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2. Fine-Mapping of adaptive variation

in silico
2.1. Introduction

Previous surveys have reported vast lists of putatively selected genes/loci
and variants, which contrasts sharply with the handful of functionally-validated
examples of genetic adaptations with both a strong population selection signal and
a compelling explanation for the reasons of selection linked to a relevant phenotype
in humans (18, 20, 42, 135). This is partially because population-genetic based
methods are often imprecise, identifying large genomic regions harboring many
genes and a myriad of SNPs that could potentially drive the selection signal, but
which are mostly neutral (10). Even if a selection statistic operates at the individual
variant level, such as population differentiation-based statistics (e.g. Fsr; difference
in derived allele frequency - ADAF (95)) or composite likelihood approaches (e.g.
Composite of Multiple Signals - CMS (123)), the highest scoring variant is not
necessarily causal. High LD around the selected SNP often results in a stretch of
highly-differentiated variants with the same allele frequencies, further
complicating the identification of the most likely causal variant. Similarly, for each
potentially causal variant identified by CMS, there are on average 20 neutral
proxies, all indistinguishable from the functional mutation (123). As a result, the
false discovery rate of genome-wide selection scans is potentially high, which is
reflected by the low concordance between such studies (8, 18, 20, 22, 54, 135-137).

The focus of this field now needs to move from locus discovery to fine
mapping of the signals of selection and biological understanding of their adaptive
significance. However, population genetics alone is usually not sufficient to narrow
down the signal of selection to a single causative SNP and the only way to
distinguish true positives from artifacts or neutral passenger variation is functional
validation (18, 138). Yet very few variants have been validated in this way, as

current technology does not allow modeling in a high-throughput fashion (138).
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Therefore, a useful step is to subject candidate variants to rigorous evaluation and
narrow down extensive lists to a manageable subset of the strongest candidates for
functional studies.

Nevertheless, there are a few well-supported cases of local genetic
adaptation that conform to a classical sweep model (20). One example is the A allele
at rs1426654 (within SLC24A5), which is nearly fixed in European populations,
causing an amino acid (Thr to Ala) change and contributing to lighter skin
pigmentation (139). Melanosomal differences between ancestral and derived
alleles of SLC24A5 were successfully assayed using a zebrafish model (139). Such
examples are not restricted to amino acid changes, and have also been reported for
cis-regulatory variants, such as the A allele at rs4988235, an intronic regulatory
variant in MCM6 which has been shown to increase the expression of the
downstream lactase (LCT) gene in vitro enabling digestion of the milk sugar, lactose,
as an adult in West Asian and European populations that traditionally practice
pastoralism (140, 141).

Here, we develop a new in silico framework to shortlist candidate selected
variants for further functional follow-up (Figure 4). In order to prioritise candidate
variants, we need a starting list of variants, a protocol for prioritization, and a way
of assessing whether or not the prioritization is effective. Since there is a large
literature on positive selection in humans, we first performed a meta-analysis of
previous studies at the gene level to obtain a summary of the field, and then
extended this with a new analysis of the 1000 Genomes Project Phase 3 genetic
variation (142) to produce a refined list of candidate variants for functional follow
up. To do so, we introduced an integrative method that overlays population
signatures of selection with functional annotation, and call it FineMAV (Fine-
Mapping of Adaptive Variation). We assessed FineMAV results using ‘gold standard’
examples (where the evidence for positive selection acting on a particular variant
is convincing) and the results of the meta-analysis. After calibration and assessment
of our method’s performance, we applied it to diverse populations and further

explored some of the novel variants in our lists.
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Figure 4. Workflow for prioritization of candidate variants for functional studies. The DNA molecule
is represented as a blue line, with variants being red dots. Identification of the candidate causal
variants from the genome-wide variation data, or the refinement of the known signal of selection to
a causative SNP, is achieved by overlapping the statistical support from genetic analyses with
functional annotation (implemented in FineMAV). A detailed follow-up functional study can then be
performed (in vitro or in vivo experiments using model systems) to validate the implicated variant,
quantify its phenotypic consequences and clarify its relationship with reproductive fitness, e.g. by
assessment of phenotypic differences between mouse models carrying the human selected and non-
selected alleles.
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2.2. Meta-analysis of previous selection

SCans

2.2.1. Materials and Methods

We examined the concordance of all available genome-wide screens for
positive selection published until September 2014, focusing on recent or ongoing
positive selection, i.e. adaptations following the ‘Out of Africa’ dispersal that have
not swept to fixation yet (incomplete sweeps or so-called microevolution). It is
important to carefully curate the input data by selecting studies investigating the
same mode of selection (identifying selective events of the same age and stage of
selective sweep) from comparable genome-wide datasets in such an analysis (8).
Therefore, we searched the PubMed publication database (‘positive selection’
enquiry) for studies using (i) tests based on intra-species polymorphism (excluding
cross-species comparisons) and (ii) genome-wide sequencing or genotyping data
(iii) across at least three main continental groups (Africans [AFR], East Asians [EAS]
and Europeans [EUR]). This search yielded 26 genome-wide selection scans (83, 93,
95,108,110-112, 114,123,136, 143-158) complemented with an unpublished SFS
analysis of 1000 Genomes Project Phase 1 (159). These were grouped into four
methodological categories: (i) population differentiation (Diff), (ii) long haplotypes
(LD), (iii) site frequency spectra (SFS) and (iv) composite likelihood methods
(Comp). All reported findings were translated into gene-level nomenclature using
Ensembl annotation (160). Genes reported only by a single study were excluded at
this stage.

Since one particular method of looking for evidence of selection might be
more abundant in the published literature than others, its results might outweigh
other methods in a simple summation of the evidence and inappropriately
dominate the meta-analysis. To avoid this bias and obtain a balanced view based on
all four methods, we developed a correction to control for the proportion of studies
that are not independent. We first calculated a per-gene selection confidence level

within each methodological category (ranging from 0 for genes not reported by any
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study within that category, to 1 for genes supported by all selection scans
employing that detection method). We then calculated a Selection Support Index
(SSI) by first obtaining the mean of the squares of the selection confidence levels on
a per-gene basis. This would penalize genes moderately supported by several
methods and promote genes strongly supported by a single approach (Equation 2).
The SSI value was then corrected for the gene length where this strongly departed
from the mean (gene length was retrieved from Ensembl (160)). The theoretical
maximal SSI for an average-sized gene reported by all studies analysed is 1, while
genes reported by all studies within one methodological category would score 0.25
(Table 2). Thus, SSI weighs, combines and evaluates signals of selection on a per-
gene basis, starting from the results of published genome-wide selection scans of

autosomal loci.

Equation 2. Selection Support Index. To compute a Selection Support Index (SSI) for each gene i with
length len;, suppose i € {1, 2, ..., n}, and let Diff;, LD;, SFS; and Comp; be its selection supports within
each methodological category across all compiled genome-wide selection scans. Gene length is

measured in base pairs.
n
1
u= - len;
i=1

Diff{# + LD} + SFS? + Comp} 0| K
4 len;

SSI; =

Table 2. Selection support index values calculated for different scenarios. gene; - gene maximally
supported by all methods; gene; - gene supported strongly by population differentiation methods
only; genes - gene moderately supported by all methods.

Diff LD SFS Comp SS1
gene; 1 1 1 1 1
gene; 1 0 0 0 0.25
genes 0.25 0.25 0.25 0.25 0.0625

genei Difi€[0,1] LD;€[0,1] SFSi€[0,1] Comp;€[0,1] SSLE][0,1]

geney
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2.2.2. Results

We assessed the confidence in selection on genes by an in silico
quantification of the strength of the signal and its reproducibility across 27 genome-
wide screens for positive selection ((83, 93, 95, 108, 110-112, 114, 123, 136, 143-
158) and unpublished SFS analysis of 1000 Genomes Project Phase 1 (159)). The
rationale behind integrating data from multiple sources is that the most extreme
selection events should leave the strongest signals, detectable by different methods,
and thus be characterised by high reproducibility across independent studies: a
strong hard sweep should leave multiple signatures of selection (8). Although the
ultimate goal of our analysis is to narrow down the signal of selection to a single
causative variant, many selection scans identify large genomic regions and do not
pinpoint a single causative SNP (10). Moreover, such scans often report outlier
genes exhibiting the most extreme hallmarks of selection, instead of the precise
genomic location of the signal itself. To nevertheless benefit from the rich data
resource accumulated in the literature, we unified the selection-scan results by
bringing them to the gene level. However, taking a simple overlap of loci reported
as selected by different studies might introduce biases because the studies are not
all independent. Thus, we applied a per-gene ‘selection support index’ (SSI -
Equation 2) that weighs, combines and evaluates signals of selection from genome-
wide selection scans focusing on recent human adaptations (adaptations that arose
after the out-of-Africa population expansion) that have not swept to fixation in the
species yet (incomplete sweeps or so-called microevolution).

If classic hard sweeps were frequent in human evolution, we would find
many candidate genes showing multiple signatures of selection and thus scoring
highly in the meta-analysis. Instead, in agreement with previous meta-analyses (8,
18,20, 22,54,135-137), we found many candidate genes that were reported by only
one or few studies, to which our index assigned low confidence in their selection
(Figure 5.A). In contrast, some widely-accepted cases of adaptations with
compelling functional evidence were found among our top-scoring candidates, such
as EDAR (138, 161), SLC24A5 (139), LCT/MCM6 (140, 141), HERC2 and OCAZ2 (162-

164). Nevertheless, even when a candidate gene has strong support from our index,
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Figure 5. Meta-analysis of published genome-wide selection scans. (A) - Plot of Selection Support
Index (SSI) scores for the positively selected genes in the published literature against the number of
genes with this score; SSI score is also illustrated by the circle colour, and gene count by the circle
size. (B) - Manhattan plot of the top ~6% putatively selected loci meeting the threshold of SSI score
> 0.09; each dot represents a gene midpoint; the cluster of genes underlying lactose tolerance is
boxed. (C) - An expanded view of the lactase persistence signal showing the strong signature of
positive selection that extends over a large genomic region; each dot represents the midpoint of a
gene surrounding LCT; genes are shown as rectangular boxes in the gene track plotted below the x-
axis displaying their chromosomal positions in GRCh37.
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rapid hard sweeps can result in a cluster of adjacent genes scoring highly (Figure
5.B) representing a single selection event spanning up to 1 Mb (e.g. the selection
signal underlying lactose tolerance in Europeans which is detectable within a 1.3
Mb window as lactase (LCT)-surrounding genes are often reported as extreme
outliers in selection studies (Figure 5.C)). The proportion of clustered candidate
genes whose selection footprint could be explained by selection acting on a nearby
gene depends on the SSI cutoff and varies from 50% up to 70% for top candidate
selected genes (meeting the threshold of 2 0.17 (top ~1.5%) and = 0.09 (top ~6%)
respectively). However, we cannot exclude the possibility that in some cases
selection truly acted on more than one gene within a contiguous cluster. The list of

top 7% protein coding genes and their SSI values can be found in Appendix A.
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2.2.3. Discussion

There are many diverse approaches to search for positive selection
footprints, most based on a single characteristic left by a hard sweep, although
emerging composite likelihood methods combine multiple lines of evidence (8).
Each method picks up on a slightly different signal and has its own strengths and
weaknesses (10), thus combining several complementary methods should increase
the chance of finding truly selected loci, as selected loci reported by multiple studies
are more likely to be real (8).

However, previous reports should not be regarded as definitive as there are
many caveats contributing to the observed low concordance between studies and
clustering of candidates. Factors potentially contributing to this result include
genetic hitchhiking, imprecise methods identifying large genomic chunks, the
incomplete nature of the chip-genotype input data, and inconsistent criteria for
reporting the most extreme outlier loci (8). Furthermore, selection studies often do
not report footprints in intergenic regions, so meta-analysis is biased toward genic
regions. Low overlap between previous selection studies may also indicate both
differences between various methods (also recovering different selective events)
and the overall high false positive rate of such scans (136).

New whole-genome sequencing datasets coupled with novel methods to
detect selection can outperform previous research and detect unreported
candidates (as full-sequence data ensure that all potential candidate variants are
evaluated). For example, the zinc uptake transporter ZIP4, known for its striking
selection signature, did not show up among the top candidate genes in the meta-
analysis of the published literature (Figure 5.A). ZIP4, encoded by SLC39A4 is
characterised by an extreme difference in the frequency of leucine-to-valine
substitution (Leu372Val) between West Africans and Eurasians (165). The
functionality of this variant was verified through in vitro functional experiments
demonstrating differences between the human derived and ancestral alleles in
surface protein expression, intracellular levels of zinc and zinc uptake (165).
However, genomic scans for selection based on extended long haplotypes or

deviations in the allele frequency spectrum had failed to identify ZIP4 as a candidate
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gene for positive selection. Such an extreme pattern of population differentiation
and the absence of additional accompanying classic sweep signatures can be
explained by the effect of a local recombination hotspot (165). In this scenario,
SLC39A4 should have obtained moderate support in our meta-analysis, but was
missed in many studies employing population differentiation methods, as the
selected SNP (or any SNP tagging it) was not included in the commonly-used
Affymetrix and Illumina SNP arrays and consequently it was absent from the HGDP
and Perlegen datasets (166, 167). As a result, SLC3944 was very weakly supported
in our meta-analysis (Figure 5.A).

Nonetheless, even though cases that do not confirm to a classical hard sweep
model could be overlooked in such gene-level overlap analysis for technical
reasons, most extreme adaptive events would remain the same across different
studies. However, even the strongest signals highlighted in the combined scans
need to be functionally validated to be considered real. To do so, the signature of

selection needs to be narrowed down to one or a few candidate SNPs.
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2.3. Fine-Mapping of Adaptive Variation

2.3.1. Materials and methods

2.3.1.1. FineMAV

Fine-Mapping of Adaptive Variation (FineMAV) is designed to refine a signal
of selection to a single most likely selected variant and thus to differentiate between
selection-driving and passenger variants for functional follow-up studies. FineMAV
is most relevant for targets of recent or ongoing local positive selection (within the
last ~60,000 years) and can be applied to a region of prior interest, or to the whole
genome for discovering novel selected variants.

A FineMAV score was calculated for the derived allele of each SNP by
combining its Derived Allele Purity (DAP), continental Derived Allele Frequency
(DAF) and functional prediction (the CADD PHRED-scaled C-score (168)) (Equation
3). The rationale behind doing so is that variants predicted to be non-functional are
likely to be neutral, since natural selection can only act directly on variants that
confer phenotypic effect. If an allele is predicted to be highly functional and rare, it
is likely to be deleterious; but it cannot be harmful if it is both functional and
common, and may potentially be adaptive. Importantly, all three metrics are allele-
specific (rather than site- or gene-specific) and consequently allow direct
evaluation of individual alleles. We simply scaled and combined the metrics to
obtain a single measure giving high values to derived alleles that are common,
population-specific and functional. In other words, we generate a high score for a
derived allele that is common, population-specific and has a strong predicted

functional effect. Individual components are introduced in the following sections.

Equation 3. Fine-Mapping of Adaptive Variation. To compute FineMAV per derived allele across n
populations, suppose i € {1, 2, ..., n}, and let DAF; be derived allele frequency in population i.

FineMAV; = DAP X DAF; X CADD
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2.3.1.2. Measure of population differentiation

We used an allele frequency differentiation method as a signature of local
selection in FineMAV. We chose a measure of population structure differing
somewhat from other methods, as: it (i) operates at the variant level, (ii) does not
rely on the hard sweep assumptions of strong LD and SFS signatures (which might
be erased by recombination), (iii) is sensitive to many types of selection including
classic sweeps and selection from standing variation and (iv) detects recent human
adaptations (17, 20, 21, 25, 26).

We proposed and applied a new measure of population differentiation called
Derived Allele Purity (DAP). DAP is related to differences in derived allele
frequencies (ADAF (95)) and other pairwise comparison-based methods, but able
to summarise population differentiation (spatial pattern of the derived allele)
across many populations in a single measure for each variant. DAP is a measure of
derived allele entropy based on Gini impurity (169) and describes how unequally
the derived allele is distributed among diverse populations. DAP operates on
derived allele counts in a population sample when distinct groups are equally
represented and is calculated according to Equation 4. When population groups are
not equally represented, derived allele count can be estimated from derived allele
frequency. DAP counts derived allele occurrences across populations and describes
their spatial distribution, reaching its maximum of 1 when all cases (derived alleles)
fall into a single population category, and penalizes allele sharing between different
populations. The magnitude of the penalty can be controlled by the x parameter

(‘penalty parameter’) depending on the user’s purposes and the number of

Equation 4. Derived allele purity. To compute derived allele purity per site (DAP) across n equally
represented populations, suppose i € {1, 2, ..., n}, and let d; be derived allele count in population i.

n
dy = Z d,

i=1

d

fi i

T dy

n
DAP = z f#
i=1
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populations being compared (n). For maximally differentiated derived alleles
(observed in one population only) DAP is constant (DAPnax = 1) and insensitive to
n, while for the other extreme, minimally differentiated derived alleles (with the
same frequency in all populations), DAP depends on n and DAP, > DAPp.;. To adjust
for this, the x parameter for lower n needs to be higher. We calibrated x using a

subset of our gold standards (see the following section).

2.3.1.3. Measure of allele prevalence

We estimated allele abundance using two alternative approaches: (i) global
derived allele frequency and (ii) continental derived allele frequency. In both cases
DAF ranges from 0 to 1. We obtained the continental DAF by averaging DAF across
all populations within each continent, and calculated global DAF for each variant by
averaging continental DAFs. Both approaches yield similar results (almost identical
lists of top 100 extreme outliers). The main difference between these two measures
of allele prevalence is that incorporation of global DAF results in a single FineMAV
score for each derived allele (which is then assigned to a single population based on
the difference in derived allele frequency between examined populations), while
application of continental DAF leads to calculation of FineMAV scores for each
population separately. Global DAF is n-dependent, while continental DAF remains
constant regardless of n, thereby making FineMAV values comparable across

different values of n. Here, we report results incorporating continental DAF.

2.3.1.4. Measure of functionality

It is crucial that variant-level functional inferences are based on whole-
genome level measures to ensure that all potentially selected variants are treated
equally. We wanted a measure of functionality to be allele-specific and applicable
to all variation, both coding and non-coding, since many signals of selection localise

in regulatory elements or intergenic regions (17, 123). As proteins are usually
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involved in many processes through complicated interaction pathways with other
proteins, amino acid change in one protein may affect many diverse traits i.e.
pleiotropic phenotypes (138). In general, pleiotropic changes are thought to be
disadvantageous (170), thus it is believed that a great deal of human phenotypic
variation is based in regulatory variation (17, 140, 170-172). However, having a
different set of annotations for coding and noncoding variation makes it challenging
to compare these distinct variant categories. Thus consensus methods combining
multiple annotations, each with its own weaknesses, are especially needed here for
functional prioritization of variants across many functional categories (168). In our
analysis we used the Combined Annotation-Dependent Depletion (CADD v1.2
PHRED-scaled C-score), which integrates 63 diverse genome annotations into a

single measure for each variant and in theory takes a value between 0 and 99 (168).

2.3.1.5. FineMAYV calibration

We compiled a gold standard panel of the eight best examples of
experimentally-validated causal variants underlying signals of positive selection
which are linked to specific phenotypic consequences (Table 3), and calibrated our
method using population-scale sequence data (1000 Genomes Project (142)) of
genomic windows spanning randomly chosen half of the gold standards. In the

calibration stage, we needed to find the value of the x penalty parameter that assigns

Table 3. List of ‘gold standard’ selected variants used for FineMAV calibration and replication. ‘Pop.’
- population with the reported selection signal: AFR - Africans; EAS - East Asians; EUR - Europeans.
‘Dataset’ indicates whether given gene was used in calibration (C) or replication (R) analysis. *Note
that ACKR1 is also known as DARC and the derived allele at rs2814778 is the Duffy O allele.

Gene SNP Pop. Function Dataset
ACKR1*  rs2814778 AFR Malaria resistance(173-176) R
SLC39A4 rs1871534 AFR Zinc level(165) C
ABCC11 1rs17822931 EAS Earwax and sweat type(177, 178) C

EDAR rs3827760 EAS  Hair shape and thickness(138, 161) R

HERC2  1rs12913832 EUR Eye pigmentation(162-164) R
MCM6 rs4988235 EUR Lactose tolerance(140, 141) C
SLC24A5 rs1426654 EUR Skin pigmentation(139, 179) C
SLC45A2 1rs16891982 EUR Skin pigmentation(179-181) R




63

the background neutral variation and highly functional derived alleles fixed on the
human lineage in the window around the selected mutation low scores. Imagine
two scenarios. In scenario 1: a maximally differentiated derived allele that is
exclusively fixed in population i but absent elsewhere (DAPmax = 1), which implies a
maximal frequency (DAF; = 1), and is predicted to be functional (CADD = 20). In this
scenario, FineMAV = 20 and would be constant regardless of n (the number of
populations used in the analysis). Alternatively, in scenario 2, for a derived
mutation that is fixed in all populations (DAF; = 1) and is highly functional (CADD =
45) we need to penalize for allele sharing between populations to keep DAP (and
consequently FineMAV value) at a low level relative to scenario 1. The calibration
analysis revealed that penalty parameter x set according to Figure 6 is sufficient to
keep highly functional fixed alleles at a low level (scenario 2: DAP ~0.064 and
FineMAV ~2.88, which is at least 7 times lower than the gold standard calibration
set), but higher penalties might also be applied. Note that x decreases with

increasing n to keep FineMAV value insensitive to n.

2.3.1.6. FineMAYV calculation in 1000 Genomes Project

DAF and DAP values were calculated from the 1000 Genomes Project, Phase
3 datarelease (142) using a custom script; CADD PHRED-scaled C-scores v1.2 (168)
were obtained from http://cadd.gs.washington.edu/. We ran our analysis for both
autosomes and sex chromosomes focusing on three continental populations:
Africans (AFR), East Asians (EAS) and Europeans (EUR). We ran it in two contexts:
(i) to re-discover continent-specific positive selection signals in Africa, East Asia
and Europe (n = 3; x = 3.5), and (ii) to analyze selection that happened outside of
Africa by pooling East Asians and Europeans together (n = 2; x = 4.96). Even though
we ran our analysis with the above continental scale configuration, FineMAV could
also be applied to study signals of selection within continents. FineMAV was
calculated for derived alleles (annotated accordingly to Ensembl (160, 182)) using
a custom script (SNPs only; indels were omitted). We applied a conservative

FineMAV cut-off to include only the top 100 candidate variants in each continental
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population (incorporating all gold standards and giving a total of 300 variants
corresponding to the top ~0.0004% of the whole-genome distribution) for our

downstream enrichment analysis.

2.3.1.7. Simulation analysis

Simulation analyses to assess FineMAV’s performance were limited by the
unknown relationship between the prediction of functionality (CADD score) and the
selection coefficient. Although the functional range of CADD scores has been
estimated, its precise false discovery rate and sensitivity remain unknown, while
FineMAV’s performance is closely tied to the accuracy of the functional annotation.
Nevertheless, we performed simulation analysis using individual based forward-
time simulation implemented in simuPOP v1.1.7 (183) to assess the power (True
Positive Rate (TPR)) and False Discovery Rate (FDR) of the FineMAV algorithm. The
simulation analysis was coded and run by Massimo Mezzavilla (Wellcome Trust
Sanger Institute). We simulated three populations with a set of demographic
parameters (starting effective population size, migration rate and time of
divergence) similar to estimates in Europeans, African and East Asian populations
accordingly to (184). We simulated a genomic window of 1,000 SNPs with only one
SNP under selection per window in one population. The probability of
recombination between two SNPs was set to increase with the increasing physical
distance between sites. The starting derived allele frequency for the selected
marker was set to 0.01, and the allele frequencies of the remaining neutral SNPs
were drawn from a beta distribution. Each SNP was assigned a CADD score value as
follows:

i) Neutral SNPs were randomly assigned a CADD score value drawn from the
genome-wide CADD distribution of derived alleles seen at =2% frequency in

the 1000 Genomes Project, Phase 3. Our simulation does not include a

purifying selection against rare highly functional/pathogenic variants of

high CADD prediction, therefore the derived allele frequency cutoff has been

set to 2% (approximately minimal frequency at which derived allele could
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be seen at least once in a homozygous state in a population of the Phase 3

size) to remove rare deleterious variants from the CADD distribution.

ii) We had to assume that the CADD distribution of selected variants is
functional (which is supported by the CADD predictions of the gold standard
panel). Based on this assumption, the CADD score for the selected SNP was
drawn from the outlier distribution in the range of 10.78-47 (see Result
section).

We then simulated 4 scenarios under the additive selection model with
different selection coefficients: s = 0.001, s = 0.007,s = 0.01 and s = 0 (no selection)
and a sample size of 500 individuals in each population. The populations were
sampled after 1,000 generations of selection and drift. Each scenario was replicated
100 times. FineMAV was subsequently applied to each scenario. We then checked
how often the selected variants fall outside of the neutral FineMAV distribution. To
determine the upper end of the neutral distribution we bootstrapped 1,000
FineMAV values from the simulated neutral variation 100 times and took the

maximum sampled value as our cut-off (set to FineMAV of 10.7).
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2.3.2. Results

2.3.2.1. FineMAV power analyses using simulation

FineMAV’s power to detect selected variants depends on the strength of the
selection coefficient and is unable to distinguish weak selection (s =0.001) from the
neutral variation as it does not produce population differentiation (Figure 7). The
medium and strong selection coefficients produce FineMAV distributions that are
different from the neutral variation (Figure 7) and it is unlikely to find neutral
variants in the extreme upper tail of the FineMAV distribution (assuming that CADD
annotation is characterised by low false discovery rate). FineMAV's false discovery
rate in the extreme upper tail due to drift or hitchhiking is low: ~4%. The power to
detect the selected variants that fall outside of the neutral FineMAV distribution is
46% and 77% for s=0.007 and s = 0.01 respectively. Although the real power, which
depends on the functional annotation accuracy, might be lower (as functional
annotation might be incomplete), we do not attempt to pick up all selection in the
genome (potentially high false negative rate), but rather to minimize the false
discovery rate by using known functional annotation to identify a small number of

truly selected variants for functional follow up studies.

2.3.2.2. FineMAV evaluation using 1000 Genomes

Project

To calibrate FineMAV and evaluate its performance, we compiled a gold
standard panel of the eight best examples of experimentally-validated causal
variants underlying signals of positive selection that are linked to specific
phenotypic consequences in 3 well characterised main continental populations
(Table 3). We calibrated the method using genomic windows spanning half of the
positive controls (randomly chosen from each population), applied it to genome-

wide data from the 1000 Genomes Project (Phase 3) (142) to discover positive
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line represents the upper end of the neutral distribution.
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selection signals in Africa, East Asia and Europe, and tested the results by
examining: (i) whether our method was able to separate the other half of the gold
standard variants from the surrounding linked SNPs, (ii) whether the gold
standards as a group were found among the extreme outliers of the genome-wide
distribution, and (iii) whether FineMAV also enriched for genes identified in
previous genome-wide selection scans with high Selection Support Index (SSI)
values (Equation 2).

Results of the refinement of the signal of selection for the gold standard
panel calibration set and replication sets are shown in Figure 8 and Figure 9
respectively, together with the performance of methods relying on population-
genetic data alone (ADAF - a standard measure of population differentiation (95),
and CMS - a composite method (123, 155)). Our integrative approach successfully
distinguished the selected variants from the neutral background variation in all
cases, whereas the standard methods were often unable to differentiate between
the functional variant and its neutral proxies. Inclusion of functional data improved
the fine mapping of truly selected variants remarkably.

We then ranked all variants based on their FineMAV value to identify
extreme outliers in the upper tail of the empirical genome-wide distribution for
each continent, and examined whether or not the gold standard variants fell in the
extreme tail. We indeed found all the gold standards to be high scoring (Figure 10)
(among the top 0.0004% of the whole-genome distribution (Figure 11 and
Appendix B)) and set a conservative threshold to include the top 100 candidates
per population (incorporating all gold standards and a total of 300 variants, out of
more than 78 million derived alleles (Figure 11 and Appendix B)) for downstream
analysis. Among those 300 FineMAV top-hits we saw variants with varying level of
allele frequency (DAF range of ~0.25-1) and allele sharing between populations
(DAP range of ~0.38-1), all characterised by a functional CADD score prediction (in
the range of ~11 to 47 with a mean of ~19). It is worth noting that although
FineMAYV prioritises population-specific alleles, it also allows some degree of allele
sharing between populations. The distribution of continental DAF, DAP and CADD
in the top FineMAV outliers in each population are shown in Figure 12, Figure 13

and Figure 14 respectively.
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Figure 8. Comparison of three different approaches for pinpointing selected variants in the
calibration set. ADAF, CMS and FineMAV scores are shown for the genomic windows spanning genes
from the gold standard calibration panel. ADAF and FineMAV were calculated from the 1000
Genomes Project Phase3 dataset (142). CMS scores for localised regions (155) spanning genes of
interest were calculated using the pilot phase of 1000 Genomes Project (185) and downloaded from
http://www.broadinstitute.org/ (namely, region8new covering MCM6, and region152new for
ABCC11). Variants with CMS value set to ‘nan’ were not plotted, thus there is missing variation in
CMS plots. Genomic positions are given in Mb according to GRCh37 for ADAF and FineMAV, and build
NCBI36 for CMS. The selected variant is marked with a dashed line. FineMAV notably reduced the
noise of neutral background variation, so that the selected variant is always the highest scoring one
in the given gene. Note that the y-axis scale in the CMS plots is not standardised.
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Figure 9. Comparison of three different approaches for pinpointing selected variants in the
replication set. ADAF, CMS and FineMAV scores are shown for the genomic windows spanning genes
from the gold standard replication panel. ADAF and FineMAV were calculated from the 1000
Genomes Project Phase3 dataset (142). CMS scores for localised regions (155) spanning genes of
interest were calculated using the pilot phase of 1000 Genomes Project (185) and downloaded from
http://www.broadinstitute.org/ (namely, region34new covering HERCZ2, region104new for EDAR
and SLC45A2o0ld for SLC45A2). Variants with CMS value set to ‘nan’ were not plotted, thus there is
missing variation in CMS plots. Genomic positions are given in Mb according to GRCh37 for ADAF
and FineMAV, and build NCBI36 for CMS. The selected variant is marked with a dashed line. FineMAV
notably reduced the noise of neutral background variation, so that the selected variant is always the
highest scoring one in the given gene. Note that the y-axis scale in the CMS plots is not standardised.
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Figure 10. Manhattan plot of genome-wide FineMAV scores. FineMAV scores were calculated for
genome-wide SNPs from 1000 Genomes Project Phase 3 (142) in three populations: (A) - Africans
(AFR, blue); (B) - East Asians (EAS, orange); (C) - Europeans (EUR, green). Each dot in the
Manhattan plots represents a single SNP plotted according to coordinates in GRCh37. The threshold
(dashed lines) was set to include the top 100 variants (top ~0.0004% of the whole-genome
distribution). All gold-standard SNPs (yellow dots found among the top outliers) and other
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2.3.2.2.1. Top FineMAV hits classification and enrichment

analysis

Our list of the top 300 candidates was annotated using Ensembl (160) and
we found it significantly enriched for variants of functional classes like missense
mutations (p-value < 2.2 x 10-16, Fisher's Exact Test) or regulatory region variants
(p-value = 5.30 x 10-%, Fisher's Exact Test) as compared to random expectation (list
of random alleles matched for the global allele frequency) (Figure 15). This is
expected because of the inclusion of the CADD value (168) in the FineMAV score.

We also used independent measures of functionality to test our results, and
observed that our outliers have higher fitCons scores (probability that a point
mutation will influence fitness) (186) (p-value < 2.2 x 10-16, Wilcoxon rank sum test)
than expected by chance. Furthermore, variants falling in broadly non-functional
classes (noncoding variation) are also biased toward higher GWAVA scores
(predicted functional impact of non-coding genetic variants) (187) as compared
with random expectation (p-value < 2.2 x 10-16, Wilcoxon rank sum test). These
analyses were performed after excluding FineMAV hits on the sex chromosomes as
GWAVA and fitCons scores are available for autosomes only (186, 187). Thus
although we used one particular measure of functionality in our discovery process,
we also see very strong enrichment in other available functional prediction scores,
which illustrates the consistency of our results.

Finally, we used the results of the meta-analysis of previous selection scans
to compare FineMAV top hits with previous work. Our outliers fell in or nearby
genes (~200 distinct genes) significantly enriched for high SSI from the meta-
analysis, as compared to random expectation (p-value = 6.59 x 10-19, Wilcoxon rank
sum test; after excluding gold standards: p-value = 9.20 x 10-). This illustrates
significant concordance with previous studies, as we find our strongest signals
enriched in regions that have been independently identified as being under
selection, although this comparison was limited to variants falling in or near genic
regions on autosomes, as previous selection scans often do not report intergenic
signals and excluded the sex chromosomes. We also compared the distribution of

FineMAV scores of top SNPs falling in SSI outlier genes with the null expectation. To
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Figure 15. Functional consequences of FineMAV top outliers as compared to random expectation.
The 100 top outliers from each population (AFR, EAS, EUR) were pooled together. The chart uses
the most severe predicted consequence for each variant from Ensembl (160)
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do so, we took the top ~1% of genes with the highest SSI scores (S5 = 0.18),
extended those genomic regions by 50 kb up- and downstream, extracted a top SNP
falling in each window, and built a FineMAV distribution. We found this to be
significantly different from the null expectation (p-value < 2.2 x 10-16) (Figure 16).

2.3.2.2.2. Functional validation in silico

To further evaluate our FineMAV hits, we performed an in silico validation by
searching available literature for relevant functional information about our
shortlisted variants. FineMAV’s performance is supported by several lines of
evidence. The first verification comes from the ‘gold standard’ replication set (the
best examples of validated causal adaptive variants). Not only did FineMAV replicate
a signal in well-know cases of strong selection, but also narrowed it down to a single
functional SNP (often in high LD regions). The number of such positive controls
extends to other variants that were not included in the ‘gold standard’ panel, but
whose evidence of causality is also strong, providing additional support. FineMAV
rediscovered many known variants with prior evidence for being causal of positive
selection signals including several SNPs involved in eye, hair and skin pigmentation
in non-Africans, such as rs1800414 in OCAZ (skin lightening in East Asians) (188-
190),rs1042602 and rs1126809 in TYR (pigmentation and freckling in Europeans)
(191-193), rs12350739 in BNCZ (freckling and colour saturation of human skin
pigment in Europeans) (194) but also rs1047781 in FUTZ (an enzyme-inactivating
mutation conferring advantage in avoiding certain viral infections in East Asians)
(52,195).

Finally, FineMAV picked up a variant with no prior implication of
functionality that was experimentally validated in parallel to our study, which
provides another proof of its performance. We picked-up a missense rs11150606
as sixth top scoring variant in East Asians and falling in PRSS53 whose function was
largely unknown. PRSS53 encodes one of the polyserine proteases called
polyserase-3 (POL3S) which hydrolyses peptide bonds. During the preparation of
this thesis Adhikari et al., showed that PRSS53 is highly expressed in the hair follicle
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Figure 16. Distribution of FineMAV scores in SSI outlier genes. The null expectation is the distribution
of FineMAV scores of variants matching the continental derived allele frequency of our top outliers
(DAF = 0.24) across all three populations pooled together. We then looked at the distribution of
FineMAV scores of top SNPs falling in SSI outlier genes and their 50 kb surrounding regions (SSI =
0.18 which corresponds to ~1% of top genes) and found that it is significantly different from the null
expectation (p-value < 2.2 x 10-16). Vertical lines indicate FineMAV cutoffs to include top 100 variants
in each population.



81

and rs11150606 has been associated with hair shape in East Asians (196). The
authors confirmed functionality of rs11150606 by in vitro assays showing that it
affects processing and secretion of the gene product potentially contributing to the
straight hair phenotype, similar to the well-established gold standard EDAR variant
(196). They also showed that the genome regions associated with scalp hair
features are enriched for signals of recent selection in humans (196). This can be
considered as another example proving validity of our method in picking up truly

functional variants.

2.3.2.3. Novel candidate variants across Africa, East

Asia and Europe

We performed a new analysis of 1000 Genomes Project Phase 3 whole-
genome sequence data (142) using FineMAV focusing on identifying individual
putatively-selected SNPs driving recent local adaptations (adaptations that arose
after the out-of-Africa population expansion). Our analysis overlays multiple lines
of evidence for causality to prioritise the vast numbers of potential candidates in
order to identify a small number for experimental follow up.

Although we have thus far highlighted known variants replicated in our
analysis that serve as positive controls evaluating our method’s performance, the
vast majority of our outliers are novel and fall in non-coding regions (Figure 15); all
of them are characterised by high functional prediction and derived allele patterns
similar to the ‘gold standards’. We also see potential signals of convergent or
parallel evolution (31), i.e. selection on the same gene in geographically distant
populations, but on a different SNP e.g. BCOR, CDH13, FOXD1, FOXP1, HDAC8, MYH15
and NFIB all have a highly-scoring outlier SNP in two out of three populations
analysed (as multiple mutations at the same loci can give rise to a similar phenotype
(21)). Finally, our analysis picked up several novel potentially interesting
candidates, including variants on the X and Y chromosomes which have been
underrepresented in previous genomic scans, but further functional testing is

needed to verify these findings.
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Although our study focuses on local adaptation driving population
differentiation at the continental scale, FineMAV might be also applied to study
signals of selection within continents. It is also possible to investigate signal of
selection shared between populations by relevant population grouping depending
on user’s purposes, e.g. we investigated selection that happened outside Africa by
pooling East Asians and Europeans together (Appendix B).

In the following sections we discuss some some intriguing novel alleles, and
speculate on plausible selection pressures. The functional significance of the novel
candidate variants presented here needs to be experimentally validated, but
narrowing their signal of selection to a single most likely candidate SNP is already

a starting point in such efforts.

2.3.2.3.1. Nonsense variants

We observed some high-scoring nonsense variants among our top
candidates, suggesting pseudogenization of PKDILZ (an endogenous fatty acid
synthase in skeletal muscle (197)) in Europeans, ZNF208 (zinc finger and SRY-
interacting protein (198)) in Africans, as well as ZAN, OBSCN (sacromeric signaling
protein involved in myofibrillogenesis (199)) and MAGEEZ (melanoma-associated
antigen expressed in the brain (200)) in East Asians. Mice homozygous for knockout
alleles of OBSCN and ZAN are viable and fertile (201, 202); ZAN is particularly
interesting as it encodes a zonadhesin protein located in the acrosome that
mediates the species specificity of sperm binding to the extracellular coat of the egg
(zona pellucida) (203). Sperm from zonadhesin-null mice exhibit dramatically
higher levels of inter-species gamete adhesion without alteration in fertility (202).
Zonadhesin is reported to be a rapidly-evolving protein with a high level of
divergence between closely-related species, but is similar in species capable of
interbreeding (204, 205). The adaptive advantage of species specificity conferred
by zonadhesin might be the limitation of cross-species fertilization and avoidance
of sterile hybrids (205). However, polymorphism data in humans reveal a signature
of positive selection on haplotypes carrying a frameshift mutation (204). We find a

signal of selection at a nonsense mutation (rs2293766) present at 51% frequency
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in East Asians, but virtually absent elsewhere. An even higher frequency difference
is observed for a stop allele at rs1343879 in MAGEEZ on the X chromosome.
Selection at this locus was previously reported by Yngvadottir et al., who observed
lower diversity in haplotypes carrying the stop allele than in the others and
concluded that, like ZAN, the truncated MAGEEZ2 conferred a selective advantage in
East Asia (206).

2.3.2.3.2. Missense variants

FineMAV also highlighted rs6048066, a missense variant in TGM3 in
Africans. The TGM3 gene product (TGase 3) is involved in the keratinization of the
epidermis and hair follicle by crosslinking structural proteins, thereby contributing
to hair structure, epidermal barrier functions and wound healing (207, 208). Tgm3
knockout mice do not exhibit severe malformation apart from striking
abnormalities of hair follicle function and hair development, manifested by rough-
looking, curly or brittle hair (208-210). The missense variant we report here falls in
the catalytic core of the protein, as does the mouse nonsynonymous we?B" allele
causing the wavy coat and curly whiskers phenotype (210). The absence of TGase 3
seems to affect hair fiber morphogenesis, and could play a role in the maintenance
of body heat in mammals (211). Similarly in humans, TGase 3 is likely to participate
in human hair shaft keratinization and scaffolding (207), and its deficiency has been
linked to Uncombable Hair Syndrome characterised by dry, frizzy and wiry hair,
often with slower growth rate (212). SNPs in TGM3 have been weakly associated
with hair diameter in humans (213), and proteomic profiling of human hair shafts
identified TGase 3 as a major component of the hair fiber and revealed considerable
variation among samples of different ethnic origins, with the lowest levels in African
Americans and Kenyans (214). We propose that this missense variant (rs6048066)
might cause enzyme deficiency and contribute to African hair texture, hypothesised
to have experienced strong positive selection in equatorial climates due to body-
temperature-regulation (33, 215).

Another novel signal detected in African populations falls in SPTA1, encoding

erythrocytic spectrin, alpha 1, a principal component of the erythrocyte membrane
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skeleton, which is essential for the arrangement of transmembrane proteins,
determining red cell membrane stability, cell shape and deformability (216-218).
Variants in SPTA1 have been associated with quantitative hematologic traits (219-
221), and those causing its deficiency result in hemolytic anemias characterised by
elliptically shaped erythrocytes (also seen in Sptal~/- null-mice) (222, 223). The
high prevalence of such anemia in Africa (10 times higher in West Africa than in
Europe or USA (224)) raised the question of a selective advantage, possibly
contributing to protection against malaria (225, 226). It has been shown that
decreased spectrin level inhibited malaria parasite growth in vitro (227) and in a
mouse model (228). This evidence suggests that a functionally and structurally
normal host membrane is necessary for parasite growth and development (225,
227). FineMAV pinpointed rs7547313 (Ile>Val) as a likely selected variant present
at 0.37 frequency in Africans but absent elsewhere. Furthermore, this variant was
reported to be an eQTL associated with lower expression of ACKR1 [MIM: 613665]
(also known as DARC); p-value = 0.000017 (200). It is worth saying that rs7547313
is not in LD with the known Duffy O allele (rs2814778); r2=0.000228497. However,
the functional effect of this missense variant on the protein level and malaria

parasite growth remains uncertain.

2.3.2.3.3. Regulatory variants

Regulatory variants are particularly interesting as they form the most
abundant functional category among FineMAV outliers (Figure 15) and are
responsible for the bulk of human phenotypic variation (17, 140, 170-172).
However, the functional effects of regulatory variants are currently difficult to
predict and interpret. We find a signal of selection on rs2303893 - a splice region
intronic regulatory variant that falls in a region flanking the HADHB promoter (160)
and is associated with increased HADHB expression in adipose, arterial and brain
tissue (Geuvadis and GTEx data (200, 229)). HADHB encodes the beta subunit of the
mitochondrial trifunctional protein involved in the beta-oxidation of fatty acids, and
its deficiency causes severe phenotypes (230-232), but the reason for selection in

East Asians remains enigmatic.
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Another interesting candidate selected in East Asians is rs222444?2 falling in
a promoter flanking region in the intron of VRKI. The region surrounding
rs2224442, although non-coding, is characterised by high conservation across taxa
and presence of DNasel hypersensitivity. VRK1 is a protein kinase implicated in
mitotic and meiotic cell cycles (233, 234) which plays an important role in
gametogenesis in multiple species (235-238). VRK1-deficient organisms show
abnormality of reproductive organs, followed by defects in germ cell development
(235-238). Both sexes of VRK1-null mice have been reported to be infertile
displaying defects in sex organs, oogenesis and spermatogenesis (239-242). It
might be that this regulatory variant affects the expression level of VRK1 and

modulate maturation of gametes.
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2.3.3. Discussion

The aim of this study was not to perform another selection scan, and it
should not be interpreted in that way. Instead, it aims to refine a proportion of local
adaptations to a single variant and prioritise candidates for further functional
validation, as current methods often do not pinpoint causal SNPs. Therefore, this
section provides a decision-making algorithm for elucidation of most likely causal
variants that precedes laborious experimental work as it is impractical to assay
thousands of variants in a high-throughput fashion. To do so, we introduced the
FineMAYV statistic which combines measures of population differentiation, derived
allele frequency and molecular functionality. As it is difficult to distinguish true
biological signals from false positives using population genetic variation data alone,
incorporation of diverse functional annotations (such as predictors of
deleteriousness) should improve the pinpointing of likely causal variants, as it has
in the detection of disease-causing variants (243). It is worth noting that variants
classified as damaging alter the level or biochemical function of a gene product, but
do not necessarily decrease the reproductive fitness of carriers (168, 244). The
functional consequence of the ‘damaging’ change for a person depends on many
factors and can be either negative or positive (as deficiency alleles might be either
beneficial or detrimental) depending on the environmental context. For instance,
variants disadvantageous in one environment can be favored under different
conditions e.g. sickle cell (62), CPT1A (55, 56).

FineMAV was calibrated and tested using a gold standard panel of the eight
best examples of experimentally-validated causal variants underlying signals of
positive selection in humans, and was able to identify the known functional
candidate in all cases (Figure 8 and Figure 9). Using the complete 1000 Genomes
Project dataset (142), we then ranked all genome-wide SNPs based on their
FineMAV value and identified extreme outliers in the upper tail of the empirical
genome-wide distribution in Africa, Europe and East Asia. FineMAV rediscovered
other known variants with strong prior evidence for being causal of positive
selection signals, but which were not part of the positive control set which provides

additional support for our method. We also identified potential functional variants
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in other genes reported to be under strong positive selection in the literature (with
strong SSI score) where the causal mutation has not been confirmed yet, including
LPP, PCDH15 and PRSS53. The selection signal in PCDH15 and PRSS53 was
attributed to a single missense variant (rs4935502 and rs11150606 respectively),
replicating the results obtained by CMS (155, 196).

The signal in BNC2 was particularly strong in Europeans, as reflected by a
cluster of 12 SNPs found among the top 100 hits in the FineMAV distribution (Figure
10.C). The hypothesised casual SNP (the intergenic rs12350739) was the second
highest-scoring BNCZ2 variant in our analysis and has been reported to be a
functional eQTL as it falls in a highly-conserved melanocyte-specific enhancer and
regulates BNCZ2 transcription (194). The highest-scoring BCNZ2 variant
(rs10962600) might also contribute to the differential expression of BNCZ isoforms,
as several regions inside and outside of the BNCZ gene contain enhancer features
(194). Interestingly, BNC2 has been highlighted as one of the genes present in a
region of the human genome that shows increased levels of Neanderthal ancestry
(Figure 17), suggesting that Neanderthal introgression might have provided
modern humans with adaptive variation for skin phenotypes involving BNCZ2 (30,
129, 134, 194). Furthermore, a cluster of high-scoring SNPs in FineMAV analysis
might be indicative of introgression as a source of adaptive variation as opposed to
advantageous de novo mutations that usually arise individually. We also found other
candidate SNPs falling in regions proposed to be adaptively introgressed from an
archaic source (27 SNPs in total) in GNAIZ2, GPATCH1, IRF6, POUZF3, RASSFI,
SEMA3F and SLC38A3 (Figure 17) (30, 129, 134, 245) suggesting that some of the
candidates might be of archaic rather than de novo origin. However, the origin of the
adaptive mutations is not the focus of this study and has been carefully analysed
elsewhere (30, 129, 134, 245).

Finally, FineMAV picked up variants with modest to high derived allele
frequency ranging from ~0.25 to ~1 within continental populations (Figure 12).
Most classical methods detect only extreme allele frequency differences between
populations, which are less likely to arise by chance (20). On the other hand, highly
functional alleles are less likely to be subjected to random changes in their
frequency, thus it seems that filtering out neutral variation by applying functional

information might allow more examples of weaker sweeps (potentially including
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selection on standing variation) to be discovered, which are characterised by more
modest allele frequency shifts (20, 21), although our method has no power to detect
low selection coefficients that do not produce a population differentiation pattern.
[t is worth noting that the lack of FineMAV hits on the Y chromosome (only one in

the top 300) shows strong dependence on the CADD score prediction.
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2.4. FineMAYV application to various

populations

2.4.1. Materials and methods

After the calibration of our method and assessment of its performance in
African, East Asian and European populations in the 1000 Genomes Project dataset,
we applied it to investigate population-specific local adaptations in Egyptians,
Ethiopians, Greeks, Lebanese, Native Americans and South Asians as described

below.

2.4.1.1. Admixed Americans and South Asians

We ran FineMAV analysis in Admixed Americans (AMR) and South Asians
(SAS) from the 1000 Genomes Project, Phase 3 data release (142) together with the
three main continental populations (described in the previous section) as follows:
AFR, AMR, EAS, EUR; n = 4; x = 2.98 and AFR, EAS, EUR, SAS; n = 4; x = 2.98. DAF,

DAP and FineMAV values were calculated as described earlier.

2.4.1.2. Non-admixed Native Americans

We searched for local adaptations in non-admixed Native Americans
(nAMR) using a dataset comprised of unpublished low coverage whole-genome
sequences from 24 Quechua from Peru generated at WTSI. In total, 29 Quechua
were sequenced on either an [llumina Genome Analyzer Il using 108 bp paired-end
reads or HiSeq 2000 with 100 bp paired-end reads with insert size of 300-500 bp.
Reads were aligned to GRCh37 (hg19/NCBI37) for general sequencing QC and

yielded average coverage of 4-6x. The 29 BAMs were then merged with a subset of
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the 1000 Genomes Phase 1 and 2 samples using the varpipe tool. Variants and
genotypes were called in the merged dataset by Luca Pagani and Petr Danecek
(Wellcome Trust Sanger Institute) using Samtools and the procedure described in
(247). Samples showing more than 5% European ancestry in ADMIXTURE analysis
using common variants were excluded from subsequent analysis leaving a total of
24 individuals. FineMAV analysis in nAMR were performed using 3 reference
populations from the subset of 1000 Genomes Project: AFR (Americans of African
Ancestry, Southwest USA [AWS], Luhya in Webuye, Kenya [LWK], Yoruba in Ibadan,
Nigeria [YRI]), EAS (Han Chinese in Bejing, China [CHB], Southern Han Chinese
[CHS]), EUR (Utah Residents with European Ancestry, USA [CEU], Iberian
Population in Spain [IBS], Toscani in Italia [TSI]); n = 4; x = 2.98. DAF, DAP and
FineMAV values were calculated as described earlier. Common variants failing
Hardy-Weinberg equilibrium and not called in 1000 Genomes Project, Phase 3 data

release (142) were excluded.

2.4.1.3. Greeks, Lebanese, Egyptians and Ethiopians
(GLEE)

The GLEE dataset comprised the following individuals: 100 Egyptians (EGP)
and 100 Ethiopians (ETP; 25 each from Amhara, Oromo, Wolayta and Gumuz)
sequenced at 8x depth using Illumina HiSeq 2000 (247); 100 Greeks (GRK) from the
HELIC TEENAGE (TEENs of Attica: Genes and Environment) cohort comprising
young adults from Athens, Greece, that were sequenced at 30x depth using the
[llumina HiSeq X10 platform, then downsampled to ~8x using the Samtools -s
option to have a coverage comparable to other populations in the dataset; 100
Lebanese (LEB including 34 Christians, 28 Druze and 38 Muslims) sequenced to an
average depth of 8x using Illumina HiSeq 2500. This dataset was merged with
similar data generated by the 1000 Genomes Project including CEU, CHB and YRI
(around 100 individuals each) and the genotypes were called jointly using Samtools
and Bcftools. Calling and quality control analysis were performed by Petr Danecek,

Marc Haber, and Javier Prado-Martinez (Wellcome Trust Sanger Institute).
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Genotype calling accuracy was assessed by checking concordance with array data
from the same samples and was found to have >99% concordance. Outlier samples
(deviating >8 SD from the core variation of the population in the PCA performed
using Eigensoft) and first and second degree relatives were excluded from further
analysis leaving: 91 EGP, 25 Amhara, 25 Oromo, 24 Wolayta, 23 Gumuz, 98 GRK, 34
LEB Christians, 28 LEB Druz and 38 LEB Muslims. DAF, DAP and FineMAV values
were calculated for derived and ambiguous alleles (annotated accordingly to
Ensembl Compara (160, 182)) using a custom script (SNPs only; indels were
omitted). The FineMAV analysis were performed in the following contexts: i) CEU,
CHB, YRI; n = 3; x = 3.5; as a sanity check to compare the concordance of FineMAV
results calculated using full 1000 Genomes Project, Phase 3 (142) and results
calculated from a single continental populations; ii) CEU, CHB, EGP, YRI; n = 4; x =
2.98; to investigate Egyptian-specific signal; iii) Amhara, Oromo and Wolayta were
pooled together as admixed Ethiopians (247) (ETP) and analysed in the following
context: ETP, CEU, CHB, YRI; n = 4; x = 2.98; iv) Gumuz (non-admixed Ethiopian
population (247)) was processed separately: CEU, CHB, Gumuz, YRI; n = 4; x = 2.98;
v) CEU, CHB, GRK, YRI; n = 4; x = 2.98; to explore Greek-specific signal; vi) CHB, GRK,
YRI; n = 3; x = 3.5; replacing CEU with GRK in the inter-continental comparison; vii)
CEU, CHB, LEB, YRL; n = 4; x = 2.98; to investigate Lebanese-specific signal (all
Lebanese pooled together); viii) LEB Christians, LEB Muslims; n = 2; x = 4.96; to

explore differentiation between different Lebanese groups.
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2.4.2. Results

2.4.2.1. FineMAYV analysis in Native Americans and

South Asians

2.4.2.1.1. AMR and SAS from 1000 Genomes Project

FineMAV analyses of the 1000 Genomes Project Admixed Americans (AMR)
and South Asians (SAS) revealed little population-specific variation in these
populations (Figure 18). Even though the signal there was lower due to population
admixture, we nonetheless saw promising candidates for local adaptations found
exclusively in those populations. Interestingly, the only clear outlier observed in
SAS, found at 0.54 frequency but virtually absent elsewhere, was a missense
rs201075024 falling in PRSS53 (Figure 18.A). A different non-synonymous variant
in PRSS53 was picked-up in East Asians (see previous section: Functional
validation), and has been recently shown to affect enzyme processing and secretion
potentially contributing to the straight hair phenotype (196). Furthermore, East
and South Asian alleles fall in close proximity, only 10 bp apart (Figure 19), which
might indicate a similar functional consequence and convergent evolution of a hair-
related phenotype.

The FineMAV signal in Admixed Americans was lower (Figure 18.B) as
admixture decreases differentiation and population-specific derived allele
frequency, with the top 3 scores being missense variants: rs148608573 in MAP7D1,
rs142326775 in ZNF438 and rs34890031 in LRGUK (mouse homologue is essential
for multiple aspects of sperm assembly and function (248)). Even though admixture
decreases the FineMAV signal, the one-directional admixture i.e. European gene
flow to Americas affects the frequency of derived Native American alleles, but not
their purity (as private American alleles would still be found exclusively in
Americas at high DAP values). In the case of common derived alleles selected to high
frequencies before an admixture event, their FineMAV signal should still be

detectable after European gene flow to Americas (assuming their high functional
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gene they fall into.
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prediction (CADD) and DAP scores) even if their allele frequencies decreased
substantially. Therefore, the strongest local adaptations should still fall in the tail of

the FineMAV distribution even in cases of recent one-directional gene flow.

2.4.2.1.2. Non-admixed Native Americans

We found a strong signal of local adaptation in the non-admixed Native
American population, with many potentially interesting candidates (Figure 18.C
and Appendix B), although the allele frequency calculation was based on a small
sample (n = 24). There was a substantial overlap between the top outliers found in
admixed and non-admixed populations (reaching 50% among the top 50 hits). We
also saw a moderate correlation (r = 0.58; p-value = 2.661 x 10-10) between the
FineMAV values of the top 100 non-admixed hits and their admixed equivalents. The
highest scoring variant (similarly to results in admixed Americans) was a missense
rs34890031 (found at 0.77 frequency) in LRGUK, a gene that plays a critical role in
male fertility (248). All of the above suggest that FineMAV is indeed able to pick up
the strongest selection signals even in admixed populations in cases of one-
directional gene flow when the source population is used in the analysis.

Other interesting variants include missense rs62621285 in ST14 and a stop
gained rs2293766 in ZAN, present at 56% and 79% respectively. This nonsense
mutation in ZAN (involved in sperm species specificity (202, 203)) has been
introduced in the previous section as one of the top variants selected in East Asians,
yet its frequency in Native Americans is even higher. ST14 is known for playing an
important role in hair development and growth and its deficiency in mice causes
brittle, thin, uneven, and sparse hair, or even a complete absence of erupted pelage
hairs and vibrissae in null animals (249-254), which is interesting considering the
reduced body hair in Native American populations (255, 256). Furthermore, ST14
is required for skin keratinization, formation and maintenance of the epithelial and
epidermal barrier and integrity (250, 253, 254, 257-263). It seems that this gene
has pleiotropic functions affecting the development of the epidermis, hair follicles,
and cellular immune system (254) as it has been shown that the ST14 protein

product (matriptase) is also an influenza virus-activating protease supporting
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multicycle viral replication in the human respiratory epithelium (264-266). The
influenza genome does not encode any proteases and relies on host proteases for
the cleavage activation of the surface receptor proteins in order to fuse with the
host cell membrane (264-266). Knockdown of matriptase in human bronchial
epithelial cells significantly blocked influenza virus H1 subtype replication (264-
266).

We detected additional putatively causal mutations falling in genes linked to
immunity including: i) rs4924468 in a promoter flanking region upstream of
BAHD1 (null mice exhibit decreased susceptibility to bacterial infection (267)); ii)
rs12478730 and rs12474958 in the [FIHI enhancer (mediating the immune
system's interferon response to RNA viruses including hepatitis B and C, influenza
A, paramyxoviruses (mumps, measles, respiratory syncytial virus causing
bronchiolitis and pneumonia), enteroviruses (including poliovirus), dengue,
rotavirus and Herpes simplex virus among others (268-283); null mice were more
susceptible to viral infection, experienced more severe symptoms and reduced
survival (284-288)); iii) a missense/promoter flanking region mutation
(rs145088108) in LCK (T-cell proliferation and activation gene whose deficiency
causes severe immunodeficiency (289-297)) and iv) missense/TF binding site
mutation (rs147302393) in SON (important for trafficking of influenza A virions to
late endosomes during infection (298) and repressing transcription of hepatitis B
virus (299)).

Furthermore, the SON protein product was shown to regulate ghrelin
receptor (GHSR) transcription in the brain by repressing its promoter activity
(300). Ghrelin (encoded by GHRL and acting via GHSR) is a pleiotropic hormone
secreted by the stomach that promotes food intake, weight gain and fat storage by
reducing fat utilization (beta-oxidation), but also decreased glucose tolerance and
decreased insulin sensitivity in mice and rats (301-305). Knockout mice display
increased utilization of fat as an energy source on a high fat diet, reduced food
intake, weight gain and adiposity, increased energy expenditure and locomotor
activity, decreased circulating glucose level, improved glucose tolerance, increased
circulating insulin level and secretion (304, 306, 307). It seems that the absence of
ghrelin protects from diet-induced obesity and type 2 diabetes (306, 307). On the

other hand, the ghrelin circulating level was shown to increase during fasting and it
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was suggested that it prolongs survival in starved humans but may also play a role
in fetal adaptation to intrauterine malnutrition, while its absence impairs fasting
tolerance (301, 302, 305, 308-310). It seems that ghrelin plays an important role in
the metabolic adaptation to nutrient availability and determines the type of
substrate (fat or carbohydrate) that is used for maintenance of energy balance (304,
306). Interestingly, one of the high-scoring variants in the Quechua population is a
missense variant (rs4684677) falling in GHRL. GHRL encodes preproghrelin, which
is a precursor of two peptides ghrelin and obestatin. Obestatin is ghrelin’s
antagonist involved in satiety and decreased appetite contributing to decreased
body weight gain (311) and the variant we picked up (Gln to Leu substitution in
position 90 of the ghrelin/obestatin prepropeptide; rs4684677) was shown to
impact obestatin function. GIn90Leu was slightly more efficient than native
obestatin in inhibiting ghrelin-induced food intake (312).

Highlighted example is not the only case of variants falling in genes
regulating energy homeostasis, as we also picked up rs189645263 in a promoter of
HIPK3 (a known regulator of insulin secretion whose deficiency impairs insulin
secretion and glucose tolerance and may play a role in the pathogenesis of type 2
diabetes (313)), and rs116131136 missense/promoter flanking region in VGF (an
energy homeostasis regulator). Processing of VGF generates multiple bioactive
peptides and mouse homozygotes for the null allele are small, lean with reduced
adiposity and increased fatty acid oxidation, hypermetabolic (with increased
resting energy expenditure and oxygen consumption), hyperactive, cold intolerant
and infertile (314, 315). Furthermore, VGF deficiency is characterised by decreased
circulating glucose and insulin levels but increased insulin sensitivity and improved
glucose tolerance, resistance to induced obesity and hyperglycemia which indicates
that this gene may also play an important role in diabetes (316-320).

Finally, we detected a strong signal in the CNTNAPZ gene, with a cluster of 9
SNPs in the top 100, which might indicate archaic introgression as a source of this
haplotype (similarly to BNCZ found in Europeans). Indeed, this derived haplotype
is also found in the high-coverage Denisova genome, but in a heterozygous state
which should be taken with caution as heterozygous haplotypes are rather
uncommon in highly inbred archaic hominins and could arise from mapping and

calling errors (246).
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2.4.2.2. GLEE

The Near East, Southern Europe and East Africa form a region which is key
for understanding the evolutionary history of modern humans. The region is at the
centre of modern humans’ expansion outside Africa and an established source of
subsequent expansions such as that during the Neolithic into Europe, Central Asia
and possibly back to Africa (247, 321, 322). Yet the genomics of the populations in
this area have been little-studied, especially on the whole-genome level.

We first performed a sanity check to ensure that the results we are getting
using a single reference population representing each continent (CEU for Europe,
CHB for East Asia and YRI for Africa) are consistent with the results obtained for
the full 1000 Genomes Project, Phase 3 (142) (reported in previous section). We
found a very high concordance between the two runs with ~70% of the top 100
outliers being the same and a high correlation between FineMAV values of those 100
candidates (r = 0.85 in Africa, r = 0.83 in East Asia and r = 0.85 in Europe; all with
p-value < 2.2 x 10-16). All gold standards were successfully picked up as high-scoring
in the sanity test. Furthermore, we detected two well-know adaptive variants
among the top 100 hits that were missed in the full 1000 Genomes Project analysis:
(i) rs3211938, a nonsense mutation in CD36 selected in YRI and conferring
protection against malaria and/or the metabolic syndrome (323-325), and (ii) a
missense variant, rs1229984, falling in ADH1B selected in CHB possibly due to
protection against alcohol dependence (326-329). The reason why rs3211938 was
picked up in the test run is its high frequency in YRI (29%) compared to the
frequency in general African population (12%) sampled by the 1000 Genomes
Project (12% in the combined sample is too low to be detected by FineMAV at the
continental scale analysis). On the other hand, rs1229984 was not picked up in the
full 1000 Genomes Project survey as its evolutionary state (ancestral vs derived)
could not been inferred and was subsequently excluded from the analysis, while
this study was less stringent and ambiguous sites were retained.

We then replaced CEU with genetically close GRK population to see how it
affects the analysis. The results for CHB and YRI remained virtually the same, while

the most prominent difference between GRK and the general European population
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sampled in 1000 Genomes Project Phase 3 was the loss of the selection signals
underlying lactose tolerance (rs4988235 in MCM6; 0.51 DAF in EUR vs 0.13 DAF in
GRK) and blue eyes (rs12913832 in HERCZ; 0.64 DAF in EUR and 0.34 DAF in GRK)
in Greeks (Figure 20.A and B). Conversely, the allele with the biggest difference in
the FineMAV score between GRK and EUR that shows a signal of selection in Greeks
but not EUR was an amino acid change (rs35392772) in MOS, a cell cycle-regulator
essential for oocyte maturation in vertebrates (330-333) (0.24 DAF in GRK vs 0.16
DAF in EUR) (Figure 20.A and B). However, we did not pick up any convincing GRK-
specific adaptation signal in a 4-population comparison (CEU + CHB + GRK + YRI)
and the apparent moderate clusters seen in the Manhattan plot fall in repetitive
elements or duplicated genes likely underlying mapping -> calling artifacts rather
than true signals (Figure 21).

Similarly, we did not find any convincing population-specific signals in
Egyptians, admixed Ethiopians, and Lebanese, which is consistent with their known
admixture and/or extensive ancestry sharing with both Middle East, Europe, and
Africa resulting in little population differentiation (247, 334) (Figure 21 and Figure
22). Finally, we did not detect selection-driven differentiation between Lebanese
Christians and Muslims, which implies that the population structure seen in
Lebanese is most likely due to population isolation followed by genetic drift rather
than positive selection (334) (Figure 21.B and C). We did, however, see some signal
of selection in the non-admixed Ethiopian population (Gumuz), although the results
are based on allele frequencies calculated in a small sample size (n=23), with top 3
SNPs being: nonsense variant rs7904983 in PKD2L1 (70% in Gumuz vs 19% in
AFR), missense variant rs56683778 in CCDC80 (48% in Gumuz vs 7% in AFR), and
intronic variant rs9938729 in MVP (46% in Gumuz vs 2% in AFR) (Figure 22.C).

PKDZ2L1 is a sour taste and cellular pH sensor; mice lacking Pkd211 showed
no or decreased taste response to sour stimuli (335-338). Olfaction enables
examination of food source properties including potential acidity manifested by
sour taste, stimulating an aversive response (339). It is hard to speculate about the
possible reasons for selection of PKD2L1 loss of function, but variation in this gene
was also associated with serum metabolite levels among African Americans (e.g.

palmitoleic acid) (340-342).
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Figure 20. Manhattan plot of genome-wide FineMAV scores in Greeks. FineMAV scores calculated for
genome-wide SNPs in: (A) - GRK (run together with CHB and YRI); (B) - EUR from the full 1000
Genomes Project Phase 3 calculated in the previous section; (C) - GRK (run together with CEU, CHB
and YRI). Each dot in the Manhattan plots represents a single SNP plotted according to coordinates
in GRCh37. The threshold (dashed lines) was set to include the top 100 variants. All gold-standard

SNPs (yellow dots found among the top outliers) and other interesting candidate variants are labeled
with the name of the gene they fall into.
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Figure 21. Manhattan plot of genome-wide FineMAV scores in Lebanese. FineMAV scores calculated
for genome-wide SNPs in: (A) - LEB general population (run together with CEU, CHB and YRI); (B)
- LEB Christians (run against LEB Muslims); (C) - LEB Muslims (run against LEB Christians). Each
dot in the Manhattan plots represents a single SNP plotted according to coordinates in GRCh37.
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CCDC80 has been shown to play an important role in adipocyte
differentiation (343) and may be a key player in energy metabolism and body
weight regulation (344, 345). The absence of Ccdc80 in mice results in increased
caloric intake, decreased energy expenditure, obesity, increased glucose level and
enhanced lipolysis with decreased circulating insulin level and impaired glucose
tolerance when fed a high fat diet (346). CCDC80 has been flagged as having a
protective role in obesity and diabetes (347).

MVP function has remained elusive. It has been shown to contribute to
resistance against Pseudomonas aeruginosa lung infection (348) and confer
response to an environmental toxin (349). On the other hand, some bacteria
incorporate human MVP onto their surface in order to escape autophagy (350).
Furthermore, MVP over-expression has been associated with tumor chemo- and
radiotherapy resistance as it is involved in DNA double-strand break repair
machineries and was shown to be upregulated in stress conditions (351). One study
reported high MVP expression related to severe hypoxia in clinical tumors (352).
This report highlights MVP as putative high-altitude adaptation gene, although such

a claim is purely speculative and requires further functional investigation.
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2.4.3. Discussion

FineMAV does not aim to detect all selection events, but rather to identify a
small number of likely causal variants driving population diversification, therefore
it is reassuring that we do not detect much signal in cases where population
admixture and/or extensive ancestry sharing between populations has resulted in
little differentiation. It has been shown that the recent back-flow of likely Near
Eastern, and to a lesser extent European, ancestry to Africa has drastically
influenced the genomes of present day Northeast African populations (247, 321,
322). Pagani et al. reported the average proportion of non-African ancestry in the
EGP and ETP samples (excluding the Gumuz) to be around 80% and 50%
respectively (247). Furthermore, the indigenous North African ancestry is closely
related to populations outside of Africa as Northeast Africa was the last stop on the
migration out of Africa (247, 321). On top of that, a significant signature of a sub-
Saharan African component was also reported in North African populations (247,
321). Including proxies of source populations in FineMAV comparison cancels out
admixed alleles described by low ‘purity’ score (DAP) as they are found across
multiple populations, while the frequency of the indigenous-population-specific
alleles drops below the detection level as a result of population mixing. Similarly,
the South Asian population is made up of two main ancestry components called
‘Ancestral North Indian’ (ANI) and ‘Ancestral South Indian’ (ASI) (353). ANI was
shown to be genetically close to Middle Easterners, Central Asians, and Europeans,
and ranged from 39% to 71% in India with complex population stratification due
to endogamy (353, 354). A complex population structure was also reported for the
Lebanese population that falls into two main groups: one showing genetic affinity
toward present-day Europeans and Central Asians, and the other more closely
related to Middle Easterners and Africans due to a different admixture history with
neighboring populations driven by culture and endogamy (334). We did not
however detect any differentiation between these two groups that was driven by
selection.

Nevertheless, FineMAV was able to pick up the strongest signals of local

adaptation in admixed Native Americans, despite recent admixture (e.g.
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rs34890031 in LRGUK). One-directional gene flow from Europeans to Americans
(decreasing indigenous allele frequency (DAF), but not its purity (DAP)) is a much
simpler scenario than the continuous population mixing at the edge of continents
seen in Northeast Africa and Near East, with multiple components and a multi-
layered history. The non-admixed Native Peruvians revealed a range of putatively
selected SNPs falling in genes related to immunity, especially antiviral response.
Historical record documented a massive bottleneck in the Inca Empire (and
Americas in general) attributed to infectious diseases acquired upon European
contact, mainly smallpox but also measles, influenza, mumps and pneumonia
among others (355-358). The selective pressure (pathogen virulence) in
immunologically naive populations having no natural resistance against epidemic
disease was very strong and is estimated to have wiped out over 90% of the
Peruvian Inca population over only 50-100 years (356, 359). However, it is hard to
tell if the signals we picked up were driven by recent strong selection ~500 years
ago, or older events, or a combination of both. Similarly, Fumagalli et al. also
detected local selective pressures acting on IFIH1 (a sensor of viral RNA involved in
antiviral host defense) favouring different alleles in distinct geographical regions
(360). They reported directional positive selection in Europe and Asia as well as a
long population-specific haplotype that swept to high frequency in South America
(360). High Fsr between Asian and South American populations and the presence of
an extended haplotype in America suggest a relatively recent selective sweep (360).
This South American haplotype was defined by two SNPs only 3 bp apart (360). The
same two SNPs (rs12478730 and rs12474958), falling in a conserved enhancer,
were picked up in our FineMAV analysis and might increase IFIH1 expression
conferring stronger protection against viral infections. Notably, variation in IFIH1
and its increased expression was also linked to increased risk of autoimmune
diseases (type 1 diabetes, psoriasis and lupus among others) (360-362).

Finally, we found a signal of geographically restricted selection in energy
metabolism genes in both Quechua and Gumuz. Widespread obesity and an elevated
risk of developing type 2 diabetes and cardiovascular diseases have been reported
for many indigenous communities including Native Americans (363-365). Such an
observation has been linked to the so-called ‘thrifty gene’ hypothesis suggesting

that decreased resting metabolic rate and increased energy storage was favoured
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in populations historically facing feast-famine cycles (44, 45, 366, 367). Adaptation
to food scarcity may predispose to metabolic syndrome in a non-traditional lifestyle
with continuous food supply (44, 45, 366, 367). Furthermore, the traditional diet of
aboriginal Americans and Ethiopians was estimated to be high in carbohydrates
(~70-80%) and low in fat (8-12%), while adoption of a modern lifestyle resulted in
much higher fat-intake (35% fat) (368-370). Urban Peruvians and rural-to-urban
migrants showed a higher prevalence of obesity and cardiovascular diseases
compared with the rural population (although environmental factors play an
important role) (371-373), and a general high incidence of hypertension and
obesity was reported in Peru among both cosmopolitan and Andean Peruvians
(374-381) with nearly a quarter of the adult population at an increased risk of
diabetes (382). Similar trends in the prevalence of cardiovascular diseases linked
to urbanisation were reported in Ethiopia (370, 383-390). Furthermore, a previous
selection scan in indigenous Ethiopian population of Wolaita has also reported a
recent positive selection on genes involved in immunity and energy metabolism
during prolonged food shortage that were linked to diabetes and obesity
susceptibility (370). Apart from diet, high-altitude hypoxia that promotes lipid
storage and carbohydrate oxidation might have contributed to metabolic
adaptation (370, 391, 392). However, we did not replicate the high-altitude
adaptation signals reported previously for Ethiopian highlanders and Andean
Quechua (370, 393), although there is no information whether the populations

analysed in this study were residing at high-altitude.



