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Chapter 4 

Analysis of the wild-type  

C. elegans transcriptome 
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4.1. Introduction 

The C. elegans genome was the first of any metazoan to be completely sequenced, this 

feat having been achieved in 1998 (C. elegans Sequencing Consortium, 1998).  

Furthermore it was only the second eukaryotic genome to be completed, after S. 

cerevisiae.  Annotation of the ~100Mb genome of C. elegans is excellent and arguably 

more advanced than that of other animals.  Regardless of this a completely stable set of 

gene annotations has not yet been achieved, with new releases (albeit with only minor 

changes) every month or so.  My intention was to determine how well gene annotations 

corresponded to the transcribed regions of the C. elegans genome using whole-genome 

Affymetrix GeneChip® C. elegans Tiling 1.0R Arrays.  Similar studies done in 

Arabidopsis thaliana, Drosophila melanogaster and humans had revealed that vastly 

more of each genome is transcribed than could be accounted for by then current 

annotations (Bertone et al., 2004; Hanada et al., 2007; Manak et al., 2006; The 

FANTOM Consortium and RIKEN Genome Exploration Research Group and Genome 

Science Group (Genome Network Project Core Group), 2006).  The genome of C. 

elegans is already considered to be transcriptionally dense, with ~62% of the genome 

thought to be genic and ~33% exonic (WS150 release of Wormbase).  The Affymetrix 

tiling arrays used can survey the transcriptome to a resolution of 35bp.  When this project 

was conceived these microarrays were not yet commercially available.  This project was 

therefore a collaboration with the laboratory of T.R. Gingeras, Affymetrix Inc., Santa 

Clara, CA., USA where the microarray hybridizations were performed.  The informatics 

was performed in association with Arun Ramani, a postdoctoral researcher in the Fraser 

lab. 
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In order to achieve adequate cover of the transcriptome for this study total RNA from six 

different developmental stages in the C. elegans life-cycle, specifically embryos, L2, L3, 

L4, young adults and gravid adults was hybridized in at least duplicate.  This RNA was 

derived from the wild-type reference strain Bristol N2.  Not only was this done to give us 

maximum coverage of the transcriptome, but also to give an adequate data set for 

comparison with the NMD-deficient transcriptome, as will be seen in chapter 5.  The 

output of this platform is a set of probe intensities for the ~3 million probes arrayed on 

each chip, analysis of which reveals the regions of the genome for which transcript is 

present in the sample.  

 

The use of tiled microarrays allows us to survey all transcribed regions of the genome 

and therefore examine how transcript structures change as well as transcript levels.  

Historically, however, single colour tiled microarrays have not been used to generate 

gene intensities and determine differential expression between conditions.  With no 

established methodology and pipeline by which to do this it was required that we develop 

our own analysis strategy.  Also, as with any other technology platform, validation of the 

output was required before the data could be considered reliable.  One possible method of 

validation would be exhaustive RT-PCR and sequencing to confirm the existence and 

identity of novel transcribed regions and structural changes indicated by the tiling data.  

A superior alternative now available to us, however, is ultra-high density sequencing of 

cDNAs.  This automatically allows validation of novel features and gives information on 

connectivity of structures by identification of reads that span exon-exon boundaries.  
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Furthermore the number of reads that map to a given structure act as an expression value 

with which we can compare gene intensity values derived from tiling data.  This therefore 

allows validation of transcript prediction and intensity values simultaneously.  

Consequently, we produced ultra-high density sequence data using the Illumina platform 

for two developmental stages individually (L4 and young adult), as well as a mixed stage 

sample containing RNA derived from all developmental stages in the worm lifecycle in 

order to give us maximum coverage of the transcriptome at the depth available.  The 

Illumina sequence data have the advantage of being of greater resolution than the tiling 

array data but could not adequately replace the tiling array data, being of insufficient 

depth (i.e. insufficient number of unique reads) and providing stage-specific information 

at fewer stages. The purification of RNA for sequencing and tiling array analysis 

excludes RNAs <200nts.  Consequently such RNAs are not represented in the data. 

 

In this chapter I will demonstrate the quality of the tiling array data by comparison with 

the sequence data.  I will then present the protocols established using the two forms of 

data produced and how they inform us on the current state of gene annotations.  I will 

discuss how our data relate to the density and accuracy of gene predictions as well as how 

they can be used to predict changes in splice forms and connectivity between annotated 

and predicted structures. 

 

4.2. Tiling array data normalization 

All Affymetrix GeneChip® C. elegans Tiling 1.0R Array data presented in this thesis 

was quantile normalized prior to use.  Quantile normalization is a standard approach 
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applied to one-colour microarray data (Bolstad et al., 2003).  As discussed in chapter 3, 

there are two forms of variation that occur between individual microarray experiments – 

biological variation and technical variation.  The goal of normalization is to reduce 

technical variation.  Differences in labeling efficiency of samples, quantity of material 

hybridized and the gain of lasers used to scan the arrays are all examples of what 

introduces technical variation.  The key assumption made by quantile normalization is 

that the true biology-driven distribution of probe intensities on a one-colour microarray is 

the same between all arrays.  Quantile normalization takes all probes on an array and 

sorts them in order of intensity.  This is done for all arrays that are to be compared.  The 

mean of the probes for each array at each sorted position then becomes the normalized 

probe intensity at that position (e.g. the tenth highest probe intensity on all arrays is now 

the same – the mean of the non-normalized intensities).  Each array now has the exact 

same probe intensities but the intensities are not assigned to the same probe, rather the 

ranking of intensities for each probe within an array is the same as before but the 

distribution of probe intensities is now the same for all arrays.  Consequently the mean 

probe signal for all arrays is also the same.  All microarrays are now comparable. 

 

4.3. Defining regions of tiling array signal along genomic coordinates 

In order to call regions of the genome as expressed using tiling array data it is first 

necessary to define the methodology and criteria by which this is to be done.  There are 

two distinct ways in which this has been done in previous studies, each with its 

advantages and disadvantages.  A method originally implemented by Wolfgang Huber at 

the EBI, involves aligning the signal acquired along genomic coordinates and then 
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dividing the signal into runs of probes showing similar intensities, thus defining transcript 

and intron-exon boundaries (David et al., 2006).  This methodology has the advantage of 

not using gene annotations as a reference and is therefore completely unbiased.  A 

disadvantage is that it requires the user to pre-define the number of partitions that should 

be drawn in the signal, which is distinctly problematic without reference to a defined set 

of controls, such as annotated gene structures.  Knowledge of the annotated gene 

structures would permit optimization in order to ensure that expressed exons are not 

partitioned or fused during the analysis, ensuring that an accurate number of partitions are 

drawn in the data.  Ultimately, however, the number of transcribed regions called by this 

method is defined by the user rather than the data, which may not be the best method for 

the purposes of transcript discovery where the user cannot know in advance how many 

regions of expression to expect. 

 

An alternative way of defining regions of signal is by identifying runs of probes above a 

calculated background.  Again, theoretically this requires no prior knowledge of or 

reference to annotated gene structures but the complexities of the methodology 

eventually demand optimization of the technique relative to a set of controls, of which 

annotated genes are likely to be best.  An assumption when optimizing this technique 

therefore, is that the gene annotations used for comparison are close to correct.  This is 

appropriate for the purposes of transcript discovery, as it makes no assumptions as to the 

number of genomic regions that correspond to a retained RNA but does ensure that the 

number of regions discovered is represented as accurately as possible relative to the 

known characteristics of the transcriptome.  The output of such an analysis is discreet 
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regions of the genome for which transcript exists at a detectable level.  Such detected 

regions are referred to as transcribed fragments or “transfrags” (figure 4.1).  Satisfied that 

this was the most appropriate methodology to identify transcribed regions of the genome, 

this was the approach we used. 



 

 
Figure 4.1.  Transfrags corresponding to transcribed genes.  Annotated genes are shown in black and are transcribed in the 

direction of their neighbouring yellow arrow.  Normalized probe signal is shown in dark blue and the transfrags generated from that 

signal in light blue.  As can be seen, transfrags broadly represent individual exons.  There is not necessarily a transfrag for every exon 

for lowly expressed genes and transfrags may not represent full-length exons.  Where short introns exist such that few or no probes 

map to that structure then exons may be merged into a single transfrag.  Broadly, however, one transfrag = one exon; one exon = one 

transfrag. 



4.4. Idealizing parameters for building transfrags 

The interval analysis that defines transfrags for any given data set was performed using 

Affymetrix Tiling Analysis Software (TAS) version 1.1.  Prior to interval analysis the 

data from each replicate are quantile normalized together in R (http://www.r-project.org).  

The three key parameters that then need to be defined for the interval analysis are the 

background, the maximum gap (maxgap) and the minimum run (minrun).  The 

background is the threshold above which a probe intensity is considered.  The minrun 

represents the number of consecutive probes that must be above background before a 

transfrag can be identified spanning that region, in terms of the number of bases of 

genome represented by those probes.  The maxgap is the maximum amount of genome 

for which there is no signal above background that can be tolerated before a transfrag is 

terminated.  In optimizing the interval analysis relative to gene annotations there are three 

assumptions that are made.  The first is that for each expressed exon (i.e. exon to which a 

transfrag maps) there should be only one transfrag.  If exons are being artificially split 

into numerous corresponding transfrags this is an indication that the maxgap is too low.  

Alternatively it could be that the minrun is too low and therefore low-level random noise 

is being called as transfrags.  The second key assumption is that for each transfrag that 

maps to a gene, it should only span one exon.  If a transfrag spans multiple exons then 

maxgap is likely to be too high, leading to the artificial fusion of transfrags.  All of this 

assumes that the background threshold has been set such that noise is maximally reduced 

without loss of real signal.  Background threshold was calculated to include the top 5% of 

non-genic probes on the array.  This is summarized in figure 4.2.  In order to satisfy the 

“one exon, one transfrag; one transfrag, one exon” optimization strategy a range of 
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maxgap and minrun combinations were tested and the combination most closely 

matching the criteria was selected.  This was maxgap = 35bp, minrun = 70bp.  As the 

tiling array is made up of 25mer probes tiled at an average genomic distance of 10bp, this 

is effectively a minrun of two probes and a maxgap of one probe. 

 
Figure 4.2.  Selection of transfrag building parameters schematic.  The parameters 

for building transfrags to represent transcribed regions of the genome were optimized 

such that one transfrag corresponded to one exon and one exon corresponded to one 

transfrag.  This required that exons were not artificially fused or split by the use of 

inappropriate maxgap and minrun values. 

 

4.5. Comparison of transfrags with the genome 

Each transfrag was classified as either overlapping an annotated gene (genic) or not 

(extra-genic).  The genic transfrags were then further classified as exonic if overlapping 

an exon.  The number and percentage of transfrags within each category detected at each 

stage is shown in table 4.1. 
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Stage Total 

transfrags 

Genic Percent Exonic Percent Extra-

genic 

Percent 

Embryo 36205 34886 96.36 33610 92.83 1319 3.64 

L2 57564 53778 93.42 49499 85.99 3786 6.58 

L3 49968 47717 95.50 45219 90.50 2251 4.50 

L4 45770 43804 95.70 42050 91.87 1966 4.30 

Young adult 46126 44139 95.69 42644 92.45 1987 4.31 

Gravid adult 43507 41439 95.25 40045 92.04 2068 4.75 

Table 4.1.  Transfrag distribution at each developmental stage.   

 

As is clear from table 1, the vast majority of transfrags detected are genic suggesting that 

the C. elegans genome is well annotated and there is not much novel transcription.  This 

will be discussed further at the end of the chapter. 

 

4.6. Measuring gene expression using tiling arrays 

By the specification of the microarray design there is a probe every ~35bp, thus there are 

many probes per gene.  Owing to the constraints of the array design, however, probes are 

not idealised and all behave differently.  Furthermore for any given condition the probes 

that cover a gene which are above background may be different as a consequence of both 

biological and technical variability.  Probes on a microarray are considered to behave 

differently as a consequence of their different binding capabilities owing to their different 

nucleotide constituents.  The problem of how to derive a gene intensity from a set of 

probe intensities is therefore not as simple as taking the mean or median intensity across 

all probes above background as different probes will be used for each calculation.  There 

are two possible methods of reducing technical variability introduced by using different 

probes for such a calculation.  One approach is to correct for probe behaviour and the 
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other is to consider only exons and genes for which there is a sufficiently high number of 

probes for which there is signal above background.  In the latter case the variability in 

individual probe intensity should be neutralized by the use of many probes.   

 

The method of correcting for probe behaviour that has previously been used is to correct 

probe intensities from cDNA hybridizations relative to probe intensities derived from 

hybridization of genomic DNA (David et al., 2006).  Hybridized genomic DNA is 

theoretically present at a ratio of 1:1 between probes and so the consequent probe 

intensities are representative of the binding characteristics of each probe.  By this method 

all probe intensities should become more consistent relative to each other within a 

transcribed structure.  Fewer probes should therefore be required to give a representative 

gene or exon intensity.  Ultimately, however, this approach requires the optimization and 

performance of genomic hybridizations for potentially minimal gain as before an exon or 

gene could confidently called as expressed it is desirable that the majority of probes 

within any structure to be considered are above background.  Furthermore for structures 

with relatively few probes above background it is possible that they are expressed at a 

low level but low intensity probes are more susceptible to errors in detection regardless of 

correction for probe behaviour.  Calculating a gene intensity based on a small number of 

such probes is therefore inadvisable.  Consequently we opted to stringently filter 

structures for which the majority of probes were above background and calculate 

intensities accordingly.  Our criteria for doing this were to consider only exons for which 

more than 50% of probes were above background and only genes for which more than 

50% of unique exons matched this criterion.  We consider this to be reasonable as genes 
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not matching these criteria are generally too lowly expressed and probe intensities too 

close to the background cut-off to be considered accurate.  The gene intensity is then 

taken as the median intensity of the probes filtered by the above criteria.  Median rather 

than mean intensity was used, as this method is less susceptible to skewing by outlying 

probe intensities.  The background threshold is calculated to include the top 5% of non-

genic probes.  A schematic of how gene intensities is calculated from both tiling array 

and Illumina sequence data is shown in figure 4.3. 

 

4.7. Measuring expression using ultra-high density sequence data 

The output of Illumina sequencing technology is ~3 million 35bp reads per sample 

sequenced.  Alignment of reads uniquely mappable to the genome or annotated 

transcriptome leads to a certain number of reads overlapping each nucleotide.  Each 

nucleotide can therefore be given an intensity score, which is the number of times it 

occurs in mapped reads.  Gene intensities from sequence data are therefore calculated as 

the median number of reads that map to a nucleotide for which there is at least one read.   

 

Table 4.2 shows the number of genes at each stage for which an intensity score can be 

derived by the criteria discussed for each of the technologies.  The generation of gene 

intensities allows comparisons to be drawn between conditions to infer changes in overall 

gene expression or change in major splice form of genes.  It is necessary, however, to 

demonstrate that these gene intensities are truly representative before such analyses can 

be undertaken.  To this end gene intensities derived from tiling data were compared to 

gene intensities derived from sequence data.  If these intensities look similar this is solid 
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evidence that the derived gene intensities are reliable and representative of true transcript 

abundance.   

Stage Tiling Sequence Overlap 

Embryo 4471 NA NA 

L2 7323 NA NA 

L3 7208 NA NA 

L4 6355 7043 5164 

Young adult 7220 6716 5681 

Gravid adult 6577 NA NA 

Table 4.2.  Number of genes called as expressed by each technology and the overlap 

between these lists. 

 

 
Figure 4.3.  Calculating gene intensity values from tiling array and Illumina 

sequence data.  For the tiling array data the gene intensity is the median probe intensity 

of all probes above background in exons for which !50% are above background (red 

probes).  The background threshold is calculated to include the top 5% of non-genic 

probes on the array.  The gene intensity derived sequence data is based on the number of 

times a base within a gene is represented within reads uniquely alignable to the genome.  

The gene intensity is the median number of times a single base is represented of all bases 

represented at least once within the gene. 
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Figure 4.4 shows the plot of gene intensities derived from the two different technologies. 

Gene intensities from the tiling data were binned at 0.1 increments of gene intensity (log2 

scale) and the mean gene intensity calculated.  This was then plotted against the mean of 

gene intensities for the same genes in the sequence data.  The plot indicates that there is 

good agreement (R = 0.82).  Consequently we consider the intensities derived from our 

tiling data to be representative and usable.  This correlation is greater than that previously 

reported for analogous comparisons made in Schizosaccharomyces pombe and 

Saccharomyces cerevisiae (Nagalakshmi et al., 2008; Wilhelm et al., 2008) (R = 0.68 and 

R = 0.48).  The manner in which tiling and sequence expression scores were calculated 

between these studies and that presented here are different.  Critically both of these 

studies compensate for the inevitable 5’ drop-off observed in the sequence data caused by 

oligo(dT) priming, by calculating the sequence expression scores based on n (30 and 300) 

3’ coding nucleotides.  This is feasible given sequence data of sufficient depth such that 

the 3’ end for genes for which there are reads are always represented.  Our data are not of 

this depth and consequently expression scores are the median count of detected 

nucleotides. 

 

Despite the clear correlation between gene intensities generated by the two technologies 

as exhibited in figure 4.4, there are clear discrepancies, especially in the top bins.  There 

are a number of potential causes of this.  Firstly, only polyadenylated transcripts are 

considered by the sequencing technologies whereas total RNA is hybridized to the 

microarrays.  Secondly, the technical difference between the two technologies, such as 
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amplification of the (ds)cDNA for sequencing are likely to lead to discrepancies.  The 

former difference may be the more likely cause as the discrepancies are most marked for 

the most abundant transcripts.  The correlation observed, however, is most striking 

leading us to believe that the derived gene intensities are representative and usable. 

 
Figure 4.4.  Correlation of gene intensities derived from tiling array and sequence 

data.  Gene intensities from the tiling data were binned at 0.1 increments of gene 

intensity (log2 scale) and the mean gene intensity calculated.  This was then plotted 

against the mean of gene intensities for the same genes in the sequence data.  R = 0.82.  

This demonstrates good agreement between gene intensities derived from both 

technologies, thus validating our approach.   
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4.8. Validation of tiling data by sequence data 

One method of validating the novel transfrags identified from the tiling array data would 

be exhaustive RT-PCR.  This, however, would be time consuming and complicated by 

the fact that validation of small structures requires prior knowledge of their connectivity 

to surrounding structures.  A more favourable alternative therefore is comparison of tiling 

data with ultra-high density sequence data.  Not only does this allow the validation of 

novel transfrags, but should also allow them to be connected to other structures by 

identifying sequence reads which overlap transfrags.  The number of transfrags identified 

by tiling arrays and validated by sequencing for stages at which we have stage-specific 

sequence data is shown in table 4.3.  The ability of the sequence data to validate the tiling 

data is inevitably dependent on the depth of sequencing.  It is clear then that the greater 

the intensity of the transfrag the more likely it is to be validated by the sequence data.  

The stringent background threshold set prior to the identification of transfrags, however, 

leads us to believe that were the sequence data of greater depth the rate of transfrag 

validation would have been consistently high across a greater range of transfrag 

intensities.  We therefore consider our tiling data to be adequately validated and of a very 

high quality.  That said, the marked difference in the fraction of genic and non-genic 

transfrags validated suggests that there may be a high rate of false discovery of novel 

transfrags. 

 

The precise overlap between genes detected by the two technologies at all stages is 

illustrated in figure 4.5.  Importantly, this is for genes called as expressed by the 50% 

criteria, rather than genes that have overlapping transfrags.  It is these genes that will be 



 

 120 

considered from this point on.  The discrepancies between the two technologies are 

inevitably due to the differences in depth as well as stringency of the two technologies.  

The tiling data represents signal for more individual transcripts and is therefore of a 

greater depth than the sequence data.  The presence of only one uniquely mappable read 

corresponding to a gene in the sequence data, however, is enough for that gene to be 

considered expressed whereas a transcript detected at a low level on the tiling array is 

more likely to be discarded as noise.  Further to this, total RNA was hybridized to the 

tiling arrays whereas polyA+ RNA was used for sequencing in order to eliminate reads 

derived from rRNA.  It is therefore inevitable that there will be differences in coverage 

by the two technologies. 

 

Stage 
Total 

transfrags 
Genic Exonic 

Extra-

genic 

Total 

validated by 

seq 

Percent 

L4 45770 43804 42050 1966 42502 92.86 

Young 

adult 

46126 44139 42644 1987 42074 91.22 

Stage 

Genic 

validated 

by seq 

Percent 

Exonic 

validated 

by seq 

Percent 

Extra-genic 

validated by 

seq 

Percent 

L4 41521 94.79 40529 96.38 981 49.90 

Young 

adult 

40974 92.83 40152 94.16 1100 55.36 

Table 4.3.  Tiling array transfrags confirmed by sequencing.  This table represents the 

proportions of genic, exonic and extra-genic transfrags validated by sequencing for the 

stages at which we have stage-specific sequence information.  We note that more genic 

than extra-genic (novel) transfrags are validated by the sequence data.  This may be due 

both to noise in our data and novel transcripts being expressed beneath the level of 

detection by the sequence data.  ~91-93% of all transfrags are validated at stages for 

which we have stage-specific sequence data.  We therefore consider our tiling data to be 

of high quality. 
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Figure 4.5.  Overlap between genes detected by tiling arrays and by sequencing.  

Genes are defined as expressed in the tiling array data if !50% of probes per exon are 

above background and !50% of unique exons match that criterion.  For a gene to be 

detected in the sequence data at least one uniquely mappable read must map to the gene.  

 

 

4.9. Addressing alternative splicing using tiling data 

High density tiling data theoretically allows the comparison of each exon of a gene in 

terms of expression level and in so doing, the identification of changes in major 

spliceform between conditions.  Tiling arrays, however, can only provide data that allow 

the user to comment on differential inclusion of a given exon within the repertoire of 

splice forms of a gene.  It gives no information in terms of connectivity of an exon to the 

other exons within a gene.  Here we use our tiling data to generate a “splice index” (SI) 

for the change in expression of an exon relative to the expressed gene between 

conditions.  More specifically, SI = (Ei/Gi)t1/(Ei/Gi)t2 where Ei is the median probe 

intensity above background of the exon, Gi of the gene and t1 and t2 are the different 

timepoints.  The SI is used to infer a major change in splice form.  It is essentially a 
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measure of how the intensity of a given exon changes relative to the whole gene between 

developmental stages.  This then allows us to compare the genes for which a change in 

spliceform is detected to those for which different splice forms are known.   

 

It is essential that intensity values can be assigned to exons with high confidence.  For 

this reason exons with fewer than three probes were omitted from the analysis.  At least 

one exon changes at least 2-fold in 5% of detected genes, which is to say that 5% of 

detected genes clearly exhibit a change in major isoform across development.  While 

18% of annotated genes have at least two annotated isoforms, this is the first systematic 

analysis of how these isoforms change across development. Of the 870 genes that show a 

change in spliceform between any two stages (>2-fold change for any given exon), 459 

have multiple annotated isoforms in WS150.  The remaining 47% of the genes we detect 

by this method are therefore not predicted to be alternatively spliced in WS150.  These 

411 genes, however, correspond to only 2% of annotated coding genes.  This therefore 

does not conclusively demonstrate that alternative splicing is grossly underrepresented in 

current gene annotations.  Since we detect less than 5% of genes to be alternatively 

spliced at this fold-change in SI, however, it may be that a relaxation of this threshold 

would show that the trend continues as the gene list expands.  This would inevitably lead 

to an increase in false discovery, however, and it seems that our sequence data may offer 

a better alternative in addressing alternative splicing. 
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4.10. Addressing alternative splicing using sequence data 

We have demonstrated that tiling array data can be used to indicate changes in major 

splice form for expressed genes between conditions.  Connectivity of exons, however, 

cannot be inferred from tiling data.  High-density sequence data can be used to this end 

by looking for reads that span exon-exon boundaries.  This is the single biggest 

advantage of sequence data over tiling data – the information it provides on connectivity 

within expressed structures.  The proportion of reads that span any set of exon boundaries 

relative to another may give an indication of the relative combinations of exons used in a 

given condition.  This would be extremely useful in that it gives information on exon 

connectivity within transcripts.  The methodology involves identifying sequence reads 

that do not map to the genome.  These reads are then aligned with all combinations of 

adjacent and non-adjacent exons for all annotated isoforms of all genes using Maq.  The 

output of this is reads that map to annotated exon-exon junctions and reads which span 

previously unidentified exon-exon junctions for annotated exons. The technique is 

therefore limited by the accuracy and completeness of exon boundary annotations.  A 

schematic of the approach is shown in figure 4.6 and an example of the output in figure 

4.7.  A summary of the number of reads mapping to the genome and spanning annotated 

and non-annotated exon-exon boundaries across all samples is shown in table 4.4. 

 

Ultimately sequence data at the required depth may render tiling data completely 

redundant in addressing alternative splicing.  A constant issue which we face in our tiling 

analysis is what fold-changes are reasonable cut-offs, allowing us to call events.  This is 

not an issue with sequence data for this analysis.  If we identify a uniquely mappable read 
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spanning an exon-exon junction it is reasonable to assume that those exons are connected, 

allowing us to determine changes in spliceform.  This also allows us to identify exons 

that are connected where no such connectivity exists in current gene annotations.  Though 

the depth of our sequence data is inadequate to comprehensively map all splice events 

and spliceform changes at this stage, our current data show unannotated splice events for 

~1% of detected genes.  Critically, ~80% of genes identified to have alternative splicing 

in this manner also were found to have at least one exon with a splice index !1.5 by tiling 

analysis, confirming that the changes in transcript structure that we monitor by tiling 

analysis are likely to be real. Thus the high resolution mapping of the transcriptome using 

tiling arrays and the gene expression levels and transcript structural features that we 

derive from these data appear to be accurate. 

 
NO. OF 

NUCLEOTIDES 

PERCENTAGE 

OF TOTAL 

Nucleotides aligned to genome at !Q30 621610325 73.02 

Nucleotides aligned to annotated transcriptome at 

!Q30 
36085206 4.24 

Nucleotides aligned to non-adjacent exons at 

!Q30 
47205 0.01 

Non-aligned nucleotides 193584559 22.74 

Total Nucleotides 851327295 100.00 

Table 4.4.  Reads mapping to the genome and spanning exon-exon boundaries.  

Shown are the number of nucleotides across all samples mapped to the genome, and 

transcriptome as described above using Maq version 0.6.6 at a mapping quality of !Q30. 
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Figure 4.6.  Use of Illumina sequence reads to identify utilized exon-exon junctions.  

Alignment of uniquely mappable reads to the genome using Maq removes reads not 

spanning exon boundaries and can be used to generate gene intensities.  The remaining 

reads are aligned with consecutive exons for all isoforms of all genes.  This reveals 

annotated exon-exon junctions.  The remaining reads are then aligned to all combinations 

of non-consecutive exons for all isoforms of all genes.  This reveals non-annotated exon-

exon junctions. 
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Figure 4.7.  Ultra-high density sequence reads reveal novel splice junctions. Illumina 

sequence reads which cannot be aligned to the genome are aligned to adjacent annotated 

exons and all combinations of non-adjacent exons for all isoforms of all genes with Maq.  

Reads spanning annotated exon boundaries are shown in purple.  Novel exon boundaries 

are shown in green.  Relative numbers of reads spanning each exon-exon junction may 

reveal relative usage.  At the current depth of sequencing 1% of genes appear to undergo 

at least one novel splice event. 
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4.11. Discussion 

The work presented here clearly demonstrates the utility and complementarity of these 

technologies in forwarding our knowledge and understanding of gene annotations.  It 

represents the first splicing analysis of its kind in C. elegans and the potential to become 

the most comprehensive analysis of its kind in any organism.  The utility of the 

approaches developed in this work have been clearly demonstrated, as has the 

redundancy of tiling array data given the resolution and connectivity information of ultra-

high density sequence data.  Tiling array data, however, represents a more cost-effective 

approach in addressing the same questions.  Sequence data to a greater depth will be 

required in order to more completely identify the complete repertoire of exon-exon 

junctions.  At the time of printing this thesis sequence data had been produced at 15x the 

depth of the data utilized here.  The tools are now in place to utilize these data to great 

effect.  The splicing analysis performed using the tiling data does imply that alternative 

splicing is far more prevalent than can be accounted for by current annotations.  It would 

be most interesting to see if this is further borne out by the newly acquired sequence data. 

 

The dearth of novel transfrags detected in the tiling data and the low frequency of their 

validation by the sequence data suggest that the genome of C. elegans is well annotated.  

We do, however, provide clear evidence for novel transcription.  Furthermore we do not 

discount the possibility that many of the novel transfrags which were not validated are 

expressed at a low level are beneath the level of detection of our sequence data, the 

scarcity of these transcripts being in part causative of their prior anonymity.  Also, certain 

developmental stages are inevitably under-represented in the sequence data, leading to a 
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reduced possibility of validating novel transfrags detected at these stages.  It will be 

interesting to see how many more transfrags are validated by the newly acquired 

sequence data.   

 

The identity of these novel transfrags as additional exons of annotated genes, entire novel 

coding genes, or non-coding transcripts is yet to be tackled.  This can be addressed using 

the sequence data but represents a more complex problem than the study of connectivity 

between annotated exons.  Our splicing analysis thus far had involved looking for reads 

that span annotated exon boundaries.  No such boundaries are defined by the transfrags or 

novel sequence reads mapped to the genome.  A shotgun approach to assembling 

sequence reads into transcripts may represent the best possibility of connecting 

transcribed units.  Whatever the approach taken and whomever implements it, it is likely 

to be extremely complex and computationally intensive. 

 

Regarding the scarcity of novel transfrags, validated or otherwise, relative to analogous 

studies in other organisms – perhaps this is not surprising.  The density of gene 

annotation in C. elegans surpasses that of human and Drosophila.  Furthermore our study 

considered whole animals, i.e. all cells and tissues at once.  If there are low levels of 

tissue-specific expression of novel genes we were unlikely to detect them in this study.  

Regardless, the output of this study has proven it a worthwhile undertaking and an ideal 

dataset for comparison with the nonsense-mediated mRNA decay transcriptome as we 

shall see.  In terms of data quality, it is noted that markedly fewer genes are detected for 

any condition than were seen using two-colour microarrays in chapter 3.  Importantly, the 
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expression microarrays used in chapter 3 have only one probe per gene, and are 70mers 

rather than the 25mer probes on Affymetrix arrays.  The increased specificity per probed, 

coupled with the greater probe number per gene give us greater confidence in the output 

of the Affymetrix microarrays, even if the depth of detection is lesser.  Our confidence in 

these data is further strengthened by the correlation of gene intensities between our tiling 

array and Illumina sequence data.  We therefore consider the datasets presented in this 

chapter and the methodologies applied to them to be an ideal framework for comparison 

with the nonsense-mediated mRNA decay deficient transcriptome. 


