatures of positive selection, yielding
vast lists of thousands of candidates. Here, we first took advantage of these data to
perform a meta-analysis of published selection screens and assessed their
concordance using a Selection Support Index (SSI) which weights, combines and
evaluates signals of selection on a per-gene basis. Our analysis revealed both the
low overall agreement of previous genome-wide selection scans and some strong
candidates. The focus of positive selection studies in humans thus needs to move
from candidate locus discovery to pinpointing underlying causal variants and
further investigation of their biological significance. We developed a new
computational method for this, Fine-Mapping of Adaptive Variation (FineMAV),
which combines population differentiation, derived allele frequency and a measure
of molecular functionality to prioritise candidate selected variants for functional
follow-up. We calibrated and tested FineMAV using eight ‘gold standard’ examples
of experimentally-validated causal variants underlying positive selection, and were
able to pick out the known functional allele in all instances. We used this approach
to identify the best candidate variants driving local adaptations in the 1000
Genomes Project Phase 3 SNP dataset including Africans, admixed Americans,
Europeans, and East and South Asians. FineMAV top hits were overall enriched for
high SSI scores, and we also report many novel examples, including rs6048066 in
TGM3 associated with curly hair and rs7547313 in SPTA1 associated with
erythrocyte shape and possibly malaria resistance in Africa, as well as rs201075024
in PRSS53 linked to hair shape in South Asia. We extended our analyses to additional
populations including Egyptians, Ethiopians, Greeks, Lebanese and non-admixed
Native Americans, picking up interesting hits in Peruvian Quechua and Ethiopian
Gumuz in genes involved in immunity and energy metabolism. The highest scoring
FineMAV variant in Native Americans was rs34890031 in LRGUK associated with
spermatogenesis. We then performed functional follow-up on chosen candidates.

Our in vitro studies focused on comparison of the ancestral and derived forms of the
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OR10H3 olfactory receptor, and of FUTZ involved in susceptibility to viruses, but
were limited by technical issues. We also investigated the functions of six genes
showing strong signals of selection using mouse knock-outs. The curly vibrissae
(whiskers) of Prss53 knock-out mice supports our hypothesis of selection in PRSS53
due to hair shape in humans, while Hercl knock-out mice show a range of
abnormalities affecting hearing, blood plasma chemistry and energy metabolism.
Finally, we initiated the generation of nine mouse knock-ins carrying a human
selected allele, which will be subjected to future collaborative phenotyping,
focusing on hair shape, reproduction, energy metabolism and hearing as
appropriate. Our work is thus facilitating the identification of causative alleles

driving human adaptations.
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