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3.1. Introduction 

A classical approach to understanding gene function is to generate loss-of-function 

phenotypes.  Such phenotypes, however, require correct characterisation.  Most 

phenotypes in model organisms have previously been reported at the level of 

morphology, often requiring many different techniques to measure each parameter.  My 

intention was to develop use of expression microarrays as a single phenotyping 

methodology to compare genic perturbations resulting in brood-size defects in C. 

elegans.  In this chapter I present a detailed rationale behind this project and the utility of 

the approach as a pathway-specific phenotyping tool with potential future application. 

 

 

RNA-mediated interference (RNAi) has proved a powerful tool for the generation of loss-

of-function phenotypes.  In particular the capability of perturbing gene function in C. 

elegans simply by the feeding of bacteria expressing dsRNA has led to the generation of 

an RNAi library consisting of clones targeting ~86% of annotated coding genes (Fraser et 

al., 2000; Kamath et al., 2003; Kamath et al., 2001).   Whole-genome screens using the 

RNAi library have revealed loss-of-function phenotypes for many genes under laboratory 

conditions (Kamath et al., 2003).  For example, hundreds of genes give brood-size 

defects by RNAi, indicating a deleterious effect on either germline development or 

gametogenesis.  The observation of a sterile animal at low resolution in an RNAi screen, 

however, tells us almost nothing about gene function as there are many independent 

pathways and processes which when perturbed lead to germline defects.  It is clear, 

therefore that a high-resolution phenotyping methodology is required.  One possibility is 

through careful microscopic analysis of the worms themselves along with in situ and 
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immuno-stainings to assess the level, location and combinations of expression of certain 

key genes, which define the biological state of a tissue.  This, however, requires prior 

knowledge of a number of molecular markers and antibodies against them.  It would also 

require the careful dissection of the germline from many animals, drastically limiting 

throughput.   

 

An alternative approach is to use microarray expression data to define phenotypes.  This 

has been previously demonstrated in Saccharomyces cerevisiae to great effect.   The 

expression profile of mutant strains can be considered as ‘molecular phenotypes’ — they 

are read-outs of the expression changes that result from a given mutation. These 

signatures are high density, since they cover all predicted genes, and quantitative, 

allowing more criteria to be tested than through staining.  In S. cerevisiae this allowed 

genes to be clustered into related functional groupings according to similarities in the 

expression profiles, even for perturbations that were otherwise sub-phenotypic (Hughes 

et al., 2000).  For example, mutations in genes involved in mating yield similar 

signatures, whereas mutations in genes involved in mitochondrial respiration clustered in 

a separate cluster.  By building a compendium of expression signatures of mutations in 

genes of known pathways it was then possible to place novel genes into pathways by 

comparing their signatures with the compendium – for example if a novel gene has a 

signature that resembles that of the sterol biosynthesis pathway, it suggests that it plays a 

role in this pathway.  This was groundbreaking work by Hughes et al. and provided the 

inspiration for our own study.  Whilst yeast and human share many key aspects of 

eukaryotic life, however, as a single-celled organism yeast is of little use in the study of 
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cellular signalling and development.  An approach such as this would therefore be more 

relevant to human biology if it were performed in a metazoan.  Consequently I set out to 

validate a similar approach in the nematode C. elegans.   

 

As previously discussed, the C. elegans germline is a well-studied, largely syncytial 

tissue with a number of genes and pathways known to control certain processes, for 

example, the Notch pathway is known to regulate the maintenance of the mitotic stem 

cell niche, the gld genes are known to be involved in the mitosis-meiosis switch and 

gametogenesis, and Ras/MAPK signalling controls exit from the pachytene stage of 

meiosis.  Broadly the germline goes through two distinct phases – firstly it develops into 

the complete tissue capable of generating differentiated gametes; secondly it is then 

continually maintained such that the loss of nuclei to gametogenesis is balanced by 

proliferation of mitotic nuclei.  

 

Historically, due to the complexities of isolating individual tissues or their RNAs the 

majority of microarray studies in C. elegans have been at the level of the whole animal.  

Gene expression in any individual tissue has therefore proven difficult to establish.  

Comparisons of different well-characterised loss-of-function mutants, however, have 

allowed tissue-specific gene expression to be assessed in the germline.  This was aided by 

the facts that the germline accounts for around half the mass of the adult worm, the great 

majority of transcripts in the adult, and the expression of ~25% of genes is enriched in 

this tissue.  Consequently changes in gene expression in the germline can be assessed at 

the level of the whole animal (Jiang et al., 2001; Reinke et al., 2004; Reinke et al., 2000).  
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For this reason the worm germline is an attractive tissue as the focus of our study.  The 

published expression studies also provide us with an ideal dataset against which to 

compare our data. 

3.2. Outline of Approach 

As well as there being many well-studied mutant strains exhibiting brood-size defects, 

the existence of the C. elegans RNAi library permits the generation of loss-of-function 

animals for almost any gene in the genome.  For genes of known function and loss-of-

function phenotype, whilst the loss-of-function phenotypes generated by RNAi when 

visually observed at low resolution do not appear to be as strong as null mutant 

phenotypes, they nevertheless demonstrate some measure of brood-size defect, as would 

be expected based on prior knowledge.  We therefore have the ability to generate loss-of-

function phenotypes for most genes with established roles in germline development. 

 

The stage in germline development at which a defect occurs dictates the extent of 

development and the mitotic/meiotic character of the germline.  I decided to consider four 

different categories of perturbation in our initial compendium before making comparisons 

with novel genes.  This includes expression profiles of perturbations of genes known to 

control the three aspects of germline development previously mentioned – maintenance 

of the mitotic stem cell niche, regulation of the mitosis-meiosis switch, and release from 

the pachytene stage of meiosis.  Thus far, however, all of the genes considered are 

involved in signalling, transcription and regulation of individual transcripts.  Furthermore 

they appear to have discreet roles in the biology of the animal.  In order to provide a 

contrast to this I chose to perturb components of the basal cellular machinery to see if 
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they appear distinctly different by array profile.  The majority of ribosomal components 

give completely sterile phenotypes by RNAi.  RNAi knockdown of these genes may be 

expected to give comparable functional defects, reflected in the corresponding microarray 

expression profiles.  Ribosomal knockdowns were therefore added to the study in order to 

determine whether specific clustering can be achieved and whether the clustering is 

pathway or strength specific. 

 

To be more clear, the expectations of this study are that the phenotypes of animals 

deficient for a single component of a signalling pathway will be more similar to that of 

animals deficient in the same pathway than in another.  By using microarrays to generate 

high-density loss-of-function phenotypes for components of numerous pathways involved 

in germline development followed by hierarchical clustering, we would expect to 

rediscover the known pathways as independent branches of the clustering.  Novel genes 

of interest could then be tested against the resulting compendium to provide evidence of 

their role in a given pathway. 

 

RNA extracted from young adults was used for all experiments in this study.  The 

germline is fully developed by this stage and all of the genes mutated or knocked down in 

these experiments act before and during the young adult stage. 

 

The two established methods of gene perturbation that could be used in this study are 

mutation and RNAi.  As a long established organism for forward genetics many 

mutagenesis screens have been performed using ethyl methane sulphonate- (EMS-) or N-
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ethyl-N-nitrosourea-(ENU-) induced mutagenesis followed by genetic screening.  This 

has led to a large collection of genetic mutants, which are available to the global C. 

elegans community from the C. elegans Genetics Center, USA 

(http://www.cbs.umn.edu/CGC/).  One potential drawback of using such mutants is the 

possibility of there being some background mutations caused by the mutagenesis, which 

may not have been removed by out-crossing.  Although there are many genetic mutants 

available there are still many genes pertinent this study for which no genetic mutant is 

available.  RNAi offers an alternative method of genic perturbation, and the RNAi library 

contains clones allowing the knowdown of the majority of individual coding genes.  This 

therefore necessitates the use of RNAi in this study.  RNAi, however, is likely to give 

less complete perturbation of gene function.  I therefore decided to compare RNAi with 

genetic mutants where possible.  The differing level of RNAi knockdown per gene results 

in a range of brood-size defects.  It is also known that there can be a high level of animal-

to-animal phenotypic variability on RNAi.  The questions that need to be addressed in 

order to establish the utility of this approach are therefore: 

 

1. Can we rediscover known pathways based on expression profiles (i.e. do different 

perturbations of the EGF pathway cluster together; do different perturbations of 

the Notch pathway cluster together and independently of the EGF pathway)? 

2. Does RNAi phenocopy mutation (both physiologically and molecularly)? 

3. How dependent is molecular phenotype on the strength of the visual phenotype 

(does strength of phenotype or the pathway that the gene acts in drive clustering)? 

4. How dependent is molecular phenotype on the penetrance of a perturbation? 
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In order to answer these questions, for each gene perturbed I used microarrays to 

expression profile a population of ~10,000 animals in biological triplicate, DAPI stained 

whole adult animals to broadly assess the quantity of germline present and assessed the 

fecundity of 12 individual animals by visual phenotyping.  Where multiple RNAi clones 

existed against a gene of interest in the RNAi library they were each used individually in 

order to compare different strengths of RNAi against the same gene.  Each clone may 

give different levels of observed sterility owing to the fact that they give rise to a 

different set of siRNAs, giving different efficiencies and levels of transcript knockdown.  

The genic perturbations (genetic mutants and RNAi) used for this set of experiments are 

shown in table 3.1.  Note that whilst sem-5 is not confirmed to be required for 

progression beyond pachytene, it is upstream of sos-1 in the canonical EGF/ras/MAPK 

signalling cascade and gives a brood-size defect by RNAi.  Consequently it was included 

in the first round of experiments.   

 

NOTCH PATHWAY RIBOSOME 
RAS/MAPK 

SIGNALLING 

MITOSIS/MEIOSIS 

SWITCH AND 

GAMETOGENESIS 
 glp-1 (or178) 

 

 rps-1 (RNAi) 

  

 sos-1 (cs41)  gld-1 (RNAi) 

  lag-2 (q420) 

 

 rps-14 (RNAi) 

 

 sos-1 (RNAi) x3  gld-2 (RNAi) x3 

  emb-5 (hc61) 

 

 rpl-20 (RNAi) 

 

 sem-5 (RNAi) 

 

 

  glp-1 (RNAi) 

 

 rpl-21 (RNAi) 

 

 let-60 (RNAi) 

 

 

  lag-2 (RNAi) x2 

 

 

 

 mpk-1 (RNAi) 

 

 

  emb-5 (RNAi) 

 

 

 

 mek-2 (RNAi) 

 

 

  lin-12 (RNAi) 

 

 

 

 lin-45 (RNAi) 

 

 

  lag-1 (RNAi) 

 

 

 

 

 

 

 Table 3.1.  Genes involved in germline development perturbed in this study.  The 

nature of the perturbation is indicated in parentheses.  The column headings indicate 

pathway or machinery categories into which the below genes fall. 
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The microarrays chosen for this study were two-colour synthetic oligonucleotide arrays 

acquired from Washington University in St. Louis, MO, USA.  The microarray contains 

22,490 70mer genic probes.  Detailed specifications can be found here: 

http://genome.wustl.edu/genome/celegans/microarray/array_spec.cgi.  All experimental 

samples (Cy3) were hybridized against the same mixed-stage reference sample (Cy5).  

Each perturbation was compared indirectly to wild-type via a mixed-stage reference 

sample.  The wild-type array profile was derived from animals fed on a bacterial strain 

expressing a non-targeting dsRNA.   

 

It is typical in expression studies using two-colour microarrays that two samples are 

compared directly by competitive hybridization to the same microarray.  Dye swaps are 

performed in order to correct for the differing efficiencies of incorporation of labelled 

nucleotides into cDNA by the reverse transcriptase and the different quantum-yields of 

the two dyes.  “Dye swaps” refers to performing a repeat hybridization of the same RNA 

samples with the fluorescent labels switched.  This approach doubles the number of 

hybridizations that need to be performed which can be financially prohibitive.  

Comparison of experimental samples via a universal reference sample negates the need 

for dye swap hybridizations as the experimental sample is always labelled with the same 

dye.  The key requirement of the mixed stage reference sample is that it provides signal 

above background for the vast majority of spots on the array such that the corresponding 

genes are included in the analysis.  Comparison between any two conditions on different 

arrays can then easily be inferred via the reference sample as:   



 76 

(condition A signal/reference signal) ÷ (condition B signal/reference signal) = condition 

A signal/ condition B signal. 

3.3. Initial microarray data processing, normalisation and assessment of data 

quality 

Since the key manner in which two samples are compared on a two-colour microarray is 

by the measured ratio of signal present per spot, it is necessary that the signal for both 

samples is sufficiently higher than the measured background such that the ratios can be 

considered reliable.  For this reason low quality spots are filtered out prior to 

normalization.  Further to this, complex experimental platforms such as microarrays are 

highly prone to experimental and systematic variation, which must be corrected for 

before accurate measures of expression changes can be drawn between arrays.  An 

example of this is an imbalance of the two dyes on the array, which may result from the 

laser settings when scanning the array (experimental) but also the position of the spot on 

the array (systematic).  The term “normalization” therefore refers to the correction for 

experimental and not biological variation between experiments. 

 

There is no general consensus in the scientific community regarding the best method of 

data normalization.  Multiple methods were therefore tested, each a variation on the well-

established loess normalization (Yang et al., 2002).  This can be done in a global way - 

normalizing all spots together, or in a block-wise way by dividing each microarray into 

“sub-arrays” and normalizing within the sub-arrays.  Global and block-wise loess 

normalization, both with and without background subtraction was performed using 

DNMAD (Tarraga et al., 2008).  Pearson correlation of normalized biological triplicates 
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was performed.  This was to determine the degree of biological and technical 

reproducibility of experiments.  The correlation between each of three independent 

replicates may allow the identification of an outlying sample, which should be removed.  

The difference in Pearson correlation between the same samples for different 

normalization techniques may also indicate which method best corrects for technical 

variation.  Pearson correlation was improved by filtering out spots giving median 

intensities <150 in either detection channel.  The rationale behind this is that lower 

intensity spots have a higher percentage error in detection, leading to more variability 

between replicates.  This will, however, lead to the loss of good spots and the spots 

discarded will be different depending on the quality of array and the gain of the lasers on 

scanning. 

 

Multiple technical replicates were performed of the wild-type sample against the 

reference sample and the robustness of the system was assessed by the Pearson 

correlation.  This was found to be consistently 0.93-0.96.  Assessment of correlations 

allowed us to compare the performance of normalization methods.  All four of the above 

methods of normalization performed comparably for good arrays.  Global loess 

performed less well for arrays that exhibited marked positional effects, such as the loss of 

dye intensity near the periphery of arrays.  

 

An alternative normalization method based on a sliding square window surrounding each 

spot was also tested (Lyne et al., 2003).  This method outperformed the others, as it uses 

smaller windows for normalization around the periphery of the array, allowing it to better 
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account for positional effects.  This method also offers an alternative method of filtering 

out lower quality spots.  Spots with < 50% of pixels > 2 SD above median local 

background signal in one or both channels are flagged absent, unless one channel showed 

> 95% of pixels > 2 SD above local background.  Removal of spots is therefore more 

consistent and in-line with the quality of the individual arrays.  It also retains spots that 

are highly expressed in one channel and therefore less susceptible to skewing.   The script 

uses only the lower 55% of pixel intensities as this reduces the likelihood of skewing by 

bright pixels.  This script is also more versatile, allowing the default settings to be altered 

in a graphical user interface.  Alternatively large quantities of arrays can be processed at 

default settings using the command line.  This script therefore not only reduces loss of 

good spots, but is also favourable should we set up a database for automated microarray 

analysis.  

 

Table 3.2 shows the Pearson correlations between replicates for all arrays for which data 

is presented in this chapter.  It demonstrates that removal of low intensity spots followed 

by normalization with DNMAD performs well for good quality arrays.  The Lyne et al. 

method broadly performs less well for the same good quality arrays but better for the 

arrays that gave poor correlations using the previous method.  The average correlation 

across all arrays with both methods is identical.  The data for each replicate it therefore 

more likely to be consistent using the Lyne et al. normalization script.  Critically, the 

Lyne et al. method of filtering poor quality spots permits on average 50% more genes to 

be considered.  The Lyne et al. normalization method was therefore chosen for future 

use. 
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Arrays compared 

 

Lyne et 

al. 

Flagging 

spots <150 

and 

DNMAD 

Arrays compared 
Lyne et 

al. 

Flagging 

spots <150 

and 

DNMAD 

N2 control 1 N2 control 2 0.94 0.96 lin-12 1 lin-12 2 0.90 0.95 

N2 control 1 N2 control 3 0.91 0.97 lin-12 1 lin-12 3 0.92 0.95 

N2 control 2 N2 control 3 0.94 0.96 lin-12 2 lin-12 3 0.93 0.95 

emb-5 1 emb-5 2 0.90 0.92 lin-3 1 lin-3 2 0.92 0.93 

emb-5 1 emb-5 3 0.92 0.92 lin-45 1 lin-45 2 0.86 0.83 

emb-5 2 emb-5 3 0.89 0.90 lin-45 1 lin-45 3 0.82 0.83 

emb-5* 1 emb-5* 2 0.92 0.95 lin-45 2 lin-45 3 0.88 0.92 

emb-5* 1 emb-5* 3 0.87 0.93 mek-1 1 mek-1 2 0.96 0.96 

emb-5* 2 emb-5* 3 0.92 0.94 mek-1 1 mek-1 3 0.87 0.79 

gld-1 1 gld-1 2 0.90 0.91 mek-1 2 mek-1 3 0.87 0.78 

gld-1 1 gld-1 3 0.92 0.95 mpk-1 1 mpk-1 2 0.88 0.89 

gld-1 2 gld-1 3 0.86 0.90 mpk-1 1 mpk-1 3 0.84 0.84 

gld-2 a 1 gld-2 a 2 0.90 0.92 mpk-1 2 mpk-1 3 0.82 0.80 

gld-2 a 1 gld-2 a 3 0.86 0.90 rpl-20 1 rpl-20 2 0.83 0.88 

gld-2 a 2 gld-2 a 3 0.92 0.90 rpl-20 1 rpl-20 3 0.84 0.86 

gld-2 b 1 gld-2 b 2 0.91 0.91 rpl-20 2 rpl-20 3 0.93 0.90 

gld-2 b 1 gld-2 b 3 0.86 0.92 rpl-21 1 rpl-21 2 0.88 0.88 

gld-2 b 2 gld-2 b 3 0.89 0.86 rpl-21 1 rpl-21 3 0.84 0.90 

gld-2 c 1 gld-2 c 2 0.92 0.92 rpl-21 2 rpl-21 3 0.90 0.90 

gld-2 c 1 gld-2 c 3 0.89 0.87 rps-1 1 rps-1 2 0.86 0.71 

gld-2 c 2 gld-2 c 3 0.83 0.81 rps-1 1 rps-1 3 0.79 0.68 

glp-1 1 glp-1 2 0.83 0.79 rps-1 2 rps-1 3 0.89 0.93 

glp-1 1 glp-1 3 0.83 0.86 rps-14 1 rps-14 2 0.91 0.89 

glp-1 2 glp-1 3 0.93 0.83 rps-14 1 rps-14 3 0.94 0.92 

glp-1* 1 glp-1* 2 0.96 0.95 rps-14 2 rps-14 3 0.92 0.96 

glp-1* 1 glp-1* 3 0.91 0.92 sem-5 1 sem-5 2 0.82 0.90 

glp-1* 2 glp-1* 3 0.92 0.94 sem-5 1 sem-5 3 0.92 0.93 

lag-1 1 lag-1 2 0.87 0.86 sem-5 2 sem-5 3 0.84 0.89 

lag-1 1 lag-1 3 0.90 0.86 sos-1 a 

1 
sos-1 a 2 0.77 0.93 

lag-1 2 lag-1 3 0.94 0.92 sos-1 a 

1 
sos-1 a 3 0.92 0.96 

la g-2 a 1 la g-2 a 2 0.89 0.93 sos-1 a 

2 
sos-1 a 3 0.90 0.95 

la g-2 a 1 la g-2 a 3 0.87 0.86 sos-1 b 

1 
sos-1 b 2 0.84 0.85 

la g-2 a 2 la g-2 a 3 0.91 0.86 sos-1 c 

1 
sos-1 c 2 0.92 0.86 

la g-2 b 1 la g-2 b 2 0.88 0.89 sos-1 c 

1 
sos-1 c 3 0.90 0.96 

la g-2 b 1 la g-2 b 3 0.88 0.89 sos-1 c 

2 
sos-1 c 3 0.87 0.87 

la g-2 b 2 la g-2 b 3 0.89 0.87  Average 0.89 0.89 

lag-2* 1 lag-2* 2 0.83 0.79  No. spots considered post-filtering 

Average no. spots post-filtering 
 

Average no. spots post-filtering 

14404.67 9582.69 

let-60 1 let-60 2 0.83 0.85     

let-60 1 let-60 3 0.88 0.89     

let-60 2 let-60 3 0.87 0.94     

Table 3.2.  Relative Pearson correlations using different normalization methods.  

Correlations markedly improved by the Lyne et al., method highlighted in yellow.  Low 

quality arrays that were removed from the analysis are indicated in red.  Replicate 

number is indicated after gene name.  Letters between gene name and replicate number 

indicate use of different RNAi clones.  An * indicates a genetic mutant rather than RNAi. 
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The mixed-stage reference sample against which all experimental samples were 

hybridized was derived from vast quantities of synchronous animals grown in liquid 

culture.  The RNA extracted from the individual cultures before mixing providing us with 

known quantities of RNA derived from each developmental stage.  A key property of the 

reference sample is that it must represent the vast majority of annotated genes such that 

the minimum number of spots will be filtered out prior to normalization.  For any given 

microarray > 85% of spots that are filtered as low quality are filtered due to low signal 

for both dyes.  Across all experiments, of the 22,490 genic spots on the array > 20,300 

are represented post-normalization by the filtering criteria used.  We therefore consider 

the mixed-stage reference sample to be of suitable quality for the study. 

 

We have idealized our methodology for producing expression data for any given 

biological condition.  We have determined that the materials that we are producing for 

microarray analysis are adequately consistent and our initial data processing is robust and 

practical.  We will next determine the differential regulation of genes between the 

conditions for which data have been generated.  This gives us a basis for comparison of 

the different genic perturbations. 

 

3.4. Proof-of-principle experiments 

As is clear from table 3.1, I examined the effect of RNAi knockdown for multiple 

components of different pathways.  Where appropriate mutants were available I sought to 

compare the effects of perturbation by RNAi and mutation.  I also used multiple RNAi 

clones to target certain genes in order to compare the effects of different strengths of 
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RNAi against the same gene.  Further to this, in order to validate our microarray data I 

sought to compare it with relevant data produced by other labs.   

 

For each biological condition expression-profiled, differentially expressed genes were 

identified using Student’s t-test.  All comparisons were to the reference strain N2 fed 

bacteria expressing non-targeting dsRNA.  This provided us with filtered data for each 

condition, a means of testing how well RNAi phenocopies mutation and a means of 

benchmarking our data against published data. The number of genes differentially 

expressed between the wild-type control and each perturbation is shown in table 3.3. 

 

To check that our methods give similar data to other groups I used the comparison of glp-

1(or178) with reference strain Bristol N2 (wild-type control), which is analogous to the 

comparison of glp-4(bn2) to N2 by Reinke et al. (2004).  Both mutants lack a germline, 

however, the molecular identity of glp-4 is unknown.  Genes more highly expressed in 

N2 relative to either glp-4(bn2) or glp-1(or178) can be considered to be germline 

enriched/intrinsic.  Reinke et al. define 3143 genes thus using Student’s t-test (p-value ! 

0.01).  We discover 4831 genes by the same method, encompassing 65% of the Reinke 

set.  We consider this to be a very good overlap, given that this is a cross-platform 

comparison of a 20K PCR product array (Reinke et al.) versus our 22.5K synthetic oligo 

array.  Furthermore the inevitable difference in precise timing at which RNA was 

harvested between the two labs and the fact that the Reinke et al. data is derived from 

worms fed on Escherichia coli strain OP50 and ours from animals fed on HT115(DE3) 

may further explain the discrepancies. 
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Gene 

Perturbed 

Genes 

higher than 

in N2 

Genes lower 

than in N2 

emb-5 1258 1232 

emb-5* 3659 6322 

glp-1 1846 2005 

glp-1* 3989 6898 

lag-1 654 1757 

lag-2 a 2123 2607 

lag-2 b 2209 1953 

lag-2* 2614 4076 

lin-12 1274 1606 

gld-1 2212 1243 

gld-2 a 1651 2557 

gld-2 b 1951 993 

gld-2 c 1629 1713 

let-60 1571 1465 

lin-45 1496 1155 

mek-2 818 857 

mpk-1 527 771 

sem-5 1404 675 

sos-1 a 3262 1811 

sos-1 b 1798 516 

sos-1 c 1723 2327 

pkc-1 a 1031 960 

pkc-1 b 1888 2602 

rpl-20 2649 3111 

rpl-21 1671 2159 

rps-1 2408 2808 

rps-14 1788 1107 

Table 3.3.  Genes upregulated and downregulated relative to N2 for each condition.  

The table shows the number of Genes upregulated and downregulated relative to N2 for 

each genic perturbation, as determined by Students t-test (p-value <0.05).  An asterisk 

indicates a genetic mutant rather than RNAi.  A letter after the gene name indicates use of 

different individual clones used for RNAi knockdown. 

 

Each condition was compared by hierarchical clustering of calculated ratios of 

perturbation/wild-type control for each gene differentially expressed between the two 

conditions (p-value !0.05), as can be seen in figure 3.1.  It is immediately apparent from 

the clustering achieved that we recapitulate the known biology, with the components of 
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the Notch, Ras/MAPK and ribosome gene categories each populating their own separate 

branch of the condition tree.  The components of the mitosis-meiosis switch machinery 

do not form such a clear niche in the clustering however.  This is not completely 

surprising as the complexities of the dual functions of this machinery means different 

strengths of perturbation are less likely to consistently generate physiologically analogous 

animals.  Furthermore the consideration of only two genes (albeit one of them appearing 

three times) may not be adequate to resolve the pathway. 

 

The hierarchical clustering of array profiles is based on a correlation matrix of the 

differentially expressed genes within all conditions being compared.  The standard 

correlation between all conditions is calculated and each condition arranged in a 

clustering based on the relative relationship of each condition.  This is also performed for 

each individual expressed gene, leading to a 2-dimensional clustering.  For the majority 

of this chapter I will only discuss one dimension – the clustering achieved between 

conditions in order to determine the relatedness of perturbations. 
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Figure 3.1.  Clustering of differentially expressed genes between N2 and each genic 

perturbation.  Calculated ratios of gene signal (perturbation/wild-type) for differentially 

expressed genes (Student’s t-test p-value !0.05) were hierarchically clustered.  The 

different pathways and machineries are colour-coded: purple – Notch; blue – mitosis-

meiosis switch; green – EGF/ras/MAPK signalling; white – ribosome.  Lowercase letters 

following gene name indicates the use of different individual RNAi clones targeting the 

same gene.  An asterisk indicates a genetic mutant rather than RNAi knockdown.  Genes 

upregulated in each condition relative to wild-type are represented in green and 

downregulated in red.  The intensity of colour is analogous to the magnitude of 

regulation. 
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3.5. Low-resolution phenotypic analysis of pathway perturbations 

It is necessary to establish that the clustering achieved is not simply indicative of strength 

of perturbation.  Of all the genes discussed as having roles in germline development in 

chapter 1, the genes in table 3.1 are known to give brood-size defects by RNAi.  In 

parallel with the production of each RNA sample the fecundity of 12 animals was 

measured relative to wild-type for each RNAi perturbation and mutant (figure 3.2).  All 

of the mutants used in this study are temperature sensitive, having a relatively normal 

brood size at the permissive temperature and being 100% sterile and lacking a germline at 

the restrictive temperature.  The variability in severity and penetrence of phenotype 

within pathways for the perturbations shown in figure 3.2 suggest that if pathways can be 

accurately rediscovered using these array profiles, then it is possible to cluster genes 

giving mild and variable perturbations into pathways.  Figure 3.1 demonstrates that the 

strength of sterility is not driving the clustering as pathways are reliably rediscovered 

despite Notch and EGF perturbations giving overlapping ranges of sterility. 

 

Animals representing all perturbations shown in table 3.1 have been DAPI stained and 

the germline imaged (figure 3.3).  We find that whilst glp-1(or178) and glp-1(RNAi) 

cluster very closely and appear entirely distinct from mpk-1(RNAi) by array profile (as 

one would predict), by this method of staining they appear distinctly different.  At up to 

400x magnification all Notch mutants clearly have no germline.  Notch perturbations by 

RNAi, however, are indistinguishable from the other perturbations studied at this 

magnification, even though their sterility ranges up to ~95%.  This is understandable as 

the Notch mutants studied are temperature sensitive and having been grown from L1 at 
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the restrictive temperature are expected to almost completely negate gene function 

whereas RNAi has a cumulative effect over time and is unlikely to give 100% knock-

down.  This suggests that we may not have been able to recapitulate pathways by 

comparison of mutants and RNAi by staining alone.  We have, however, already 

demonstrated that RNAi can reliably phenocopy mutation on a molecular level.   

 

In conclusion, the clustering achieved appears to be pathway specific even though the 

extent and variability of brood-size defects overlaps between pathways for different genic 

perturbations.  Whilst the quantity of germline present in genetic mutants and the 

equivalent RNAi animals can appear markedly different, on a molecular level the animals 

appear comparable.  We therefore consider the methodology to be validated and ready for 

comparison with selected candidate genes. 



 



Figure 3.2.  Relative fecundity of germline perturbations.  The brood size in the 24 

hours after RNA harvesting was assessed for 12 individual animals (3 from each 

replicate).  The graph indicates the number of progeny for each RNAi perturbation, 

mutant and the wild-type control.  Genes are separated and colour-coded according to 

pathway.  Lowercase letters following gene name indicates the use of different individual 

RNAi clones targeting the same gene.  An asterisk indicates a genetic mutant rather than 

RNAi knockdown. 

 



 
Figure 3.3.  DAPI staining of whole animals to assess quantity of germline.  This figure shows N2, glp-1(or178) and glp-1(RNAi) 

animals as labelled.  It is clear that N2 and glp-1(RNAi) animals have two clear gonad arms (circled) stretching roughly equidistantly 

in both directions from the vulva.  Higher magnification of this central portion of glp-1(or178) reveals no germline. 



3.6. Identification of novel modulators of Ras/MAPK signalling in the germline 

Once the compendium of well-characterized genes was established it was necessary to 

decide how to proceed.  There were two clear options – (a) to add to the compendium 

perturbations of genes giving sterile animals by RNAi or mutation, but with no known 

link to any of the signalling pathways considered; (b) to query the compendium with 

candidate modulators of signalling pathways already represented in the compendium.  

These candidate modulators may either have been discovered in genetic interaction 

screens for genes that modulate the sterile phenotype of Notch and EGF/ras/MAPK 

signalling mutants or genes that modulate the multi-vulval (Muv) phenotype in mutants 

with activated EGF/ras/MAPK signalling.  Both of these options appeared viable.  The 

next step chosen was therefore to test candidate modulators revealed in vulval screens 

against the compendium for reasons discussed below. 

 

As discussed in chapter 1, the C. elegans vulva is an extremely well studied tissue, 

serving as an exemplary model for how different signalling pathways combine to regulate 

the correct development of an individual tissue.  Briefly, a set of vulval precursor cells 

(VPCs) exists along the ventral axis of the animal.  EGF/ras/MAPK signalling to the 

correct cell leads to a cascade of events and the development of a single 22-cell vulva in 

the centre of the ventral axis, providing a breach between the uterus and the outside world 

(figure 1.4).  Other cells with the potential to develop into the vulva exist along the 

ventral axis but do not receive adequate stimulus in wild-type animals, ensuring that only 

one vulval protrusion forms.  Mutations leading to an increase in EGF/ras/MAPK 
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signalling, however, lead to the development of pseudo-vulvae along the ventral axis of 

the worm. 

 

 
Figure 3.4.  Screening for modulators of EGF/ras/MAPK signalling in the vulva.  

Wild-type animals have a single 22-cell vulva in the centre of their ventral axis.  Gain-of-

function ras (let-60) mutations lead to the formation of pseudo-vulval protrusions (red).  

RNAi against genes that enhance signalling via ras lead to a decrease in the number of 

Muv animals i.e. such genes are enhancers of ras signalling.  Conversely, RNAi against 

genes that suppress the consequences of signalling through ras lead to an increase in the 

number of Muv animals. 

 

In order to identify novel genes that may be involved in EGF/ras/MAPK signalling in C. 

elegans, RNAi screens in mutant animals exhibiting the multi-vulval (Muv) phenotype 

were performed by Catriona Crombie in the Fraser lab.  Specifically, all genes annotated 

as being signalling (1121), transcription factor (500) or chromatin remodelling (216) 

genes (Kamath et al., 2003) were screened in multiple Muv mutants.  Genes that gave a 

shift in the number of Muv worms by RNAi could be considered candidate modulators of 

signalling pathways involved in vulval patterning.  Genes that when perturbed enhance 

the Muv phenotype are potential suppressors of EGF/ras/MAPK signalling.  Conversely, 

genes that when perturbed suppress the Muv phenotype are potential enhancers of 

EGF/ras/MAPK signalling (figure 3.4).  
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I was specifically interested in genes that are potential enhancers of EGF/ras/MAPK 

signalling.  I therefore selected candidate modulators identified in three different Muv 

mutants - lin-1(n303), lin-15(n765) and let-60(n1046);dgk-2(gk124).  As a gain-of-

function allele, let-60(n1046) gives a Muv phenotype due to increased EGF/ras/MAPK 

signalling causing more cells along the ventral axis of the worm to adopt 1
o
 VPC fates 

(see 1.2.2).  ~60% of animals carrying this allele exhibit a Muv phenotype 20
o
C.  Genes 

that enhance or suppress the Muv phenotype can therefore be screened for in this 

background. A complexity of screening for modulators of the Muv phenotype in the let-

60(n1046) gain-of-function mutant is that the penetrance of the Muv phenotype is 

variable, leading to noise in the screens.  An unpublished observation made by Andrew 

Fraser was that crossing of the let-60(n1046) gain-of-function allele into a dgk-2(gk124) 

loss-of-function background led to a 100% Muv strain.  This suggests that dgk-2 is a 

suppressor of EGF/ras/MAPK signalling in the vulva.  RNAi screens for suppressors of 

the Muv phenotype were therefore also performed in let-60(n1046);dgk-2(gk124) 

animals.  lin-1(n303) and lin-15(n765) are both loss-of-function alleles.  LIN-1 is a 

transcription factor and downstream target of EGF/ras/MAPK signalling.  

Phosphorylation by MPK-1 results in inactivation of LIN-1.  lin-1(n303) is therefore akin 

to a EGF/ras/MAPK gain-of-function mutation.  100% of lin-1(n303) animals exhibit the 

Muv phenotype.  The lin-15(n765) mutation also appears to lead to increased 

EGF/ras/MAPK signalling, again leading to a 100% Muv population.  The lin-15(n765) 

mutation corresponds to loss-of-function of synMuv genes lin-15A and lin-15B.  This 

may lead to a increase in lin-3 signalling to the VPCs from neighbouring hypodermal 
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cells.  As a consequence the VPCs that adopt a 3
o
 fate in wild-type animal adopt 1

o
 fates 

leading to pseudo-vulval protrusions. 

 

GENE NAME 
% MUV 

ANIMALS 

GENETIC 

BACKGROUND 
GENE FUNCTION 

M01B12.5 20 
let-60(n1046);dgk-

2(gk124) 
putative RIO kinase 

R10D12.10 20 
let-60(n1046);dgk-

2(gk124) 
Serine/threonine kinase 

pkc-1 a 28 
let-60(n1046);dgk-

2(gk124) 
Serine/threonine kinase 

pkc-1 b 31 
let-60(n1046);dgk-

2(gk124) 
Serine/threonine kinase 

D2096.12 41 
let-60(n1046);dgk-

2(gk124) 
Protein kinase 

D2096.8 72 
let-60(n1046);dgk-

2(gk124) 

Nucleosome assembly 

protein 

K08F11.5 79 
let-60(n1046);dgk-

2(gk124) 

Predicted Ras 

related/Rac-GTP 

binding protein 

F27E5.2 53, 17, 15 

lin-1(n303), lin-15(n765), 

let-60(n1046);dgk-

2(gk124) 

PAX transcription factor 

Table 3.4.  Selected genes suppressing the Muv phenotype in RNAi screens in 100% 

Muv mutants.  Indicated are the genes against which RNAi was performed, the average 

% Muv animals across the three screens, and the mutant backgrounds in which the hits 

were observed.  A letter following the gene name indicates multiple individual clones 

used to independently target the same gene. 

 

A total of 24 novel genes were identified as consistently suppressing the Muv phenotype 

in three independent screens.  All of these genes could potentially be tested against the 

compendium of expression profiles.  A set of 7 genes (table 3.4) were initially selected 

for testing.  RNAi against all of these genes except one gave severe morphological 

defects in the animals.  This was problematic for two reasons – firstly it made the animals 

extremely difficult to stage accurately; secondly, it made it likely that there would be 

considerable changes in expression as a result of somatic defects.  Consequently these 
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genes were discarded.  The one selected candidate modulator of EGF/ras/MAPK 

signalling that yielded a seemingly wild-type phenotype with slight brood-size defects on 

RNAi in N2 was pkc-1.  Two RNAi clones targeting pkc-1 exist in the library, both of 

which reduce the severity of the Muv phonotype in the let-60(n1046);dgk-2(gk124) 

mutant.  This implies that pkc-1 may be an enhancer of EGF/ras/MAPK signalling.  

When RNAi against pkc-1 using the two different clones was tested against our 

compendium of array profiles pkc-1 clustered with the known EGF/ras/MAPK pathway 

in both cases (figure 3.5).  The Muv screens and expression profiling of pkc-1(RNAi) 

therefore provide two independent forms of evidence that pkc-1 is involved in 

EGF/ras/MAPK signalling in C. elegans.   
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Figure 3.5.  pkc-1 clusters with the EGF/ras/MAPK signalling pathway.  Genes and 

colour scheme are as in figure 3.1.  The two RNAi experiments followed by expression 

profiling of pkc-1 are labelled in brown.  Lowercase letters following gene name 

indicates the use of different individual RNAi clones targeting the same gene.  An 

asterisk indicates a genetic mutant rather than RNAi knockdown. 

 

 

There is a well-established and conserved functional relationship between pkc-1 and dgk-

2 (reviewed in Mellor and Parker, 1998; Merida et al., 2008; Nishizuka, 1984).  pkc-1 is 

an orthologue of mammalian protein kinase C, which is a diacylglycerol (DAG) 

dependent protein kinase.  dgk-2 is an orthologue of mammalian DAG-kinase, which 

phosphorylates DAG, converting it to phosphatidic acid.  In this way it removes an 

essential factor for pkc-1 activity (figure 3.6).  Loss-of-function dgk-2 therefore leads to 

increased pkc-1 activity.  That dgk-2 loss-of-function increases the Muv phenotype in let-

60(n1046) animals and pkc-1(RNAi) decreases it in let-60(n1046);dgk-2(gk124) is further 
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evidence that DAG signalling and EGF/ras/MAPK signalling are functionally related.  

Functional links between PKC and EGF/ras/MAPK signalling have previously been 

identified in mammalian and avian species (e.g. Banan et al., 2001; Crotty et al., 2006; 

Heo and Han, 2006; Lee et al., 2006a; Lee et al., 2006b; Sriraman et al., 2008). 

 

The clustering of pkc-1(RNAi) as predicted amongst the other conditions in the 

compendium demonstrates our ability to provide further evidence of the signalling 

modulation indicated by the RNAi screens of the Muv phenotype.  Our identification of 

pkc-1 in this way represents a firm hit and will likely lead to further comparisons of 

screening-detected signalling modulators against our compendium.  



 

 
Figure 3.6.  The activity of PKC is modulated by the activities of PLC and DGK.  Phospholipase C (PLC) converts 

phosphatidylinositol bisphosphate (PIP2) to inositol trisphosphate (IP3) and diacylglycerol (DAG).  Increased cellular IP3 leads to the 

opening of IP3 gated Ca
2+

 channels in the endoplasmic reticulum.  Protein kinase C (PKC) is then activated by Ca
2+

 binding and 

tethering to the plasma membrane by DAG.  DAG is converted to phosphatidic acid (PA) by DAG kinase (DGK).  This results in PKC 

being released from the plasma membrane and inactivation. 



 

3.7. The differentially expressed genes 

It would be a missed opportunity to consider this data set only in terms of our ability to 

distinguish functional relationships between perturbed conditions.  Rather, the genes that 

change in expression are likely to be of some interest in themselves.  A number of papers 

from the Reinke and Kim labs over the years have used comparative expression profiling 

of mutant animals to identify genes enriched in the germline, gametes and both male and 

hermaphrodite soma (Jiang et al., 2001; Reinke, 2002; Reinke et al., 2004; Reinke et al., 

2000).  Our knowledge of the physiological changes caused as a result of perturbing these 

genes means that we know which parts of the germline should be enriched for each set of 

perturbations.  We also have a number of perturbations in each category meaning that the 

number of times we see the same gene change in each can be a measure of our 

confidence that the expression of these genes is enriched in those regions.  Specifically, 

genes upregulated in animals with Ras/MAPK signalling perturbations may be highly 

expressed in meiotic prophase.  Conversely, the genes downregulated are likely to act 

after meiotic prophase, such as in gametogenesis.  Genes downregulated on Notch 

perturbation are likely to be generally germline enriched genes.  Upregulated genes may 

be enriched in the soma.  Such lists of genes can be limited to genes specifically 

regulated only in certain conditions.  For example, genes downregulated for every Notch 

perturbation but not downregulated for any other perturbation are highly likely to be 

mitotic-enriched genes.  Genes upregulated for every Ras/MAPK perturbation and no 

other condition are more likely to be meiosis-enriched genes without contamination of 

soma-enriched genes. Genes up- or downregulated on either Notch or Ras/MAPK 
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perturbation and not the other or ribosomal perturbation are listed in appendix 1 (data 

CD), along with the number of perturbations of that class for which that regulation is 

seen. 

 

As to the different general properties of the genes that fall into these classes, 

interpretation has proven difficult.  Firstly, as is apparent from the clustering, the number 

of genes changing for any perturbation ranges from many hundreds to many thousands.  

Too much is changing for individual processes to be singled out.  There is little functional 

information assigned to many genes and that which is, is often derived from their 

differential expression patterns observed in microarray experiments (e.g. sperm enriched 

genes).  The identification of such genes being under-represented in a compendium of 

germline perturbations is not novel and of little biological value.  An obvious analysis 

would be to see if any of our resulting gene lists are significantly enriched for any Gene 

Ontology (GO) terms – a set of definitions relating to gene properties or function.  In C. 

elegans this is a fruitless endeavour as there are insufficient GO terms assigned to genes 

such that any statistical inference can be made.  This is not to say that there is no value in 

this differential expression information beyond its ability to drive clustering of 

conditions.  Numerous recent studies have applied the knowledge of common expression 

patterns amongst comparable conditions as the source data for biological network 

construction (Beer and Tavazoie, 2004; Freeman et al., 2007).  This dataset may be 

ideally suited to such analysis, a possibility that is worth pursuing in future. 
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3.8. Discussion 

Considering the progress made to this point it seems sensible to compare the approach 

relative to a more conventional staining approach.  Array profiling is a powerful 

methodology and offers potential advantages over a staining approach for a number of 

reasons.  Firstly, previous work as well as the data presented here has shown that the 

animal-to-animal variability of RNAi means that methodologies considering populations 

rather than individuals are more clean and powerful.  Each RNA sample used in this 

study is derived from ~10,000 worms, many more than could be analysed post-staining 

for mitotic/meiotic markers.  Secondly, microarrays offer an established technological 

platform that can test vastly more parameters than maximally 4-colour histological 

staining.  It also lends itself to straightforward statistical analysis, which is preferable to 

counting large numbers of nuclei and attempting to categorise perturbations based on 

morphology and staining.  The wealth of signalling components that lead to sterility may 

indicate hitherto unrecognized pathways and machineries involved in germline 

development.  Our ultimate goal was to categorize such genes, which could potentially be 

beyond the capacity of current histological staining methods.  A potential defect of this 

methodology, however, is that it is likely to be insensitive to physiological changes 

affecting only a few cells.  Such changes are more likely to be identified by a detailed 

staining approach. 

 

The rediscovery of the known biological machineries by clustering of the array profiles is 

firm evidence of our ability to place genes in pathways based on biological function.  

Since the clustering is inevitably very plastic and subject to change depending upon the 
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array profiles added to it, a method of testing the robustness of the clusters should 

perhaps be applied.  An example of this would be a bootstrap approach.  This would 

involve multiple rounds of removing random sets of genes and reclustering.  The ability 

of the pathways to remain together in isolation within the clustering under these 

circumstances may act as an indicator of how strong the associations are within the 

clustering.  It may also identify the key genes, which drive the clustering. 

 

The obvious next step is the querying of more genes against the compendium.  As 

previously stated, the list of candidates is vast including all signalling and transcription 

factor genes giving sterile phenotypes for as yet undetermined reasons.  This list could be 

limited to genes that give sterile genetic interactions with components of the Notch or 

Ras/MAPK pathways i.e. genes that increase the brood-size defect of Notch or 

Ras/MAPK mutants by RNAi.  A complexity of this is that genes identified in genetic 

interactions screens often interact with components of both pathways and others (Lehner 

et al., 2006).  This hints at the complexities of interpreting genetic interactions but 

perhaps this expression approach represents an opportune system to study this. 

 

It is clear that any such inference of gene function via a compendium such as this requires 

additional forms of evidence before inference can be considered confirmed.  An obvious 

way in which this could be done is detailed dissection and staining of germlines.  A 

number of markers have been suggested for immuno-staining of germlines (Crittenden 

and Kimble, 2008).  These markers can be used to determine the relative quantities of 

each region of the germline.  For example, GLP-1, FBF-1, FBF-2 or CEP-1 could be used 
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to mark the mitotic region.  HIM-3 could be used as a marker of meiotic prophase, whilst 

RME-2 and SP56 mark the oocytes and sperm respectively.  Staining of pkc-1(RNAi) 

germlines represents an obvious candidate for such staining.  In this case we would 

expect to see an increase in the HIM-3 stained regions and decrease in RME-2 and SP56 

stained regions relative to wild-type.  That said, it is the complexities and limited 

resolution of this that was the motivation for this project in the first place.  The limited 

brood-size defect for some of the conditions that appear in the compendium may indicate 

that germline staining may be inconclusive.  The reality, however, appears to be that in 

order to assign genes to pathways at least a subset of novel genes added to the 

compendium would have to be evaluated in this way.  For a subset of genes to exist many 

more genes would have to be tested against the compendium.  Whilst obvious candidate 

genes exist, it was necessary to weigh the value of pursuing this project further against 

the potential of other projects to bear fruit.  The project detailed in the following chapters 

was running concurrently with this in order to provide a fall-back position should this 

project have proven unworkable.  Although this project appears far from unworkable it 

was not pursued further as it was deemed of lower potential than that which follows. 


